• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/Documentation/lguest/
1/*P:100
2 * This is the Launcher code, a simple program which lays out the "physical"
3 * memory for the new Guest by mapping the kernel image and the virtual
4 * devices, then opens /dev/lguest to tell the kernel about the Guest and
5 * control it.
6:*/
7#define _LARGEFILE64_SOURCE
8#define _GNU_SOURCE
9#include <stdio.h>
10#include <string.h>
11#include <unistd.h>
12#include <err.h>
13#include <stdint.h>
14#include <stdlib.h>
15#include <elf.h>
16#include <sys/mman.h>
17#include <sys/param.h>
18#include <sys/types.h>
19#include <sys/stat.h>
20#include <sys/wait.h>
21#include <sys/eventfd.h>
22#include <fcntl.h>
23#include <stdbool.h>
24#include <errno.h>
25#include <ctype.h>
26#include <sys/socket.h>
27#include <sys/ioctl.h>
28#include <sys/time.h>
29#include <time.h>
30#include <netinet/in.h>
31#include <net/if.h>
32#include <linux/sockios.h>
33#include <linux/if_tun.h>
34#include <sys/uio.h>
35#include <termios.h>
36#include <getopt.h>
37#include <assert.h>
38#include <sched.h>
39#include <limits.h>
40#include <stddef.h>
41#include <signal.h>
42#include <linux/virtio_config.h>
43#include <linux/virtio_net.h>
44#include <linux/virtio_blk.h>
45#include <linux/virtio_console.h>
46#include <linux/virtio_rng.h>
47#include <linux/virtio_ring.h>
48#include <asm/bootparam.h>
49#include "../../include/linux/lguest_launcher.h"
50/*L:110
51 * We can ignore the 42 include files we need for this program, but I do want
52 * to draw attention to the use of kernel-style types.
53 *
54 * As Linus said, "C is a Spartan language, and so should your naming be."  I
55 * like these abbreviations, so we define them here.  Note that u64 is always
56 * unsigned long long, which works on all Linux systems: this means that we can
57 * use %llu in printf for any u64.
58 */
59typedef unsigned long long u64;
60typedef uint32_t u32;
61typedef uint16_t u16;
62typedef uint8_t u8;
63/*:*/
64
65#define PAGE_PRESENT 0x7 	/* Present, RW, Execute */
66#define BRIDGE_PFX "bridge:"
67#ifndef SIOCBRADDIF
68#define SIOCBRADDIF	0x89a2		/* add interface to bridge      */
69#endif
70/* We can have up to 256 pages for devices. */
71#define DEVICE_PAGES 256
72/* This will occupy 3 pages: it must be a power of 2. */
73#define VIRTQUEUE_NUM 256
74
75/*L:120
76 * verbose is both a global flag and a macro.  The C preprocessor allows
77 * this, and although I wouldn't recommend it, it works quite nicely here.
78 */
79static bool verbose;
80#define verbose(args...) \
81	do { if (verbose) printf(args); } while(0)
82/*:*/
83
84/* The pointer to the start of guest memory. */
85static void *guest_base;
86/* The maximum guest physical address allowed, and maximum possible. */
87static unsigned long guest_limit, guest_max;
88/* The /dev/lguest file descriptor. */
89static int lguest_fd;
90
91/* a per-cpu variable indicating whose vcpu is currently running */
92static unsigned int __thread cpu_id;
93
94/* This is our list of devices. */
95struct device_list {
96	/* Counter to assign interrupt numbers. */
97	unsigned int next_irq;
98
99	/* Counter to print out convenient device numbers. */
100	unsigned int device_num;
101
102	/* The descriptor page for the devices. */
103	u8 *descpage;
104
105	/* A single linked list of devices. */
106	struct device *dev;
107	/* And a pointer to the last device for easy append. */
108	struct device *lastdev;
109};
110
111/* The list of Guest devices, based on command line arguments. */
112static struct device_list devices;
113
114/* The device structure describes a single device. */
115struct device {
116	/* The linked-list pointer. */
117	struct device *next;
118
119	/* The device's descriptor, as mapped into the Guest. */
120	struct lguest_device_desc *desc;
121
122	/* We can't trust desc values once Guest has booted: we use these. */
123	unsigned int feature_len;
124	unsigned int num_vq;
125
126	/* The name of this device, for --verbose. */
127	const char *name;
128
129	/* Any queues attached to this device */
130	struct virtqueue *vq;
131
132	/* Is it operational */
133	bool running;
134
135	/* Does Guest want an intrrupt on empty? */
136	bool irq_on_empty;
137
138	/* Device-specific data. */
139	void *priv;
140};
141
142/* The virtqueue structure describes a queue attached to a device. */
143struct virtqueue {
144	struct virtqueue *next;
145
146	/* Which device owns me. */
147	struct device *dev;
148
149	/* The configuration for this queue. */
150	struct lguest_vqconfig config;
151
152	/* The actual ring of buffers. */
153	struct vring vring;
154
155	/* Last available index we saw. */
156	u16 last_avail_idx;
157
158	/* How many are used since we sent last irq? */
159	unsigned int pending_used;
160
161	/* Eventfd where Guest notifications arrive. */
162	int eventfd;
163
164	/* Function for the thread which is servicing this virtqueue. */
165	void (*service)(struct virtqueue *vq);
166	pid_t thread;
167};
168
169/* Remember the arguments to the program so we can "reboot" */
170static char **main_args;
171
172/* The original tty settings to restore on exit. */
173static struct termios orig_term;
174
175/*
176 * We have to be careful with barriers: our devices are all run in separate
177 * threads and so we need to make sure that changes visible to the Guest happen
178 * in precise order.
179 */
180#define wmb() __asm__ __volatile__("" : : : "memory")
181#define mb() __asm__ __volatile__("" : : : "memory")
182
183/*
184 * Convert an iovec element to the given type.
185 *
186 * This is a fairly ugly trick: we need to know the size of the type and
187 * alignment requirement to check the pointer is kosher.  It's also nice to
188 * have the name of the type in case we report failure.
189 *
190 * Typing those three things all the time is cumbersome and error prone, so we
191 * have a macro which sets them all up and passes to the real function.
192 */
193#define convert(iov, type) \
194	((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
195
196static void *_convert(struct iovec *iov, size_t size, size_t align,
197		      const char *name)
198{
199	if (iov->iov_len != size)
200		errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
201	if ((unsigned long)iov->iov_base % align != 0)
202		errx(1, "Bad alignment %p for %s", iov->iov_base, name);
203	return iov->iov_base;
204}
205
206/* Wrapper for the last available index.  Makes it easier to change. */
207#define lg_last_avail(vq)	((vq)->last_avail_idx)
208
209/*
210 * The virtio configuration space is defined to be little-endian.  x86 is
211 * little-endian too, but it's nice to be explicit so we have these helpers.
212 */
213#define cpu_to_le16(v16) (v16)
214#define cpu_to_le32(v32) (v32)
215#define cpu_to_le64(v64) (v64)
216#define le16_to_cpu(v16) (v16)
217#define le32_to_cpu(v32) (v32)
218#define le64_to_cpu(v64) (v64)
219
220/* Is this iovec empty? */
221static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
222{
223	unsigned int i;
224
225	for (i = 0; i < num_iov; i++)
226		if (iov[i].iov_len)
227			return false;
228	return true;
229}
230
231/* Take len bytes from the front of this iovec. */
232static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
233{
234	unsigned int i;
235
236	for (i = 0; i < num_iov; i++) {
237		unsigned int used;
238
239		used = iov[i].iov_len < len ? iov[i].iov_len : len;
240		iov[i].iov_base += used;
241		iov[i].iov_len -= used;
242		len -= used;
243	}
244	assert(len == 0);
245}
246
247/* The device virtqueue descriptors are followed by feature bitmasks. */
248static u8 *get_feature_bits(struct device *dev)
249{
250	return (u8 *)(dev->desc + 1)
251		+ dev->num_vq * sizeof(struct lguest_vqconfig);
252}
253
254/*L:100
255 * The Launcher code itself takes us out into userspace, that scary place where
256 * pointers run wild and free!  Unfortunately, like most userspace programs,
257 * it's quite boring (which is why everyone likes to hack on the kernel!).
258 * Perhaps if you make up an Lguest Drinking Game at this point, it will get
259 * you through this section.  Or, maybe not.
260 *
261 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
262 * memory and stores it in "guest_base".  In other words, Guest physical ==
263 * Launcher virtual with an offset.
264 *
265 * This can be tough to get your head around, but usually it just means that we
266 * use these trivial conversion functions when the Guest gives us its
267 * "physical" addresses:
268 */
269static void *from_guest_phys(unsigned long addr)
270{
271	return guest_base + addr;
272}
273
274static unsigned long to_guest_phys(const void *addr)
275{
276	return (addr - guest_base);
277}
278
279/*L:130
280 * Loading the Kernel.
281 *
282 * We start with couple of simple helper routines.  open_or_die() avoids
283 * error-checking code cluttering the callers:
284 */
285static int open_or_die(const char *name, int flags)
286{
287	int fd = open(name, flags);
288	if (fd < 0)
289		err(1, "Failed to open %s", name);
290	return fd;
291}
292
293/* map_zeroed_pages() takes a number of pages. */
294static void *map_zeroed_pages(unsigned int num)
295{
296	int fd = open_or_die("/dev/zero", O_RDONLY);
297	void *addr;
298
299	/*
300	 * We use a private mapping (ie. if we write to the page, it will be
301	 * copied).
302	 */
303	addr = mmap(NULL, getpagesize() * num,
304		    PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
305	if (addr == MAP_FAILED)
306		err(1, "Mmapping %u pages of /dev/zero", num);
307
308	/*
309	 * One neat mmap feature is that you can close the fd, and it
310	 * stays mapped.
311	 */
312	close(fd);
313
314	return addr;
315}
316
317/* Get some more pages for a device. */
318static void *get_pages(unsigned int num)
319{
320	void *addr = from_guest_phys(guest_limit);
321
322	guest_limit += num * getpagesize();
323	if (guest_limit > guest_max)
324		errx(1, "Not enough memory for devices");
325	return addr;
326}
327
328/*
329 * This routine is used to load the kernel or initrd.  It tries mmap, but if
330 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
331 * it falls back to reading the memory in.
332 */
333static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
334{
335	ssize_t r;
336
337	/*
338	 * We map writable even though for some segments are marked read-only.
339	 * The kernel really wants to be writable: it patches its own
340	 * instructions.
341	 *
342	 * MAP_PRIVATE means that the page won't be copied until a write is
343	 * done to it.  This allows us to share untouched memory between
344	 * Guests.
345	 */
346	if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
347		 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
348		return;
349
350	/* pread does a seek and a read in one shot: saves a few lines. */
351	r = pread(fd, addr, len, offset);
352	if (r != len)
353		err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
354}
355
356/*
357 * This routine takes an open vmlinux image, which is in ELF, and maps it into
358 * the Guest memory.  ELF = Embedded Linking Format, which is the format used
359 * by all modern binaries on Linux including the kernel.
360 *
361 * The ELF headers give *two* addresses: a physical address, and a virtual
362 * address.  We use the physical address; the Guest will map itself to the
363 * virtual address.
364 *
365 * We return the starting address.
366 */
367static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
368{
369	Elf32_Phdr phdr[ehdr->e_phnum];
370	unsigned int i;
371
372	/*
373	 * Sanity checks on the main ELF header: an x86 executable with a
374	 * reasonable number of correctly-sized program headers.
375	 */
376	if (ehdr->e_type != ET_EXEC
377	    || ehdr->e_machine != EM_386
378	    || ehdr->e_phentsize != sizeof(Elf32_Phdr)
379	    || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
380		errx(1, "Malformed elf header");
381
382	/*
383	 * An ELF executable contains an ELF header and a number of "program"
384	 * headers which indicate which parts ("segments") of the program to
385	 * load where.
386	 */
387
388	/* We read in all the program headers at once: */
389	if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
390		err(1, "Seeking to program headers");
391	if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
392		err(1, "Reading program headers");
393
394	/*
395	 * Try all the headers: there are usually only three.  A read-only one,
396	 * a read-write one, and a "note" section which we don't load.
397	 */
398	for (i = 0; i < ehdr->e_phnum; i++) {
399		/* If this isn't a loadable segment, we ignore it */
400		if (phdr[i].p_type != PT_LOAD)
401			continue;
402
403		verbose("Section %i: size %i addr %p\n",
404			i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
405
406		/* We map this section of the file at its physical address. */
407		map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
408		       phdr[i].p_offset, phdr[i].p_filesz);
409	}
410
411	/* The entry point is given in the ELF header. */
412	return ehdr->e_entry;
413}
414
415/*L:150
416 * A bzImage, unlike an ELF file, is not meant to be loaded.  You're supposed
417 * to jump into it and it will unpack itself.  We used to have to perform some
418 * hairy magic because the unpacking code scared me.
419 *
420 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
421 * a small patch to jump over the tricky bits in the Guest, so now we just read
422 * the funky header so we know where in the file to load, and away we go!
423 */
424static unsigned long load_bzimage(int fd)
425{
426	struct boot_params boot;
427	int r;
428	/* Modern bzImages get loaded at 1M. */
429	void *p = from_guest_phys(0x100000);
430
431	/*
432	 * Go back to the start of the file and read the header.  It should be
433	 * a Linux boot header (see Documentation/x86/i386/boot.txt)
434	 */
435	lseek(fd, 0, SEEK_SET);
436	read(fd, &boot, sizeof(boot));
437
438	/* Inside the setup_hdr, we expect the magic "HdrS" */
439	if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
440		errx(1, "This doesn't look like a bzImage to me");
441
442	/* Skip over the extra sectors of the header. */
443	lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
444
445	/* Now read everything into memory. in nice big chunks. */
446	while ((r = read(fd, p, 65536)) > 0)
447		p += r;
448
449	/* Finally, code32_start tells us where to enter the kernel. */
450	return boot.hdr.code32_start;
451}
452
453/*L:140
454 * Loading the kernel is easy when it's a "vmlinux", but most kernels
455 * come wrapped up in the self-decompressing "bzImage" format.  With a little
456 * work, we can load those, too.
457 */
458static unsigned long load_kernel(int fd)
459{
460	Elf32_Ehdr hdr;
461
462	/* Read in the first few bytes. */
463	if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
464		err(1, "Reading kernel");
465
466	/* If it's an ELF file, it starts with "\177ELF" */
467	if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
468		return map_elf(fd, &hdr);
469
470	/* Otherwise we assume it's a bzImage, and try to load it. */
471	return load_bzimage(fd);
472}
473
474/*
475 * This is a trivial little helper to align pages.  Andi Kleen hated it because
476 * it calls getpagesize() twice: "it's dumb code."
477 *
478 * Kernel guys get really het up about optimization, even when it's not
479 * necessary.  I leave this code as a reaction against that.
480 */
481static inline unsigned long page_align(unsigned long addr)
482{
483	/* Add upwards and truncate downwards. */
484	return ((addr + getpagesize()-1) & ~(getpagesize()-1));
485}
486
487/*L:180
488 * An "initial ram disk" is a disk image loaded into memory along with the
489 * kernel which the kernel can use to boot from without needing any drivers.
490 * Most distributions now use this as standard: the initrd contains the code to
491 * load the appropriate driver modules for the current machine.
492 *
493 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
494 * kernels.  He sent me this (and tells me when I break it).
495 */
496static unsigned long load_initrd(const char *name, unsigned long mem)
497{
498	int ifd;
499	struct stat st;
500	unsigned long len;
501
502	ifd = open_or_die(name, O_RDONLY);
503	/* fstat() is needed to get the file size. */
504	if (fstat(ifd, &st) < 0)
505		err(1, "fstat() on initrd '%s'", name);
506
507	/*
508	 * We map the initrd at the top of memory, but mmap wants it to be
509	 * page-aligned, so we round the size up for that.
510	 */
511	len = page_align(st.st_size);
512	map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
513	/*
514	 * Once a file is mapped, you can close the file descriptor.  It's a
515	 * little odd, but quite useful.
516	 */
517	close(ifd);
518	verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
519
520	/* We return the initrd size. */
521	return len;
522}
523/*:*/
524
525/*
526 * Simple routine to roll all the commandline arguments together with spaces
527 * between them.
528 */
529static void concat(char *dst, char *args[])
530{
531	unsigned int i, len = 0;
532
533	for (i = 0; args[i]; i++) {
534		if (i) {
535			strcat(dst+len, " ");
536			len++;
537		}
538		strcpy(dst+len, args[i]);
539		len += strlen(args[i]);
540	}
541	/* In case it's empty. */
542	dst[len] = '\0';
543}
544
545/*L:185
546 * This is where we actually tell the kernel to initialize the Guest.  We
547 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
548 * the base of Guest "physical" memory, the top physical page to allow and the
549 * entry point for the Guest.
550 */
551static void tell_kernel(unsigned long start)
552{
553	unsigned long args[] = { LHREQ_INITIALIZE,
554				 (unsigned long)guest_base,
555				 guest_limit / getpagesize(), start };
556	verbose("Guest: %p - %p (%#lx)\n",
557		guest_base, guest_base + guest_limit, guest_limit);
558	lguest_fd = open_or_die("/dev/lguest", O_RDWR);
559	if (write(lguest_fd, args, sizeof(args)) < 0)
560		err(1, "Writing to /dev/lguest");
561}
562/*:*/
563
564/*L:200
565 * Device Handling.
566 *
567 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
568 * We need to make sure it's not trying to reach into the Launcher itself, so
569 * we have a convenient routine which checks it and exits with an error message
570 * if something funny is going on:
571 */
572static void *_check_pointer(unsigned long addr, unsigned int size,
573			    unsigned int line)
574{
575	/*
576	 * We have to separately check addr and addr+size, because size could
577	 * be huge and addr + size might wrap around.
578	 */
579	if (addr >= guest_limit || addr + size >= guest_limit)
580		errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
581	/*
582	 * We return a pointer for the caller's convenience, now we know it's
583	 * safe to use.
584	 */
585	return from_guest_phys(addr);
586}
587/* A macro which transparently hands the line number to the real function. */
588#define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
589
590/*
591 * Each buffer in the virtqueues is actually a chain of descriptors.  This
592 * function returns the next descriptor in the chain, or vq->vring.num if we're
593 * at the end.
594 */
595static unsigned next_desc(struct vring_desc *desc,
596			  unsigned int i, unsigned int max)
597{
598	unsigned int next;
599
600	/* If this descriptor says it doesn't chain, we're done. */
601	if (!(desc[i].flags & VRING_DESC_F_NEXT))
602		return max;
603
604	/* Check they're not leading us off end of descriptors. */
605	next = desc[i].next;
606	/* Make sure compiler knows to grab that: we don't want it changing! */
607	wmb();
608
609	if (next >= max)
610		errx(1, "Desc next is %u", next);
611
612	return next;
613}
614
615/*
616 * This actually sends the interrupt for this virtqueue, if we've used a
617 * buffer.
618 */
619static void trigger_irq(struct virtqueue *vq)
620{
621	unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
622
623	/* Don't inform them if nothing used. */
624	if (!vq->pending_used)
625		return;
626	vq->pending_used = 0;
627
628	/* If they don't want an interrupt, don't send one... */
629	if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT) {
630		/* ... unless they've asked us to force one on empty. */
631		if (!vq->dev->irq_on_empty
632		    || lg_last_avail(vq) != vq->vring.avail->idx)
633			return;
634	}
635
636	/* Send the Guest an interrupt tell them we used something up. */
637	if (write(lguest_fd, buf, sizeof(buf)) != 0)
638		err(1, "Triggering irq %i", vq->config.irq);
639}
640
641/*
642 * This looks in the virtqueue for the first available buffer, and converts
643 * it to an iovec for convenient access.  Since descriptors consist of some
644 * number of output then some number of input descriptors, it's actually two
645 * iovecs, but we pack them into one and note how many of each there were.
646 *
647 * This function waits if necessary, and returns the descriptor number found.
648 */
649static unsigned wait_for_vq_desc(struct virtqueue *vq,
650				 struct iovec iov[],
651				 unsigned int *out_num, unsigned int *in_num)
652{
653	unsigned int i, head, max;
654	struct vring_desc *desc;
655	u16 last_avail = lg_last_avail(vq);
656
657	/* There's nothing available? */
658	while (last_avail == vq->vring.avail->idx) {
659		u64 event;
660
661		/*
662		 * Since we're about to sleep, now is a good time to tell the
663		 * Guest about what we've used up to now.
664		 */
665		trigger_irq(vq);
666
667		/* OK, now we need to know about added descriptors. */
668		vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
669
670		/*
671		 * They could have slipped one in as we were doing that: make
672		 * sure it's written, then check again.
673		 */
674		mb();
675		if (last_avail != vq->vring.avail->idx) {
676			vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
677			break;
678		}
679
680		/* Nothing new?  Wait for eventfd to tell us they refilled. */
681		if (read(vq->eventfd, &event, sizeof(event)) != sizeof(event))
682			errx(1, "Event read failed?");
683
684		/* We don't need to be notified again. */
685		vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
686	}
687
688	/* Check it isn't doing very strange things with descriptor numbers. */
689	if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
690		errx(1, "Guest moved used index from %u to %u",
691		     last_avail, vq->vring.avail->idx);
692
693	/*
694	 * Grab the next descriptor number they're advertising, and increment
695	 * the index we've seen.
696	 */
697	head = vq->vring.avail->ring[last_avail % vq->vring.num];
698	lg_last_avail(vq)++;
699
700	/* If their number is silly, that's a fatal mistake. */
701	if (head >= vq->vring.num)
702		errx(1, "Guest says index %u is available", head);
703
704	/* When we start there are none of either input nor output. */
705	*out_num = *in_num = 0;
706
707	max = vq->vring.num;
708	desc = vq->vring.desc;
709	i = head;
710
711	/*
712	 * If this is an indirect entry, then this buffer contains a descriptor
713	 * table which we handle as if it's any normal descriptor chain.
714	 */
715	if (desc[i].flags & VRING_DESC_F_INDIRECT) {
716		if (desc[i].len % sizeof(struct vring_desc))
717			errx(1, "Invalid size for indirect buffer table");
718
719		max = desc[i].len / sizeof(struct vring_desc);
720		desc = check_pointer(desc[i].addr, desc[i].len);
721		i = 0;
722	}
723
724	do {
725		/* Grab the first descriptor, and check it's OK. */
726		iov[*out_num + *in_num].iov_len = desc[i].len;
727		iov[*out_num + *in_num].iov_base
728			= check_pointer(desc[i].addr, desc[i].len);
729		/* If this is an input descriptor, increment that count. */
730		if (desc[i].flags & VRING_DESC_F_WRITE)
731			(*in_num)++;
732		else {
733			/*
734			 * If it's an output descriptor, they're all supposed
735			 * to come before any input descriptors.
736			 */
737			if (*in_num)
738				errx(1, "Descriptor has out after in");
739			(*out_num)++;
740		}
741
742		/* If we've got too many, that implies a descriptor loop. */
743		if (*out_num + *in_num > max)
744			errx(1, "Looped descriptor");
745	} while ((i = next_desc(desc, i, max)) != max);
746
747	return head;
748}
749
750/*
751 * After we've used one of their buffers, we tell the Guest about it.  Sometime
752 * later we'll want to send them an interrupt using trigger_irq(); note that
753 * wait_for_vq_desc() does that for us if it has to wait.
754 */
755static void add_used(struct virtqueue *vq, unsigned int head, int len)
756{
757	struct vring_used_elem *used;
758
759	/*
760	 * The virtqueue contains a ring of used buffers.  Get a pointer to the
761	 * next entry in that used ring.
762	 */
763	used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
764	used->id = head;
765	used->len = len;
766	/* Make sure buffer is written before we update index. */
767	wmb();
768	vq->vring.used->idx++;
769	vq->pending_used++;
770}
771
772/* And here's the combo meal deal.  Supersize me! */
773static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len)
774{
775	add_used(vq, head, len);
776	trigger_irq(vq);
777}
778
779/*
780 * The Console
781 *
782 * We associate some data with the console for our exit hack.
783 */
784struct console_abort {
785	/* How many times have they hit ^C? */
786	int count;
787	/* When did they start? */
788	struct timeval start;
789};
790
791/* This is the routine which handles console input (ie. stdin). */
792static void console_input(struct virtqueue *vq)
793{
794	int len;
795	unsigned int head, in_num, out_num;
796	struct console_abort *abort = vq->dev->priv;
797	struct iovec iov[vq->vring.num];
798
799	/* Make sure there's a descriptor available. */
800	head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
801	if (out_num)
802		errx(1, "Output buffers in console in queue?");
803
804	/* Read into it.  This is where we usually wait. */
805	len = readv(STDIN_FILENO, iov, in_num);
806	if (len <= 0) {
807		/* Ran out of input? */
808		warnx("Failed to get console input, ignoring console.");
809		/*
810		 * For simplicity, dying threads kill the whole Launcher.  So
811		 * just nap here.
812		 */
813		for (;;)
814			pause();
815	}
816
817	/* Tell the Guest we used a buffer. */
818	add_used_and_trigger(vq, head, len);
819
820	/*
821	 * Three ^C within one second?  Exit.
822	 *
823	 * This is such a hack, but works surprisingly well.  Each ^C has to
824	 * be in a buffer by itself, so they can't be too fast.  But we check
825	 * that we get three within about a second, so they can't be too
826	 * slow.
827	 */
828	if (len != 1 || ((char *)iov[0].iov_base)[0] != 3) {
829		abort->count = 0;
830		return;
831	}
832
833	abort->count++;
834	if (abort->count == 1)
835		gettimeofday(&abort->start, NULL);
836	else if (abort->count == 3) {
837		struct timeval now;
838		gettimeofday(&now, NULL);
839		/* Kill all Launcher processes with SIGINT, like normal ^C */
840		if (now.tv_sec <= abort->start.tv_sec+1)
841			kill(0, SIGINT);
842		abort->count = 0;
843	}
844}
845
846/* This is the routine which handles console output (ie. stdout). */
847static void console_output(struct virtqueue *vq)
848{
849	unsigned int head, out, in;
850	struct iovec iov[vq->vring.num];
851
852	/* We usually wait in here, for the Guest to give us something. */
853	head = wait_for_vq_desc(vq, iov, &out, &in);
854	if (in)
855		errx(1, "Input buffers in console output queue?");
856
857	/* writev can return a partial write, so we loop here. */
858	while (!iov_empty(iov, out)) {
859		int len = writev(STDOUT_FILENO, iov, out);
860		if (len <= 0)
861			err(1, "Write to stdout gave %i", len);
862		iov_consume(iov, out, len);
863	}
864
865	/*
866	 * We're finished with that buffer: if we're going to sleep,
867	 * wait_for_vq_desc() will prod the Guest with an interrupt.
868	 */
869	add_used(vq, head, 0);
870}
871
872/*
873 * The Network
874 *
875 * Handling output for network is also simple: we get all the output buffers
876 * and write them to /dev/net/tun.
877 */
878struct net_info {
879	int tunfd;
880};
881
882static void net_output(struct virtqueue *vq)
883{
884	struct net_info *net_info = vq->dev->priv;
885	unsigned int head, out, in;
886	struct iovec iov[vq->vring.num];
887
888	/* We usually wait in here for the Guest to give us a packet. */
889	head = wait_for_vq_desc(vq, iov, &out, &in);
890	if (in)
891		errx(1, "Input buffers in net output queue?");
892	/*
893	 * Send the whole thing through to /dev/net/tun.  It expects the exact
894	 * same format: what a coincidence!
895	 */
896	if (writev(net_info->tunfd, iov, out) < 0)
897		errx(1, "Write to tun failed?");
898
899	/*
900	 * Done with that one; wait_for_vq_desc() will send the interrupt if
901	 * all packets are processed.
902	 */
903	add_used(vq, head, 0);
904}
905
906/*
907 * Handling network input is a bit trickier, because I've tried to optimize it.
908 *
909 * First we have a helper routine which tells is if from this file descriptor
910 * (ie. the /dev/net/tun device) will block:
911 */
912static bool will_block(int fd)
913{
914	fd_set fdset;
915	struct timeval zero = { 0, 0 };
916	FD_ZERO(&fdset);
917	FD_SET(fd, &fdset);
918	return select(fd+1, &fdset, NULL, NULL, &zero) != 1;
919}
920
921/*
922 * This handles packets coming in from the tun device to our Guest.  Like all
923 * service routines, it gets called again as soon as it returns, so you don't
924 * see a while(1) loop here.
925 */
926static void net_input(struct virtqueue *vq)
927{
928	int len;
929	unsigned int head, out, in;
930	struct iovec iov[vq->vring.num];
931	struct net_info *net_info = vq->dev->priv;
932
933	/*
934	 * Get a descriptor to write an incoming packet into.  This will also
935	 * send an interrupt if they're out of descriptors.
936	 */
937	head = wait_for_vq_desc(vq, iov, &out, &in);
938	if (out)
939		errx(1, "Output buffers in net input queue?");
940
941	/*
942	 * If it looks like we'll block reading from the tun device, send them
943	 * an interrupt.
944	 */
945	if (vq->pending_used && will_block(net_info->tunfd))
946		trigger_irq(vq);
947
948	/*
949	 * Read in the packet.  This is where we normally wait (when there's no
950	 * incoming network traffic).
951	 */
952	len = readv(net_info->tunfd, iov, in);
953	if (len <= 0)
954		err(1, "Failed to read from tun.");
955
956	/*
957	 * Mark that packet buffer as used, but don't interrupt here.  We want
958	 * to wait until we've done as much work as we can.
959	 */
960	add_used(vq, head, len);
961}
962/*:*/
963
964/* This is the helper to create threads: run the service routine in a loop. */
965static int do_thread(void *_vq)
966{
967	struct virtqueue *vq = _vq;
968
969	for (;;)
970		vq->service(vq);
971	return 0;
972}
973
974/*
975 * When a child dies, we kill our entire process group with SIGTERM.  This
976 * also has the side effect that the shell restores the console for us!
977 */
978static void kill_launcher(int signal)
979{
980	kill(0, SIGTERM);
981}
982
983static void reset_device(struct device *dev)
984{
985	struct virtqueue *vq;
986
987	verbose("Resetting device %s\n", dev->name);
988
989	/* Clear any features they've acked. */
990	memset(get_feature_bits(dev) + dev->feature_len, 0, dev->feature_len);
991
992	/* We're going to be explicitly killing threads, so ignore them. */
993	signal(SIGCHLD, SIG_IGN);
994
995	/* Zero out the virtqueues, get rid of their threads */
996	for (vq = dev->vq; vq; vq = vq->next) {
997		if (vq->thread != (pid_t)-1) {
998			kill(vq->thread, SIGTERM);
999			waitpid(vq->thread, NULL, 0);
1000			vq->thread = (pid_t)-1;
1001		}
1002		memset(vq->vring.desc, 0,
1003		       vring_size(vq->config.num, LGUEST_VRING_ALIGN));
1004		lg_last_avail(vq) = 0;
1005	}
1006	dev->running = false;
1007
1008	/* Now we care if threads die. */
1009	signal(SIGCHLD, (void *)kill_launcher);
1010}
1011
1012/*L:216
1013 * This actually creates the thread which services the virtqueue for a device.
1014 */
1015static void create_thread(struct virtqueue *vq)
1016{
1017	/*
1018	 * Create stack for thread.  Since the stack grows upwards, we point
1019	 * the stack pointer to the end of this region.
1020	 */
1021	char *stack = malloc(32768);
1022	unsigned long args[] = { LHREQ_EVENTFD,
1023				 vq->config.pfn*getpagesize(), 0 };
1024
1025	/* Create a zero-initialized eventfd. */
1026	vq->eventfd = eventfd(0, 0);
1027	if (vq->eventfd < 0)
1028		err(1, "Creating eventfd");
1029	args[2] = vq->eventfd;
1030
1031	/*
1032	 * Attach an eventfd to this virtqueue: it will go off when the Guest
1033	 * does an LHCALL_NOTIFY for this vq.
1034	 */
1035	if (write(lguest_fd, &args, sizeof(args)) != 0)
1036		err(1, "Attaching eventfd");
1037
1038	/*
1039	 * CLONE_VM: because it has to access the Guest memory, and SIGCHLD so
1040	 * we get a signal if it dies.
1041	 */
1042	vq->thread = clone(do_thread, stack + 32768, CLONE_VM | SIGCHLD, vq);
1043	if (vq->thread == (pid_t)-1)
1044		err(1, "Creating clone");
1045
1046	/* We close our local copy now the child has it. */
1047	close(vq->eventfd);
1048}
1049
1050static bool accepted_feature(struct device *dev, unsigned int bit)
1051{
1052	const u8 *features = get_feature_bits(dev) + dev->feature_len;
1053
1054	if (dev->feature_len < bit / CHAR_BIT)
1055		return false;
1056	return features[bit / CHAR_BIT] & (1 << (bit % CHAR_BIT));
1057}
1058
1059static void start_device(struct device *dev)
1060{
1061	unsigned int i;
1062	struct virtqueue *vq;
1063
1064	verbose("Device %s OK: offered", dev->name);
1065	for (i = 0; i < dev->feature_len; i++)
1066		verbose(" %02x", get_feature_bits(dev)[i]);
1067	verbose(", accepted");
1068	for (i = 0; i < dev->feature_len; i++)
1069		verbose(" %02x", get_feature_bits(dev)
1070			[dev->feature_len+i]);
1071
1072	dev->irq_on_empty = accepted_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
1073
1074	for (vq = dev->vq; vq; vq = vq->next) {
1075		if (vq->service)
1076			create_thread(vq);
1077	}
1078	dev->running = true;
1079}
1080
1081static void cleanup_devices(void)
1082{
1083	struct device *dev;
1084
1085	for (dev = devices.dev; dev; dev = dev->next)
1086		reset_device(dev);
1087
1088	/* If we saved off the original terminal settings, restore them now. */
1089	if (orig_term.c_lflag & (ISIG|ICANON|ECHO))
1090		tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
1091}
1092
1093/* When the Guest tells us they updated the status field, we handle it. */
1094static void update_device_status(struct device *dev)
1095{
1096	/* A zero status is a reset, otherwise it's a set of flags. */
1097	if (dev->desc->status == 0)
1098		reset_device(dev);
1099	else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
1100		warnx("Device %s configuration FAILED", dev->name);
1101		if (dev->running)
1102			reset_device(dev);
1103	} else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
1104		if (!dev->running)
1105			start_device(dev);
1106	}
1107}
1108
1109/*L:215
1110 * This is the generic routine we call when the Guest uses LHCALL_NOTIFY.  In
1111 * particular, it's used to notify us of device status changes during boot.
1112 */
1113static void handle_output(unsigned long addr)
1114{
1115	struct device *i;
1116
1117	/* Check each device. */
1118	for (i = devices.dev; i; i = i->next) {
1119		struct virtqueue *vq;
1120
1121		/*
1122		 * Notifications to device descriptors mean they updated the
1123		 * device status.
1124		 */
1125		if (from_guest_phys(addr) == i->desc) {
1126			update_device_status(i);
1127			return;
1128		}
1129
1130		/*
1131		 * Devices *can* be used before status is set to DRIVER_OK.
1132		 * The original plan was that they would never do this: they
1133		 * would always finish setting up their status bits before
1134		 * actually touching the virtqueues.  In practice, we allowed
1135		 * them to, and they do (eg. the disk probes for partition
1136		 * tables as part of initialization).
1137		 *
1138		 * If we see this, we start the device: once it's running, we
1139		 * expect the device to catch all the notifications.
1140		 */
1141		for (vq = i->vq; vq; vq = vq->next) {
1142			if (addr != vq->config.pfn*getpagesize())
1143				continue;
1144			if (i->running)
1145				errx(1, "Notification on running %s", i->name);
1146			/* This just calls create_thread() for each virtqueue */
1147			start_device(i);
1148			return;
1149		}
1150	}
1151
1152	/*
1153	 * Early console write is done using notify on a nul-terminated string
1154	 * in Guest memory.  It's also great for hacking debugging messages
1155	 * into a Guest.
1156	 */
1157	if (addr >= guest_limit)
1158		errx(1, "Bad NOTIFY %#lx", addr);
1159
1160	write(STDOUT_FILENO, from_guest_phys(addr),
1161	      strnlen(from_guest_phys(addr), guest_limit - addr));
1162}
1163
1164/*L:190
1165 * Device Setup
1166 *
1167 * All devices need a descriptor so the Guest knows it exists, and a "struct
1168 * device" so the Launcher can keep track of it.  We have common helper
1169 * routines to allocate and manage them.
1170 */
1171
1172/*
1173 * The layout of the device page is a "struct lguest_device_desc" followed by a
1174 * number of virtqueue descriptors, then two sets of feature bits, then an
1175 * array of configuration bytes.  This routine returns the configuration
1176 * pointer.
1177 */
1178static u8 *device_config(const struct device *dev)
1179{
1180	return (void *)(dev->desc + 1)
1181		+ dev->num_vq * sizeof(struct lguest_vqconfig)
1182		+ dev->feature_len * 2;
1183}
1184
1185/*
1186 * This routine allocates a new "struct lguest_device_desc" from descriptor
1187 * table page just above the Guest's normal memory.  It returns a pointer to
1188 * that descriptor.
1189 */
1190static struct lguest_device_desc *new_dev_desc(u16 type)
1191{
1192	struct lguest_device_desc d = { .type = type };
1193	void *p;
1194
1195	/* Figure out where the next device config is, based on the last one. */
1196	if (devices.lastdev)
1197		p = device_config(devices.lastdev)
1198			+ devices.lastdev->desc->config_len;
1199	else
1200		p = devices.descpage;
1201
1202	/* We only have one page for all the descriptors. */
1203	if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
1204		errx(1, "Too many devices");
1205
1206	/* p might not be aligned, so we memcpy in. */
1207	return memcpy(p, &d, sizeof(d));
1208}
1209
1210/*
1211 * Each device descriptor is followed by the description of its virtqueues.  We
1212 * specify how many descriptors the virtqueue is to have.
1213 */
1214static void add_virtqueue(struct device *dev, unsigned int num_descs,
1215			  void (*service)(struct virtqueue *))
1216{
1217	unsigned int pages;
1218	struct virtqueue **i, *vq = malloc(sizeof(*vq));
1219	void *p;
1220
1221	/* First we need some memory for this virtqueue. */
1222	pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
1223		/ getpagesize();
1224	p = get_pages(pages);
1225
1226	/* Initialize the virtqueue */
1227	vq->next = NULL;
1228	vq->last_avail_idx = 0;
1229	vq->dev = dev;
1230
1231	/*
1232	 * This is the routine the service thread will run, and its Process ID
1233	 * once it's running.
1234	 */
1235	vq->service = service;
1236	vq->thread = (pid_t)-1;
1237
1238	/* Initialize the configuration. */
1239	vq->config.num = num_descs;
1240	vq->config.irq = devices.next_irq++;
1241	vq->config.pfn = to_guest_phys(p) / getpagesize();
1242
1243	/* Initialize the vring. */
1244	vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
1245
1246	/*
1247	 * Append virtqueue to this device's descriptor.  We use
1248	 * device_config() to get the end of the device's current virtqueues;
1249	 * we check that we haven't added any config or feature information
1250	 * yet, otherwise we'd be overwriting them.
1251	 */
1252	assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
1253	memcpy(device_config(dev), &vq->config, sizeof(vq->config));
1254	dev->num_vq++;
1255	dev->desc->num_vq++;
1256
1257	verbose("Virtqueue page %#lx\n", to_guest_phys(p));
1258
1259	/*
1260	 * Add to tail of list, so dev->vq is first vq, dev->vq->next is
1261	 * second.
1262	 */
1263	for (i = &dev->vq; *i; i = &(*i)->next);
1264	*i = vq;
1265}
1266
1267/*
1268 * The first half of the feature bitmask is for us to advertise features.  The
1269 * second half is for the Guest to accept features.
1270 */
1271static void add_feature(struct device *dev, unsigned bit)
1272{
1273	u8 *features = get_feature_bits(dev);
1274
1275	/* We can't extend the feature bits once we've added config bytes */
1276	if (dev->desc->feature_len <= bit / CHAR_BIT) {
1277		assert(dev->desc->config_len == 0);
1278		dev->feature_len = dev->desc->feature_len = (bit/CHAR_BIT) + 1;
1279	}
1280
1281	features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
1282}
1283
1284/*
1285 * This routine sets the configuration fields for an existing device's
1286 * descriptor.  It only works for the last device, but that's OK because that's
1287 * how we use it.
1288 */
1289static void set_config(struct device *dev, unsigned len, const void *conf)
1290{
1291	/* Check we haven't overflowed our single page. */
1292	if (device_config(dev) + len > devices.descpage + getpagesize())
1293		errx(1, "Too many devices");
1294
1295	/* Copy in the config information, and store the length. */
1296	memcpy(device_config(dev), conf, len);
1297	dev->desc->config_len = len;
1298
1299	/* Size must fit in config_len field (8 bits)! */
1300	assert(dev->desc->config_len == len);
1301}
1302
1303/*
1304 * This routine does all the creation and setup of a new device, including
1305 * calling new_dev_desc() to allocate the descriptor and device memory.  We
1306 * don't actually start the service threads until later.
1307 *
1308 * See what I mean about userspace being boring?
1309 */
1310static struct device *new_device(const char *name, u16 type)
1311{
1312	struct device *dev = malloc(sizeof(*dev));
1313
1314	/* Now we populate the fields one at a time. */
1315	dev->desc = new_dev_desc(type);
1316	dev->name = name;
1317	dev->vq = NULL;
1318	dev->feature_len = 0;
1319	dev->num_vq = 0;
1320	dev->running = false;
1321
1322	/*
1323	 * Append to device list.  Prepending to a single-linked list is
1324	 * easier, but the user expects the devices to be arranged on the bus
1325	 * in command-line order.  The first network device on the command line
1326	 * is eth0, the first block device /dev/vda, etc.
1327	 */
1328	if (devices.lastdev)
1329		devices.lastdev->next = dev;
1330	else
1331		devices.dev = dev;
1332	devices.lastdev = dev;
1333
1334	return dev;
1335}
1336
1337/*
1338 * Our first setup routine is the console.  It's a fairly simple device, but
1339 * UNIX tty handling makes it uglier than it could be.
1340 */
1341static void setup_console(void)
1342{
1343	struct device *dev;
1344
1345	/* If we can save the initial standard input settings... */
1346	if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1347		struct termios term = orig_term;
1348		/*
1349		 * Then we turn off echo, line buffering and ^C etc: We want a
1350		 * raw input stream to the Guest.
1351		 */
1352		term.c_lflag &= ~(ISIG|ICANON|ECHO);
1353		tcsetattr(STDIN_FILENO, TCSANOW, &term);
1354	}
1355
1356	dev = new_device("console", VIRTIO_ID_CONSOLE);
1357
1358	/* We store the console state in dev->priv, and initialize it. */
1359	dev->priv = malloc(sizeof(struct console_abort));
1360	((struct console_abort *)dev->priv)->count = 0;
1361
1362	/*
1363	 * The console needs two virtqueues: the input then the output.  When
1364	 * they put something the input queue, we make sure we're listening to
1365	 * stdin.  When they put something in the output queue, we write it to
1366	 * stdout.
1367	 */
1368	add_virtqueue(dev, VIRTQUEUE_NUM, console_input);
1369	add_virtqueue(dev, VIRTQUEUE_NUM, console_output);
1370
1371	verbose("device %u: console\n", ++devices.device_num);
1372}
1373/*:*/
1374
1375/*M:010
1376 * Inter-guest networking is an interesting area.  Simplest is to have a
1377 * --sharenet=<name> option which opens or creates a named pipe.  This can be
1378 * used to send packets to another guest in a 1:1 manner.
1379 *
1380 * More sopisticated is to use one of the tools developed for project like UML
1381 * to do networking.
1382 *
1383 * Faster is to do virtio bonding in kernel.  Doing this 1:1 would be
1384 * completely generic ("here's my vring, attach to your vring") and would work
1385 * for any traffic.  Of course, namespace and permissions issues need to be
1386 * dealt with.  A more sophisticated "multi-channel" virtio_net.c could hide
1387 * multiple inter-guest channels behind one interface, although it would
1388 * require some manner of hotplugging new virtio channels.
1389 *
1390 * Finally, we could implement a virtio network switch in the kernel.
1391:*/
1392
1393static u32 str2ip(const char *ipaddr)
1394{
1395	unsigned int b[4];
1396
1397	if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
1398		errx(1, "Failed to parse IP address '%s'", ipaddr);
1399	return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
1400}
1401
1402static void str2mac(const char *macaddr, unsigned char mac[6])
1403{
1404	unsigned int m[6];
1405	if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
1406		   &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
1407		errx(1, "Failed to parse mac address '%s'", macaddr);
1408	mac[0] = m[0];
1409	mac[1] = m[1];
1410	mac[2] = m[2];
1411	mac[3] = m[3];
1412	mac[4] = m[4];
1413	mac[5] = m[5];
1414}
1415
1416/*
1417 * This code is "adapted" from libbridge: it attaches the Host end of the
1418 * network device to the bridge device specified by the command line.
1419 *
1420 * This is yet another James Morris contribution (I'm an IP-level guy, so I
1421 * dislike bridging), and I just try not to break it.
1422 */
1423static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1424{
1425	int ifidx;
1426	struct ifreq ifr;
1427
1428	if (!*br_name)
1429		errx(1, "must specify bridge name");
1430
1431	ifidx = if_nametoindex(if_name);
1432	if (!ifidx)
1433		errx(1, "interface %s does not exist!", if_name);
1434
1435	strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
1436	ifr.ifr_name[IFNAMSIZ-1] = '\0';
1437	ifr.ifr_ifindex = ifidx;
1438	if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1439		err(1, "can't add %s to bridge %s", if_name, br_name);
1440}
1441
1442/*
1443 * This sets up the Host end of the network device with an IP address, brings
1444 * it up so packets will flow, the copies the MAC address into the hwaddr
1445 * pointer.
1446 */
1447static void configure_device(int fd, const char *tapif, u32 ipaddr)
1448{
1449	struct ifreq ifr;
1450	struct sockaddr_in sin;
1451
1452	memset(&ifr, 0, sizeof(ifr));
1453	strcpy(ifr.ifr_name, tapif);
1454
1455	/* Don't read these incantations.  Just cut & paste them like I did! */
1456	sin.sin_family = AF_INET;
1457	sin.sin_addr.s_addr = htonl(ipaddr);
1458	memcpy(&ifr.ifr_addr, &sin, sizeof(sin));
1459	if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
1460		err(1, "Setting %s interface address", tapif);
1461	ifr.ifr_flags = IFF_UP;
1462	if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
1463		err(1, "Bringing interface %s up", tapif);
1464}
1465
1466static int get_tun_device(char tapif[IFNAMSIZ])
1467{
1468	struct ifreq ifr;
1469	int netfd;
1470
1471	/* Start with this zeroed.  Messy but sure. */
1472	memset(&ifr, 0, sizeof(ifr));
1473
1474	/*
1475	 * We open the /dev/net/tun device and tell it we want a tap device.  A
1476	 * tap device is like a tun device, only somehow different.  To tell
1477	 * the truth, I completely blundered my way through this code, but it
1478	 * works now!
1479	 */
1480	netfd = open_or_die("/dev/net/tun", O_RDWR);
1481	ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
1482	strcpy(ifr.ifr_name, "tap%d");
1483	if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1484		err(1, "configuring /dev/net/tun");
1485
1486	if (ioctl(netfd, TUNSETOFFLOAD,
1487		  TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
1488		err(1, "Could not set features for tun device");
1489
1490	/*
1491	 * We don't need checksums calculated for packets coming in this
1492	 * device: trust us!
1493	 */
1494	ioctl(netfd, TUNSETNOCSUM, 1);
1495
1496	memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
1497	return netfd;
1498}
1499
1500/*L:195
1501 * Our network is a Host<->Guest network.  This can either use bridging or
1502 * routing, but the principle is the same: it uses the "tun" device to inject
1503 * packets into the Host as if they came in from a normal network card.  We
1504 * just shunt packets between the Guest and the tun device.
1505 */
1506static void setup_tun_net(char *arg)
1507{
1508	struct device *dev;
1509	struct net_info *net_info = malloc(sizeof(*net_info));
1510	int ipfd;
1511	u32 ip = INADDR_ANY;
1512	bool bridging = false;
1513	char tapif[IFNAMSIZ], *p;
1514	struct virtio_net_config conf;
1515
1516	net_info->tunfd = get_tun_device(tapif);
1517
1518	/* First we create a new network device. */
1519	dev = new_device("net", VIRTIO_ID_NET);
1520	dev->priv = net_info;
1521
1522	/* Network devices need a recv and a send queue, just like console. */
1523	add_virtqueue(dev, VIRTQUEUE_NUM, net_input);
1524	add_virtqueue(dev, VIRTQUEUE_NUM, net_output);
1525
1526	/*
1527	 * We need a socket to perform the magic network ioctls to bring up the
1528	 * tap interface, connect to the bridge etc.  Any socket will do!
1529	 */
1530	ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1531	if (ipfd < 0)
1532		err(1, "opening IP socket");
1533
1534	/* If the command line was --tunnet=bridge:<name> do bridging. */
1535	if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
1536		arg += strlen(BRIDGE_PFX);
1537		bridging = true;
1538	}
1539
1540	/* A mac address may follow the bridge name or IP address */
1541	p = strchr(arg, ':');
1542	if (p) {
1543		str2mac(p+1, conf.mac);
1544		add_feature(dev, VIRTIO_NET_F_MAC);
1545		*p = '\0';
1546	}
1547
1548	/* arg is now either an IP address or a bridge name */
1549	if (bridging)
1550		add_to_bridge(ipfd, tapif, arg);
1551	else
1552		ip = str2ip(arg);
1553
1554	/* Set up the tun device. */
1555	configure_device(ipfd, tapif, ip);
1556
1557	add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
1558	/* Expect Guest to handle everything except UFO */
1559	add_feature(dev, VIRTIO_NET_F_CSUM);
1560	add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
1561	add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
1562	add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
1563	add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
1564	add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
1565	add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
1566	add_feature(dev, VIRTIO_NET_F_HOST_ECN);
1567	/* We handle indirect ring entries */
1568	add_feature(dev, VIRTIO_RING_F_INDIRECT_DESC);
1569	set_config(dev, sizeof(conf), &conf);
1570
1571	/* We don't need the socket any more; setup is done. */
1572	close(ipfd);
1573
1574	devices.device_num++;
1575
1576	if (bridging)
1577		verbose("device %u: tun %s attached to bridge: %s\n",
1578			devices.device_num, tapif, arg);
1579	else
1580		verbose("device %u: tun %s: %s\n",
1581			devices.device_num, tapif, arg);
1582}
1583/*:*/
1584
1585/* This hangs off device->priv. */
1586struct vblk_info {
1587	/* The size of the file. */
1588	off64_t len;
1589
1590	/* The file descriptor for the file. */
1591	int fd;
1592
1593};
1594
1595/*L:210
1596 * The Disk
1597 *
1598 * The disk only has one virtqueue, so it only has one thread.  It is really
1599 * simple: the Guest asks for a block number and we read or write that position
1600 * in the file.
1601 *
1602 * Before we serviced each virtqueue in a separate thread, that was unacceptably
1603 * slow: the Guest waits until the read is finished before running anything
1604 * else, even if it could have been doing useful work.
1605 *
1606 * We could have used async I/O, except it's reputed to suck so hard that
1607 * characters actually go missing from your code when you try to use it.
1608 */
1609static void blk_request(struct virtqueue *vq)
1610{
1611	struct vblk_info *vblk = vq->dev->priv;
1612	unsigned int head, out_num, in_num, wlen;
1613	int ret;
1614	u8 *in;
1615	struct virtio_blk_outhdr *out;
1616	struct iovec iov[vq->vring.num];
1617	off64_t off;
1618
1619	/*
1620	 * Get the next request, where we normally wait.  It triggers the
1621	 * interrupt to acknowledge previously serviced requests (if any).
1622	 */
1623	head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
1624
1625	/*
1626	 * Every block request should contain at least one output buffer
1627	 * (detailing the location on disk and the type of request) and one
1628	 * input buffer (to hold the result).
1629	 */
1630	if (out_num == 0 || in_num == 0)
1631		errx(1, "Bad virtblk cmd %u out=%u in=%u",
1632		     head, out_num, in_num);
1633
1634	out = convert(&iov[0], struct virtio_blk_outhdr);
1635	in = convert(&iov[out_num+in_num-1], u8);
1636	/*
1637	 * For historical reasons, block operations are expressed in 512 byte
1638	 * "sectors".
1639	 */
1640	off = out->sector * 512;
1641
1642	/*
1643	 * The block device implements "barriers", where the Guest indicates
1644	 * that it wants all previous writes to occur before this write.  We
1645	 * don't have a way of asking our kernel to do a barrier, so we just
1646	 * synchronize all the data in the file.  Pretty poor, no?
1647	 */
1648	if (out->type & VIRTIO_BLK_T_BARRIER)
1649		fdatasync(vblk->fd);
1650
1651	/*
1652	 * In general the virtio block driver is allowed to try SCSI commands.
1653	 * It'd be nice if we supported eject, for example, but we don't.
1654	 */
1655	if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1656		fprintf(stderr, "Scsi commands unsupported\n");
1657		*in = VIRTIO_BLK_S_UNSUPP;
1658		wlen = sizeof(*in);
1659	} else if (out->type & VIRTIO_BLK_T_OUT) {
1660		/*
1661		 * Write
1662		 *
1663		 * Move to the right location in the block file.  This can fail
1664		 * if they try to write past end.
1665		 */
1666		if (lseek64(vblk->fd, off, SEEK_SET) != off)
1667			err(1, "Bad seek to sector %llu", out->sector);
1668
1669		ret = writev(vblk->fd, iov+1, out_num-1);
1670		verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1671
1672		/*
1673		 * Grr... Now we know how long the descriptor they sent was, we
1674		 * make sure they didn't try to write over the end of the block
1675		 * file (possibly extending it).
1676		 */
1677		if (ret > 0 && off + ret > vblk->len) {
1678			/* Trim it back to the correct length */
1679			ftruncate64(vblk->fd, vblk->len);
1680			/* Die, bad Guest, die. */
1681			errx(1, "Write past end %llu+%u", off, ret);
1682		}
1683		wlen = sizeof(*in);
1684		*in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1685	} else {
1686		/*
1687		 * Read
1688		 *
1689		 * Move to the right location in the block file.  This can fail
1690		 * if they try to read past end.
1691		 */
1692		if (lseek64(vblk->fd, off, SEEK_SET) != off)
1693			err(1, "Bad seek to sector %llu", out->sector);
1694
1695		ret = readv(vblk->fd, iov+1, in_num-1);
1696		verbose("READ from sector %llu: %i\n", out->sector, ret);
1697		if (ret >= 0) {
1698			wlen = sizeof(*in) + ret;
1699			*in = VIRTIO_BLK_S_OK;
1700		} else {
1701			wlen = sizeof(*in);
1702			*in = VIRTIO_BLK_S_IOERR;
1703		}
1704	}
1705
1706	/*
1707	 * OK, so we noted that it was pretty poor to use an fdatasync as a
1708	 * barrier.  But Christoph Hellwig points out that we need a sync
1709	 * *afterwards* as well: "Barriers specify no reordering to the front
1710	 * or the back."  And Jens Axboe confirmed it, so here we are:
1711	 */
1712	if (out->type & VIRTIO_BLK_T_BARRIER)
1713		fdatasync(vblk->fd);
1714
1715	/* Finished that request. */
1716	add_used(vq, head, wlen);
1717}
1718
1719/*L:198 This actually sets up a virtual block device. */
1720static void setup_block_file(const char *filename)
1721{
1722	struct device *dev;
1723	struct vblk_info *vblk;
1724	struct virtio_blk_config conf;
1725
1726	/* Creat the device. */
1727	dev = new_device("block", VIRTIO_ID_BLOCK);
1728
1729	/* The device has one virtqueue, where the Guest places requests. */
1730	add_virtqueue(dev, VIRTQUEUE_NUM, blk_request);
1731
1732	/* Allocate the room for our own bookkeeping */
1733	vblk = dev->priv = malloc(sizeof(*vblk));
1734
1735	/* First we open the file and store the length. */
1736	vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1737	vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1738
1739	/* We support barriers. */
1740	add_feature(dev, VIRTIO_BLK_F_BARRIER);
1741
1742	/* Tell Guest how many sectors this device has. */
1743	conf.capacity = cpu_to_le64(vblk->len / 512);
1744
1745	/*
1746	 * Tell Guest not to put in too many descriptors at once: two are used
1747	 * for the in and out elements.
1748	 */
1749	add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
1750	conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
1751
1752	/* Don't try to put whole struct: we have 8 bit limit. */
1753	set_config(dev, offsetof(struct virtio_blk_config, geometry), &conf);
1754
1755	verbose("device %u: virtblock %llu sectors\n",
1756		++devices.device_num, le64_to_cpu(conf.capacity));
1757}
1758
1759/*L:211
1760 * Our random number generator device reads from /dev/random into the Guest's
1761 * input buffers.  The usual case is that the Guest doesn't want random numbers
1762 * and so has no buffers although /dev/random is still readable, whereas
1763 * console is the reverse.
1764 *
1765 * The same logic applies, however.
1766 */
1767struct rng_info {
1768	int rfd;
1769};
1770
1771static void rng_input(struct virtqueue *vq)
1772{
1773	int len;
1774	unsigned int head, in_num, out_num, totlen = 0;
1775	struct rng_info *rng_info = vq->dev->priv;
1776	struct iovec iov[vq->vring.num];
1777
1778	/* First we need a buffer from the Guests's virtqueue. */
1779	head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
1780	if (out_num)
1781		errx(1, "Output buffers in rng?");
1782
1783	/*
1784	 * Just like the console write, we loop to cover the whole iovec.
1785	 * In this case, short reads actually happen quite a bit.
1786	 */
1787	while (!iov_empty(iov, in_num)) {
1788		len = readv(rng_info->rfd, iov, in_num);
1789		if (len <= 0)
1790			err(1, "Read from /dev/random gave %i", len);
1791		iov_consume(iov, in_num, len);
1792		totlen += len;
1793	}
1794
1795	/* Tell the Guest about the new input. */
1796	add_used(vq, head, totlen);
1797}
1798
1799/*L:199
1800 * This creates a "hardware" random number device for the Guest.
1801 */
1802static void setup_rng(void)
1803{
1804	struct device *dev;
1805	struct rng_info *rng_info = malloc(sizeof(*rng_info));
1806
1807	/* Our device's privat info simply contains the /dev/random fd. */
1808	rng_info->rfd = open_or_die("/dev/random", O_RDONLY);
1809
1810	/* Create the new device. */
1811	dev = new_device("rng", VIRTIO_ID_RNG);
1812	dev->priv = rng_info;
1813
1814	/* The device has one virtqueue, where the Guest places inbufs. */
1815	add_virtqueue(dev, VIRTQUEUE_NUM, rng_input);
1816
1817	verbose("device %u: rng\n", devices.device_num++);
1818}
1819/* That's the end of device setup. */
1820
1821/*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
1822static void __attribute__((noreturn)) restart_guest(void)
1823{
1824	unsigned int i;
1825
1826	/*
1827	 * Since we don't track all open fds, we simply close everything beyond
1828	 * stderr.
1829	 */
1830	for (i = 3; i < FD_SETSIZE; i++)
1831		close(i);
1832
1833	/* Reset all the devices (kills all threads). */
1834	cleanup_devices();
1835
1836	execv(main_args[0], main_args);
1837	err(1, "Could not exec %s", main_args[0]);
1838}
1839
1840/*L:220
1841 * Finally we reach the core of the Launcher which runs the Guest, serves
1842 * its input and output, and finally, lays it to rest.
1843 */
1844static void __attribute__((noreturn)) run_guest(void)
1845{
1846	for (;;) {
1847		unsigned long notify_addr;
1848		int readval;
1849
1850		/* We read from the /dev/lguest device to run the Guest. */
1851		readval = pread(lguest_fd, &notify_addr,
1852				sizeof(notify_addr), cpu_id);
1853
1854		/* One unsigned long means the Guest did HCALL_NOTIFY */
1855		if (readval == sizeof(notify_addr)) {
1856			verbose("Notify on address %#lx\n", notify_addr);
1857			handle_output(notify_addr);
1858		/* ENOENT means the Guest died.  Reading tells us why. */
1859		} else if (errno == ENOENT) {
1860			char reason[1024] = { 0 };
1861			pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
1862			errx(1, "%s", reason);
1863		/* ERESTART means that we need to reboot the guest */
1864		} else if (errno == ERESTART) {
1865			restart_guest();
1866		/* Anything else means a bug or incompatible change. */
1867		} else
1868			err(1, "Running guest failed");
1869	}
1870}
1871/*L:240
1872 * This is the end of the Launcher.  The good news: we are over halfway
1873 * through!  The bad news: the most fiendish part of the code still lies ahead
1874 * of us.
1875 *
1876 * Are you ready?  Take a deep breath and join me in the core of the Host, in
1877 * "make Host".
1878:*/
1879
1880static struct option opts[] = {
1881	{ "verbose", 0, NULL, 'v' },
1882	{ "tunnet", 1, NULL, 't' },
1883	{ "block", 1, NULL, 'b' },
1884	{ "rng", 0, NULL, 'r' },
1885	{ "initrd", 1, NULL, 'i' },
1886	{ NULL },
1887};
1888static void usage(void)
1889{
1890	errx(1, "Usage: lguest [--verbose] "
1891	     "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
1892	     "|--block=<filename>|--initrd=<filename>]...\n"
1893	     "<mem-in-mb> vmlinux [args...]");
1894}
1895
1896/*L:105 The main routine is where the real work begins: */
1897int main(int argc, char *argv[])
1898{
1899	/* Memory, code startpoint and size of the (optional) initrd. */
1900	unsigned long mem = 0, start, initrd_size = 0;
1901	/* Two temporaries. */
1902	int i, c;
1903	/* The boot information for the Guest. */
1904	struct boot_params *boot;
1905	/* If they specify an initrd file to load. */
1906	const char *initrd_name = NULL;
1907
1908	/* Save the args: we "reboot" by execing ourselves again. */
1909	main_args = argv;
1910
1911	/*
1912	 * First we initialize the device list.  We keep a pointer to the last
1913	 * device, and the next interrupt number to use for devices (1:
1914	 * remember that 0 is used by the timer).
1915	 */
1916	devices.lastdev = NULL;
1917	devices.next_irq = 1;
1918
1919	/* We're CPU 0.  In fact, that's the only CPU possible right now. */
1920	cpu_id = 0;
1921
1922	/*
1923	 * We need to know how much memory so we can set up the device
1924	 * descriptor and memory pages for the devices as we parse the command
1925	 * line.  So we quickly look through the arguments to find the amount
1926	 * of memory now.
1927	 */
1928	for (i = 1; i < argc; i++) {
1929		if (argv[i][0] != '-') {
1930			mem = atoi(argv[i]) * 1024 * 1024;
1931			/*
1932			 * We start by mapping anonymous pages over all of
1933			 * guest-physical memory range.  This fills it with 0,
1934			 * and ensures that the Guest won't be killed when it
1935			 * tries to access it.
1936			 */
1937			guest_base = map_zeroed_pages(mem / getpagesize()
1938						      + DEVICE_PAGES);
1939			guest_limit = mem;
1940			guest_max = mem + DEVICE_PAGES*getpagesize();
1941			devices.descpage = get_pages(1);
1942			break;
1943		}
1944	}
1945
1946	/* The options are fairly straight-forward */
1947	while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1948		switch (c) {
1949		case 'v':
1950			verbose = true;
1951			break;
1952		case 't':
1953			setup_tun_net(optarg);
1954			break;
1955		case 'b':
1956			setup_block_file(optarg);
1957			break;
1958		case 'r':
1959			setup_rng();
1960			break;
1961		case 'i':
1962			initrd_name = optarg;
1963			break;
1964		default:
1965			warnx("Unknown argument %s", argv[optind]);
1966			usage();
1967		}
1968	}
1969	/*
1970	 * After the other arguments we expect memory and kernel image name,
1971	 * followed by command line arguments for the kernel.
1972	 */
1973	if (optind + 2 > argc)
1974		usage();
1975
1976	verbose("Guest base is at %p\n", guest_base);
1977
1978	/* We always have a console device */
1979	setup_console();
1980
1981	/* Now we load the kernel */
1982	start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
1983
1984	/* Boot information is stashed at physical address 0 */
1985	boot = from_guest_phys(0);
1986
1987	/* Map the initrd image if requested (at top of physical memory) */
1988	if (initrd_name) {
1989		initrd_size = load_initrd(initrd_name, mem);
1990		/*
1991		 * These are the location in the Linux boot header where the
1992		 * start and size of the initrd are expected to be found.
1993		 */
1994		boot->hdr.ramdisk_image = mem - initrd_size;
1995		boot->hdr.ramdisk_size = initrd_size;
1996		/* The bootloader type 0xFF means "unknown"; that's OK. */
1997		boot->hdr.type_of_loader = 0xFF;
1998	}
1999
2000	/*
2001	 * The Linux boot header contains an "E820" memory map: ours is a
2002	 * simple, single region.
2003	 */
2004	boot->e820_entries = 1;
2005	boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
2006	/*
2007	 * The boot header contains a command line pointer: we put the command
2008	 * line after the boot header.
2009	 */
2010	boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
2011	/* We use a simple helper to copy the arguments separated by spaces. */
2012	concat((char *)(boot + 1), argv+optind+2);
2013
2014	/* Boot protocol version: 2.07 supports the fields for lguest. */
2015	boot->hdr.version = 0x207;
2016
2017	/* The hardware_subarch value of "1" tells the Guest it's an lguest. */
2018	boot->hdr.hardware_subarch = 1;
2019
2020	/* Tell the entry path not to try to reload segment registers. */
2021	boot->hdr.loadflags |= KEEP_SEGMENTS;
2022
2023	/*
2024	 * We tell the kernel to initialize the Guest: this returns the open
2025	 * /dev/lguest file descriptor.
2026	 */
2027	tell_kernel(start);
2028
2029	/* Ensure that we terminate if a device-servicing child dies. */
2030	signal(SIGCHLD, kill_launcher);
2031
2032	/* If we exit via err(), this kills all the threads, restores tty. */
2033	atexit(cleanup_devices);
2034
2035	/* Finally, run the Guest.  This doesn't return. */
2036	run_guest();
2037}
2038/*:*/
2039
2040/*M:999
2041 * Mastery is done: you now know everything I do.
2042 *
2043 * But surely you have seen code, features and bugs in your wanderings which
2044 * you now yearn to attack?  That is the real game, and I look forward to you
2045 * patching and forking lguest into the Your-Name-Here-visor.
2046 *
2047 * Farewell, and good coding!
2048 * Rusty Russell.
2049 */
2050