1/*
2 * Copyright 1996-2002 Hans Reiser, see reiserfs/README for licensing and copyright details
3 */
4
5				/* this file has an amazingly stupid
6                                   name, yura please fix it to be
7                                   reiserfs.h, and merge all the rest
8                                   of our .h files that are in this
9                                   directory into it.  */
10
11
12#ifndef _LINUX_REISER_FS_H
13#define _LINUX_REISER_FS_H
14
15#include <linux/types.h>
16#ifdef __KERNEL__
17#include <linux/slab.h>
18#include <linux/tqueue.h>
19#include <asm/unaligned.h>
20#include <linux/bitops.h>
21#include <asm/hardirq.h>
22#include <linux/proc_fs.h>
23#endif
24
25/*
26 *  include/linux/reiser_fs.h
27 *
28 *  Reiser File System constants and structures
29 *
30 */
31
32/* in reading the #defines, it may help to understand that they employ
33   the following abbreviations:
34
35   B = Buffer
36   I = Item header
37   H = Height within the tree (should be changed to LEV)
38   N = Number of the item in the node
39   STAT = stat data
40   DEH = Directory Entry Header
41   EC = Entry Count
42   E = Entry number
43   UL = Unsigned Long
44   BLKH = BLocK Header
45   UNFM = UNForMatted node
46   DC = Disk Child
47   P = Path
48
49   These #defines are named by concatenating these abbreviations,
50   where first comes the arguments, and last comes the return value,
51   of the macro.
52
53*/
54
55#define USE_INODE_GENERATION_COUNTER
56
57#define REISERFS_PREALLOCATE
58#define DISPLACE_NEW_PACKING_LOCALITIES
59#define PREALLOCATION_SIZE 9
60
61/* n must be power of 2 */
62#define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
63
64// to be ok for alpha and others we have to align structures to 8 byte
65// boundary.
66// FIXME: do not change 4 by anything else: there is code which relies on that
67#define ROUND_UP(x) _ROUND_UP(x,8LL)
68
69/* debug levels.  Right now, CONFIG_REISERFS_CHECK means print all debug
70** messages.
71*/
72#define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */
73
74/* assertions handling */
75
76/** always check a condition and panic if it's false. */
77#define RASSERT( cond, format, args... )					\
78if( !( cond ) ) 								\
79  reiserfs_panic( 0, "reiserfs[%i]: assertion " #cond " failed at "	\
80		  __FILE__ ":%i:%s: " format "\n",		\
81		  in_interrupt() ? -1 : current -> pid, __LINE__ , __FUNCTION__ , ##args )
82
83#if defined(CONFIG_REISERFS_CHECK)
84#define RFALSE( cond, format, args... ) RASSERT( !( cond ), format, ##args )
85#else
86#define RFALSE( cond, format, args... ) do {;} while( 0 )
87#endif
88
89#define CONSTF __attribute__( ( const ) )
90/*
91 * Disk Data Structures
92 */
93
94/***************************************************************************/
95/*                             SUPER BLOCK                                 */
96/***************************************************************************/
97
98/*
99 * Structure of super block on disk, a version of which in RAM is often accessed as s->u.reiserfs_sb.s_rs
100 * the version in RAM is part of a larger structure containing fields never written to disk.
101 */
102
103				/* used by gcc */
104#define REISERFS_SUPER_MAGIC 0x52654973
105				/* used by file system utilities that
106                                   look at the superblock, etc. */
107#define REISERFS_SUPER_MAGIC_STRING "ReIsErFs"
108#define REISER2FS_SUPER_MAGIC_STRING "ReIsEr2Fs"
109
110extern char reiserfs_super_magic_string[];
111extern char reiser2fs_super_magic_string[];
112
113static inline int is_reiserfs_magic_string (const struct reiserfs_super_block * rs)
114{
115    return (!strncmp (rs->s_magic, reiserfs_super_magic_string,
116		      strlen ( reiserfs_super_magic_string)) ||
117	    !strncmp (rs->s_magic, reiser2fs_super_magic_string,
118		      strlen ( reiser2fs_super_magic_string)));
119}
120
121/* ReiserFS leaves the first 64k unused, so that partition labels have
122   enough space.  If someone wants to write a fancy bootloader that
123   needs more than 64k, let us know, and this will be increased in size.
124   This number must be larger than than the largest block size on any
125   platform, or code will break.  -Hans */
126#define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
127#define REISERFS_FIRST_BLOCK unused_define
128
129/* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
130#define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
131
132// reiserfs internal error code (used by search_by_key adn fix_nodes))
133#define CARRY_ON      0
134#define REPEAT_SEARCH -1
135#define IO_ERROR      -2
136#define NO_DISK_SPACE -3
137#define NO_BALANCING_NEEDED  (-4)
138#define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
139
140typedef unsigned long b_blocknr_t;
141typedef __u32 unp_t;
142
143struct unfm_nodeinfo {
144    unp_t unfm_nodenum;
145    unsigned short unfm_freespace;
146};
147
148
149/* there are two formats of keys: 3.5 and 3.6
150 */
151#define KEY_FORMAT_3_5 0
152#define KEY_FORMAT_3_6 1
153
154/* there are two stat datas */
155#define STAT_DATA_V1 0
156#define STAT_DATA_V2 1
157
158/** this says about version of key of all items (but stat data) the
159    object consists of */
160#define get_inode_item_key_version( inode )                                    \
161    (((inode)->u.reiserfs_i.i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
162
163#define set_inode_item_key_version( inode, version )                           \
164         ({ if((version)==KEY_FORMAT_3_6)                                      \
165                (inode)->u.reiserfs_i.i_flags |= i_item_key_version_mask;      \
166            else                                                               \
167                (inode)->u.reiserfs_i.i_flags &= ~i_item_key_version_mask; })
168
169#define get_inode_sd_version(inode)                                            \
170    (((inode)->u.reiserfs_i.i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
171
172#define set_inode_sd_version(inode, version)                                   \
173         ({ if((version)==STAT_DATA_V2)                                        \
174                (inode)->u.reiserfs_i.i_flags |= i_stat_data_version_mask;     \
175            else                                                               \
176                (inode)->u.reiserfs_i.i_flags &= ~i_stat_data_version_mask; })
177
178/* This is an aggressive tail suppression policy, I am hoping it
179   improves our benchmarks. The principle behind it is that percentage
180   space saving is what matters, not absolute space saving.  This is
181   non-intuitive, but it helps to understand it if you consider that the
182   cost to access 4 blocks is not much more than the cost to access 1
183   block, if you have to do a seek and rotate.  A tail risks a
184   non-linear disk access that is significant as a percentage of total
185   time cost for a 4 block file and saves an amount of space that is
186   less significant as a percentage of space, or so goes the hypothesis.
187   -Hans */
188#define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
189(\
190  (!(n_tail_size)) || \
191  (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
192   ( (n_file_size) >= (n_block_size) * 4 ) || \
193   ( ( (n_file_size) >= (n_block_size) * 3 ) && \
194     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
195   ( ( (n_file_size) >= (n_block_size) * 2 ) && \
196     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
197   ( ( (n_file_size) >= (n_block_size) ) && \
198     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
199)
200
201/* Another strategy for tails, this one means only create a tail if all the
202   file would fit into one DIRECT item.
203   Primary intention for this one is to increase performance by decreasing
204   seeking.
205*/
206#define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
207(\
208  (!(n_tail_size)) || \
209  (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
210)
211
212
213
214/*
215 * values for s_state field
216 */
217#define REISERFS_VALID_FS    1
218#define REISERFS_ERROR_FS    2
219
220//
221// there are 5 item types currently
222//
223#define TYPE_STAT_DATA 0
224#define TYPE_INDIRECT 1
225#define TYPE_DIRECT 2
226#define TYPE_DIRENTRY 3
227#define TYPE_MAXTYPE 3
228#define TYPE_ANY 15 // FIXME: comment is required
229
230/***************************************************************************/
231/*                       KEY & ITEM HEAD                                   */
232/***************************************************************************/
233
234//
235// directories use this key as well as old files
236//
237struct offset_v1 {
238    __u32 k_offset;
239    __u32 k_uniqueness;
240} __attribute__ ((__packed__));
241
242struct offset_v2 {
243#ifdef __LITTLE_ENDIAN
244	    /* little endian version */
245	    __u64 k_offset:60;
246	    __u64 k_type: 4;
247#else
248	    /* big endian version */
249	    __u64 k_type: 4;
250	    __u64 k_offset:60;
251#endif
252} __attribute__ ((__packed__));
253
254#ifndef __LITTLE_ENDIAN
255typedef union {
256    struct offset_v2 offset_v2;
257    __u64 linear;
258} __attribute__ ((__packed__)) offset_v2_esafe_overlay;
259
260static inline __u16 offset_v2_k_type( const struct offset_v2 *v2 )
261{
262    offset_v2_esafe_overlay tmp = *(const offset_v2_esafe_overlay *)v2;
263    tmp.linear = le64_to_cpu( tmp.linear );
264    return (tmp.offset_v2.k_type <= TYPE_MAXTYPE)?tmp.offset_v2.k_type:TYPE_ANY;
265}
266
267static inline void set_offset_v2_k_type( struct offset_v2 *v2, int type )
268{
269    offset_v2_esafe_overlay *tmp = (offset_v2_esafe_overlay *)v2;
270    tmp->linear = le64_to_cpu(tmp->linear);
271    tmp->offset_v2.k_type = type;
272    tmp->linear = cpu_to_le64(tmp->linear);
273}
274
275static inline loff_t offset_v2_k_offset( const struct offset_v2 *v2 )
276{
277    offset_v2_esafe_overlay tmp = *(const offset_v2_esafe_overlay *)v2;
278    tmp.linear = le64_to_cpu( tmp.linear );
279    return tmp.offset_v2.k_offset;
280}
281
282static inline void set_offset_v2_k_offset( struct offset_v2 *v2, loff_t offset ){
283    offset_v2_esafe_overlay *tmp = (offset_v2_esafe_overlay *)v2;
284    tmp->linear = le64_to_cpu(tmp->linear);
285    tmp->offset_v2.k_offset = offset;
286    tmp->linear = cpu_to_le64(tmp->linear);
287}
288#else
289# define offset_v2_k_type(v2)           ((v2)->k_type)
290# define set_offset_v2_k_type(v2,val)   (offset_v2_k_type(v2) = (val))
291# define offset_v2_k_offset(v2)         ((v2)->k_offset)
292# define set_offset_v2_k_offset(v2,val) (offset_v2_k_offset(v2) = (val))
293#endif
294
295/* Key of an item determines its location in the S+tree, and
296   is composed of 4 components */
297struct key {
298    __u32 k_dir_id;    /* packing locality: by default parent
299			  directory object id */
300    __u32 k_objectid;  /* object identifier */
301    union {
302	struct offset_v1 k_offset_v1;
303	struct offset_v2 k_offset_v2;
304    } __attribute__ ((__packed__)) u;
305} __attribute__ ((__packed__));
306
307
308struct cpu_key {
309    struct key on_disk_key;
310    int version;
311    int key_length; /* 3 in all cases but direct2indirect and
312		       indirect2direct conversion */
313};
314
315/* Our function for comparing keys can compare keys of different
316   lengths.  It takes as a parameter the length of the keys it is to
317   compare.  These defines are used in determining what is to be passed
318   to it as that parameter. */
319#define REISERFS_FULL_KEY_LEN     4
320#define REISERFS_SHORT_KEY_LEN    2
321
322/* The result of the key compare */
323#define FIRST_GREATER 1
324#define SECOND_GREATER -1
325#define KEYS_IDENTICAL 0
326#define KEY_FOUND 1
327#define KEY_NOT_FOUND 0
328
329#define KEY_SIZE (sizeof(struct key))
330#define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
331
332/* return values for search_by_key and clones */
333#define ITEM_FOUND 1
334#define ITEM_NOT_FOUND 0
335#define ENTRY_FOUND 1
336#define ENTRY_NOT_FOUND 0
337#define DIRECTORY_NOT_FOUND -1
338#define REGULAR_FILE_FOUND -2
339#define DIRECTORY_FOUND -3
340#define BYTE_FOUND 1
341#define BYTE_NOT_FOUND 0
342#define FILE_NOT_FOUND -1
343
344#define POSITION_FOUND 1
345#define POSITION_NOT_FOUND 0
346
347// return values for reiserfs_find_entry and search_by_entry_key
348#define NAME_FOUND 1
349#define NAME_NOT_FOUND 0
350#define GOTO_PREVIOUS_ITEM 2
351#define NAME_FOUND_INVISIBLE 3
352
353/*  Everything in the filesystem is stored as a set of items.  The
354    item head contains the key of the item, its free space (for
355    indirect items) and specifies the location of the item itself
356    within the block.  */
357
358struct item_head
359{
360	/* Everything in the tree is found by searching for it based on
361	 * its key.*/
362	struct key ih_key;
363	union {
364		/* The free space in the last unformatted node of an
365		   indirect item if this is an indirect item.  This
366		   equals 0xFFFF iff this is a direct item or stat data
367		   item. Note that the key, not this field, is used to
368		   determine the item type, and thus which field this
369		   union contains. */
370		__u16 ih_free_space_reserved;
371		/* Iff this is a directory item, this field equals the
372		   number of directory entries in the directory item. */
373		__u16 ih_entry_count;
374	} __attribute__ ((__packed__)) u;
375	__u16 ih_item_len;           /* total size of the item body */
376	__u16 ih_item_location;      /* an offset to the item body
377				      * within the block */
378	__u16 ih_version;	     /* 0 for all old items, 2 for new
379					ones. Highest bit is set by fsck
380					temporary, cleaned after all
381					done */
382} __attribute__ ((__packed__));
383/* size of item header     */
384#define IH_SIZE (sizeof(struct item_head))
385
386#define ih_free_space(ih)            le16_to_cpu((ih)->u.ih_free_space_reserved)
387#define ih_version(ih)               le16_to_cpu((ih)->ih_version)
388#define ih_entry_count(ih)           le16_to_cpu((ih)->u.ih_entry_count)
389#define ih_location(ih)              le16_to_cpu((ih)->ih_item_location)
390#define ih_item_len(ih)              le16_to_cpu((ih)->ih_item_len)
391
392#define put_ih_free_space(ih, val)   do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
393#define put_ih_version(ih, val)      do { (ih)->ih_version = cpu_to_le16(val); } while (0)
394#define put_ih_entry_count(ih, val)  do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
395#define put_ih_location(ih, val)     do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
396#define put_ih_item_len(ih, val)     do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
397
398
399#define unreachable_item(ih) (ih_version(ih) & (1 << 15))
400
401#define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
402#define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
403
404/* these operate on indirect items, where you've got an array of ints
405** at a possibly unaligned location.  These are a noop on ia32
406**
407** p is the array of __u32, i is the index into the array, v is the value
408** to store there.
409*/
410#define get_block_num(p, i) le32_to_cpu(get_unaligned((p) + (i)))
411#define put_block_num(p, i, v) put_unaligned(cpu_to_le32(v), (p) + (i))
412
413//
414// in old version uniqueness field shows key type
415//
416#define V1_SD_UNIQUENESS 0
417#define V1_INDIRECT_UNIQUENESS 0xfffffffe
418#define V1_DIRECT_UNIQUENESS 0xffffffff
419#define V1_DIRENTRY_UNIQUENESS 500
420#define V1_ANY_UNIQUENESS 555 // FIXME: comment is required
421
422extern void reiserfs_warning (const char * fmt, ...);
423/* __attribute__( ( format ( printf, 1, 2 ) ) ); */
424
425//
426// here are conversion routines
427//
428static inline int uniqueness2type (__u32 uniqueness) CONSTF;
429static inline int uniqueness2type (__u32 uniqueness)
430{
431    switch (uniqueness) {
432    case V1_SD_UNIQUENESS: return TYPE_STAT_DATA;
433    case V1_INDIRECT_UNIQUENESS: return TYPE_INDIRECT;
434    case V1_DIRECT_UNIQUENESS: return TYPE_DIRECT;
435    case V1_DIRENTRY_UNIQUENESS: return TYPE_DIRENTRY;
436    default:
437	    reiserfs_warning( "vs-500: unknown uniqueness %d\n", uniqueness);
438	case V1_ANY_UNIQUENESS:
439	    return TYPE_ANY;
440    }
441}
442
443static inline __u32 type2uniqueness (int type) CONSTF;
444static inline __u32 type2uniqueness (int type)
445{
446    switch (type) {
447    case TYPE_STAT_DATA: return V1_SD_UNIQUENESS;
448    case TYPE_INDIRECT: return V1_INDIRECT_UNIQUENESS;
449    case TYPE_DIRECT: return V1_DIRECT_UNIQUENESS;
450    case TYPE_DIRENTRY: return V1_DIRENTRY_UNIQUENESS;
451    default:
452	    reiserfs_warning( "vs-501: unknown type %d\n", type);
453	case TYPE_ANY:
454	    return V1_ANY_UNIQUENESS;
455    }
456}
457
458//
459// key is pointer to on disk key which is stored in le, result is cpu,
460// there is no way to get version of object from key, so, provide
461// version to these defines
462//
463static inline loff_t le_key_k_offset (int version, const struct key * key)
464{
465    return (version == KEY_FORMAT_3_5) ?
466        le32_to_cpu( key->u.k_offset_v1.k_offset ) :
467	offset_v2_k_offset( &(key->u.k_offset_v2) );
468}
469
470static inline loff_t le_ih_k_offset (const struct item_head * ih)
471{
472    return le_key_k_offset (ih_version (ih), &(ih->ih_key));
473}
474
475static inline loff_t le_key_k_type (int version, const struct key * key)
476{
477    return (version == KEY_FORMAT_3_5) ?
478        uniqueness2type( le32_to_cpu( key->u.k_offset_v1.k_uniqueness)) :
479	offset_v2_k_type( &(key->u.k_offset_v2) );
480}
481
482static inline loff_t le_ih_k_type (const struct item_head * ih)
483{
484    return le_key_k_type (ih_version (ih), &(ih->ih_key));
485}
486
487
488static inline void set_le_key_k_offset (int version, struct key * key, loff_t offset)
489{
490    (version == KEY_FORMAT_3_5) ?
491        (key->u.k_offset_v1.k_offset = cpu_to_le32 (offset)) : /* jdm check */
492	(set_offset_v2_k_offset( &(key->u.k_offset_v2), offset ));
493}
494
495
496static inline void set_le_ih_k_offset (struct item_head * ih, loff_t offset)
497{
498    set_le_key_k_offset (ih_version (ih), &(ih->ih_key), offset);
499}
500
501
502static inline void set_le_key_k_type (int version, struct key * key, int type)
503{
504    (version == KEY_FORMAT_3_5) ?
505        (key->u.k_offset_v1.k_uniqueness = cpu_to_le32(type2uniqueness(type))):
506	(set_offset_v2_k_type( &(key->u.k_offset_v2), type ));
507}
508static inline void set_le_ih_k_type (struct item_head * ih, int type)
509{
510    set_le_key_k_type (ih_version (ih), &(ih->ih_key), type);
511}
512
513
514#define is_direntry_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRENTRY)
515#define is_direct_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRECT)
516#define is_indirect_le_key(version,key) (le_key_k_type (version, key) == TYPE_INDIRECT)
517#define is_statdata_le_key(version,key) (le_key_k_type (version, key) == TYPE_STAT_DATA)
518
519//
520// item header has version.
521//
522#define is_direntry_le_ih(ih) is_direntry_le_key (ih_version (ih), &((ih)->ih_key))
523#define is_direct_le_ih(ih) is_direct_le_key (ih_version (ih), &((ih)->ih_key))
524#define is_indirect_le_ih(ih) is_indirect_le_key (ih_version(ih), &((ih)->ih_key))
525#define is_statdata_le_ih(ih) is_statdata_le_key (ih_version (ih), &((ih)->ih_key))
526
527
528
529//
530// key is pointer to cpu key, result is cpu
531//
532static inline loff_t cpu_key_k_offset (const struct cpu_key * key)
533{
534    return (key->version == KEY_FORMAT_3_5) ?
535        key->on_disk_key.u.k_offset_v1.k_offset :
536	key->on_disk_key.u.k_offset_v2.k_offset;
537}
538
539static inline loff_t cpu_key_k_type (const struct cpu_key * key)
540{
541    return (key->version == KEY_FORMAT_3_5) ?
542        uniqueness2type (key->on_disk_key.u.k_offset_v1.k_uniqueness) :
543	key->on_disk_key.u.k_offset_v2.k_type;
544}
545
546static inline void set_cpu_key_k_offset (struct cpu_key * key, loff_t offset)
547{
548    (key->version == KEY_FORMAT_3_5) ?
549        (key->on_disk_key.u.k_offset_v1.k_offset = offset) :
550	(key->on_disk_key.u.k_offset_v2.k_offset = offset);
551}
552
553
554static inline void set_cpu_key_k_type (struct cpu_key * key, int type)
555{
556    (key->version == KEY_FORMAT_3_5) ?
557        (key->on_disk_key.u.k_offset_v1.k_uniqueness = type2uniqueness (type)):
558	(key->on_disk_key.u.k_offset_v2.k_type = type);
559}
560
561
562static inline void cpu_key_k_offset_dec (struct cpu_key * key)
563{
564    if (key->version == KEY_FORMAT_3_5)
565	key->on_disk_key.u.k_offset_v1.k_offset --;
566    else
567	key->on_disk_key.u.k_offset_v2.k_offset --;
568}
569
570
571#define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
572#define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
573#define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
574#define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
575
576
577/* are these used ? */
578#define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
579#define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
580#define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
581#define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
582
583
584
585
586
587#define I_K_KEY_IN_ITEM(p_s_ih, p_s_key, n_blocksize) \
588    ( ! COMP_SHORT_KEYS(p_s_ih, p_s_key) && \
589          I_OFF_BYTE_IN_ITEM(p_s_ih, k_offset (p_s_key), n_blocksize) )
590
591/* maximal length of item */
592#define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
593#define MIN_ITEM_LEN 1
594
595
596/* object identifier for root dir */
597#define REISERFS_ROOT_OBJECTID 2
598#define REISERFS_ROOT_PARENT_OBJECTID 1
599extern struct key root_key;
600
601
602
603
604/*
605 * Picture represents a leaf of the S+tree
606 *  ______________________________________________________
607 * |      |  Array of     |                   |           |
608 * |Block |  Object-Item  |      F r e e      |  Objects- |
609 * | head |  Headers      |     S p a c e     |   Items   |
610 * |______|_______________|___________________|___________|
611 */
612
613/* Header of a disk block.  More precisely, header of a formatted leaf
614   or internal node, and not the header of an unformatted node. */
615struct block_head {
616  __u16 blk_level;        /* Level of a block in the tree. */
617  __u16 blk_nr_item;      /* Number of keys/items in a block. */
618  __u16 blk_free_space;   /* Block free space in bytes. */
619  __u16 blk_reserved;
620				/* dump this in v4/planA */
621  struct key  blk_right_delim_key; /* kept only for compatibility */
622};
623
624#define BLKH_SIZE                     (sizeof(struct block_head))
625#define blkh_level(p_blkh)            (le16_to_cpu((p_blkh)->blk_level))
626#define blkh_nr_item(p_blkh)          (le16_to_cpu((p_blkh)->blk_nr_item))
627#define blkh_free_space(p_blkh)       (le16_to_cpu((p_blkh)->blk_free_space))
628#define blkh_reserved(p_blkh)         (le16_to_cpu((p_blkh)->blk_reserved))
629#define set_blkh_level(p_blkh,val)    ((p_blkh)->blk_level = cpu_to_le16(val))
630#define set_blkh_nr_item(p_blkh,val)  ((p_blkh)->blk_nr_item = cpu_to_le16(val))
631#define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
632#define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
633#define blkh_right_delim_key(p_blkh)  ((p_blkh)->blk_right_delim_key)
634#define set_blkh_right_delim_key(p_blkh,val)  ((p_blkh)->blk_right_delim_key = val)
635
636/*
637 * values for blk_level field of the struct block_head
638 */
639
640#define FREE_LEVEL 0 /* when node gets removed from the tree its
641			blk_level is set to FREE_LEVEL. It is then
642			used to see whether the node is still in the
643			tree */
644
645#define DISK_LEAF_NODE_LEVEL  1 /* Leaf node level.*/
646
647/* Given the buffer head of a formatted node, resolve to the block head of that node. */
648#define B_BLK_HEAD(p_s_bh)            ((struct block_head *)((p_s_bh)->b_data))
649/* Number of items that are in buffer. */
650#define B_NR_ITEMS(p_s_bh)            (blkh_nr_item(B_BLK_HEAD(p_s_bh)))
651#define B_LEVEL(p_s_bh)               (blkh_level(B_BLK_HEAD(p_s_bh)))
652#define B_FREE_SPACE(p_s_bh)          (blkh_free_space(B_BLK_HEAD(p_s_bh)))
653
654#define PUT_B_NR_ITEMS(p_s_bh,val)    do { set_blkh_nr_item(B_BLK_HEAD(p_s_bh),val); } while (0)
655#define PUT_B_LEVEL(p_s_bh,val)       do { set_blkh_level(B_BLK_HEAD(p_s_bh),val); } while (0)
656#define PUT_B_FREE_SPACE(p_s_bh,val)  do { set_blkh_free_space(B_BLK_HEAD(p_s_bh),val); } while (0)
657
658
659/* Get right delimiting key. -- little endian */
660#define B_PRIGHT_DELIM_KEY(p_s_bh)   (&(blk_right_delim_key(B_BLK_HEAD(p_s_bh))
661
662/* Does the buffer contain a disk leaf. */
663#define B_IS_ITEMS_LEVEL(p_s_bh)     (B_LEVEL(p_s_bh) == DISK_LEAF_NODE_LEVEL)
664
665/* Does the buffer contain a disk internal node */
666#define B_IS_KEYS_LEVEL(p_s_bh)      (B_LEVEL(p_s_bh) > DISK_LEAF_NODE_LEVEL \
667                                            && B_LEVEL(p_s_bh) <= MAX_HEIGHT)
668
669
670
671
672/***************************************************************************/
673/*                             STAT DATA                                   */
674/***************************************************************************/
675
676
677//
678// old stat data is 32 bytes long. We are going to distinguish new one by
679// different size
680//
681struct stat_data_v1
682{
683    __u16 sd_mode;	/* file type, permissions */
684    __u16 sd_nlink;	/* number of hard links */
685    __u16 sd_uid;		/* owner */
686    __u16 sd_gid;		/* group */
687    __u32 sd_size;	/* file size */
688    __u32 sd_atime;	/* time of last access */
689    __u32 sd_mtime;	/* time file was last modified  */
690    __u32 sd_ctime;	/* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
691    union {
692	__u32 sd_rdev;
693	__u32 sd_blocks;	/* number of blocks file uses */
694    } __attribute__ ((__packed__)) u;
695    __u32 sd_first_direct_byte; /* first byte of file which is stored
696				   in a direct item: except that if it
697				   equals 1 it is a symlink and if it
698				   equals ~(__u32)0 there is no
699				   direct item.  The existence of this
700				   field really grates on me. Let's
701				   replace it with a macro based on
702				   sd_size and our tail suppression
703				   policy.  Someday.  -Hans */
704} __attribute__ ((__packed__));
705
706#define SD_V1_SIZE              (sizeof(struct stat_data_v1))
707#define stat_data_v1(ih)        (ih_version (ih) == KEY_FORMAT_3_5)
708#define sd_v1_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
709#define set_sd_v1_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
710#define sd_v1_nlink(sdp)        (le16_to_cpu((sdp)->sd_nlink))
711#define set_sd_v1_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le16(v))
712#define sd_v1_uid(sdp)          (le16_to_cpu((sdp)->sd_uid))
713#define set_sd_v1_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le16(v))
714#define sd_v1_gid(sdp)          (le16_to_cpu((sdp)->sd_gid))
715#define set_sd_v1_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le16(v))
716#define sd_v1_size(sdp)         (le32_to_cpu((sdp)->sd_size))
717#define set_sd_v1_size(sdp,v)   ((sdp)->sd_size = cpu_to_le32(v))
718#define sd_v1_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
719#define set_sd_v1_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
720#define sd_v1_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
721#define set_sd_v1_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
722#define sd_v1_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
723#define set_sd_v1_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
724#define sd_v1_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
725#define set_sd_v1_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
726#define sd_v1_blocks(sdp)       (le32_to_cpu((sdp)->u.sd_blocks))
727#define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
728#define sd_v1_first_direct_byte(sdp) \
729                                (le32_to_cpu((sdp)->sd_first_direct_byte))
730#define set_sd_v1_first_direct_byte(sdp,v) \
731                                ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
732
733#include <linux/ext2_fs.h>
734
735/* inode flags stored in sd_attrs (nee sd_reserved) */
736
737/* we want common flags to have the same values as in ext2,
738   so chattr(1) will work without problems */
739#define REISERFS_IMMUTABLE_FL EXT2_IMMUTABLE_FL
740#define REISERFS_SYNC_FL      EXT2_SYNC_FL
741#define REISERFS_NOATIME_FL   EXT2_NOATIME_FL
742#define REISERFS_NODUMP_FL    EXT2_NODUMP_FL
743#define REISERFS_SECRM_FL     EXT2_SECRM_FL
744#define REISERFS_UNRM_FL      EXT2_UNRM_FL
745#define REISERFS_COMPR_FL     EXT2_COMPR_FL
746/* persistent flag to disable tails on per-file basic.
747   Note, that is inheritable: mark directory with this and
748   all new files inside will not have tails.
749
750   Teodore Tso allocated EXT2_NODUMP_FL (0x00008000) for this. Change
751   numeric constant to ext2 macro when available. */
752#define REISERFS_NOTAIL_FL    (0x00008000) /* EXT2_NOTAIL_FL */
753
754/* persistent flags that file inherits from the parent directory */
755#define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL |	\
756				REISERFS_SYNC_FL |	\
757				REISERFS_NOATIME_FL |	\
758				REISERFS_NODUMP_FL |	\
759				REISERFS_SECRM_FL |	\
760				REISERFS_COMPR_FL |	\
761				REISERFS_NOTAIL_FL )
762
763/* Stat Data on disk (reiserfs version of UFS disk inode minus the
764   address blocks) */
765struct stat_data {
766    __u16 sd_mode;	/* file type, permissions */
767    __u16 sd_attrs;     /* persistent inode flags */
768    __u32 sd_nlink;	/* number of hard links */
769    __u64 sd_size;	/* file size */
770    __u32 sd_uid;		/* owner */
771    __u32 sd_gid;		/* group */
772    __u32 sd_atime;	/* time of last access */
773    __u32 sd_mtime;	/* time file was last modified  */
774    __u32 sd_ctime;	/* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
775    __u32 sd_blocks;
776    union {
777	__u32 sd_rdev;
778	__u32 sd_generation;
779      //__u32 sd_first_direct_byte;
780      /* first byte of file which is stored in a
781				       direct item: except that if it equals 1
782				       it is a symlink and if it equals
783				       ~(__u32)0 there is no direct item.  The
784				       existence of this field really grates
785				       on me. Let's replace it with a macro
786				       based on sd_size and our tail
787				       suppression policy? */
788  } __attribute__ ((__packed__)) u;
789} __attribute__ ((__packed__));
790//
791// this is 44 bytes long
792//
793#define SD_SIZE (sizeof(struct stat_data))
794#define SD_V2_SIZE              SD_SIZE
795#define stat_data_v2(ih)        (ih_version (ih) == KEY_FORMAT_3_6)
796#define sd_v2_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
797#define set_sd_v2_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
798/* sd_reserved */
799/* set_sd_reserved */
800#define sd_v2_nlink(sdp)        (le32_to_cpu((sdp)->sd_nlink))
801#define set_sd_v2_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le32(v))
802#define sd_v2_size(sdp)         (le64_to_cpu((sdp)->sd_size))
803#define set_sd_v2_size(sdp,v)   ((sdp)->sd_size = cpu_to_le64(v))
804#define sd_v2_uid(sdp)          (le32_to_cpu((sdp)->sd_uid))
805#define set_sd_v2_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le32(v))
806#define sd_v2_gid(sdp)          (le32_to_cpu((sdp)->sd_gid))
807#define set_sd_v2_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le32(v))
808#define sd_v2_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
809#define set_sd_v2_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
810#define sd_v2_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
811#define set_sd_v2_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
812#define sd_v2_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
813#define set_sd_v2_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
814#define sd_v2_blocks(sdp)       (le32_to_cpu((sdp)->sd_blocks))
815#define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
816#define sd_v2_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
817#define set_sd_v2_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
818#define sd_v2_generation(sdp)   (le32_to_cpu((sdp)->u.sd_generation))
819#define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
820#define sd_v2_attrs(sdp)         (le16_to_cpu((sdp)->sd_attrs))
821#define set_sd_v2_attrs(sdp,v)   ((sdp)->sd_attrs = cpu_to_le16(v))
822
823
824/***************************************************************************/
825/*                      DIRECTORY STRUCTURE                                */
826/***************************************************************************/
827/*
828   Picture represents the structure of directory items
829   ________________________________________________
830   |  Array of     |   |     |        |       |   |
831   | directory     |N-1| N-2 | ....   |   1st |0th|
832   | entry headers |   |     |        |       |   |
833   |_______________|___|_____|________|_______|___|
834                    <----   directory entries         ------>
835
836 First directory item has k_offset component 1. We store "." and ".."
837 in one item, always, we never split "." and ".." into differing
838 items.  This makes, among other things, the code for removing
839 directories simpler. */
840#define SD_OFFSET  0
841#define SD_UNIQUENESS 0
842#define DOT_OFFSET 1
843#define DOT_DOT_OFFSET 2
844#define DIRENTRY_UNIQUENESS 500
845
846/* */
847#define FIRST_ITEM_OFFSET 1
848
849/*
850   Q: How to get key of object pointed to by entry from entry?
851
852   A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key
853      of object, entry points to */
854
855/* NOT IMPLEMENTED:
856   Directory will someday contain stat data of object */
857
858
859
860struct reiserfs_de_head
861{
862  __u32 deh_offset;		/* third component of the directory entry key */
863  __u32 deh_dir_id;		/* objectid of the parent directory of the object, that is referenced
864					   by directory entry */
865  __u32 deh_objectid;		/* objectid of the object, that is referenced by directory entry */
866  __u16 deh_location;		/* offset of name in the whole item */
867  __u16 deh_state;		/* whether 1) entry contains stat data (for future), and 2) whether
868					   entry is hidden (unlinked) */
869} __attribute__ ((__packed__));
870#define DEH_SIZE                  sizeof(struct reiserfs_de_head)
871#define deh_offset(p_deh)         (le32_to_cpu((p_deh)->deh_offset))
872#define deh_dir_id(p_deh)         (le32_to_cpu((p_deh)->deh_dir_id))
873#define deh_objectid(p_deh)       (le32_to_cpu((p_deh)->deh_objectid))
874#define deh_location(p_deh)       (le16_to_cpu((p_deh)->deh_location))
875#define deh_state(p_deh)          (le16_to_cpu((p_deh)->deh_state))
876
877#define put_deh_offset(p_deh,v)   ((p_deh)->deh_offset = cpu_to_le32((v)))
878#define put_deh_dir_id(p_deh,v)   ((p_deh)->deh_dir_id = cpu_to_le32((v)))
879#define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
880#define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
881#define put_deh_state(p_deh,v)    ((p_deh)->deh_state = cpu_to_le16((v)))
882
883/* empty directory contains two entries "." and ".." and their headers */
884#define EMPTY_DIR_SIZE \
885(DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
886
887/* old format directories have this size when empty */
888#define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
889
890#define DEH_Statdata 0			/* not used now */
891#define DEH_Visible 2
892
893/* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
894#if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
895#   define ADDR_UNALIGNED_BITS  (3)
896#endif
897
898/* These are only used to manipulate deh_state.
899 * Because of this, we'll use the ext2_ bit routines,
900 * since they are little endian */
901#ifdef ADDR_UNALIGNED_BITS
902
903#   define aligned_address(addr)           ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
904#   define unaligned_offset(addr)          (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
905
906#   define set_bit_unaligned(nr, addr)     ext2_set_bit((nr) + unaligned_offset(addr), aligned_address(addr))
907#   define clear_bit_unaligned(nr, addr)   ext2_clear_bit((nr) + unaligned_offset(addr), aligned_address(addr))
908#   define test_bit_unaligned(nr, addr)    ext2_test_bit((nr) + unaligned_offset(addr), aligned_address(addr))
909
910#else
911
912#   define set_bit_unaligned(nr, addr)     ext2_set_bit(nr, addr)
913#   define clear_bit_unaligned(nr, addr)   ext2_clear_bit(nr, addr)
914#   define test_bit_unaligned(nr, addr)    ext2_test_bit(nr, addr)
915
916#endif
917
918#define mark_de_with_sd(deh)        set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
919#define mark_de_without_sd(deh)     clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
920#define mark_de_visible(deh)	    set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
921#define mark_de_hidden(deh)	    clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
922
923#define de_with_sd(deh)		    test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
924#define de_visible(deh)	    	    test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
925#define de_hidden(deh)	    	    !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
926
927extern void make_empty_dir_item_v1 (char * body, __u32 dirid, __u32 objid,
928				    __u32 par_dirid, __u32 par_objid);
929extern void make_empty_dir_item (char * body, __u32 dirid, __u32 objid,
930				 __u32 par_dirid, __u32 par_objid);
931
932/* array of the entry headers */
933 /* get item body */
934#define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) )
935#define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih)))
936
937/* length of the directory entry in directory item. This define
938   calculates length of i-th directory entry using directory entry
939   locations from dir entry head. When it calculates length of 0-th
940   directory entry, it uses length of whole item in place of entry
941   location of the non-existent following entry in the calculation.
942   See picture above.*/
943/*
944#define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \
945((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh))))
946*/
947static inline int entry_length (const struct buffer_head * bh,
948								const struct item_head * ih, int pos_in_item)
949{
950    struct reiserfs_de_head * deh;
951
952    deh = B_I_DEH (bh, ih) + pos_in_item;
953    if (pos_in_item)
954	return deh_location(deh-1) - deh_location(deh);
955
956    return ih_item_len(ih) - deh_location(deh);
957}
958
959
960
961/* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */
962#define I_ENTRY_COUNT(ih) (ih_entry_count((ih)))
963
964
965/* name by bh, ih and entry_num */
966#define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num))))
967
968// two entries per block (at least)
969#define REISERFS_MAX_NAME(block_size) 255
970
971
972/* this structure is used for operations on directory entries. It is
973   not a disk structure. */
974/* When reiserfs_find_entry or search_by_entry_key find directory
975   entry, they return filled reiserfs_dir_entry structure */
976struct reiserfs_dir_entry
977{
978  struct buffer_head * de_bh;
979  int de_item_num;
980  struct item_head * de_ih;
981  int de_entry_num;
982  struct reiserfs_de_head * de_deh;
983  int de_entrylen;
984  int de_namelen;
985  char * de_name;
986  char * de_gen_number_bit_string;
987
988  __u32 de_dir_id;
989  __u32 de_objectid;
990
991  struct cpu_key de_entry_key;
992};
993
994/* these defines are useful when a particular member of a reiserfs_dir_entry is needed */
995
996/* pointer to file name, stored in entry */
997#define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh))
998
999/* length of name */
1000#define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
1001(I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
1002
1003
1004
1005/* hash value occupies bits from 7 up to 30 */
1006#define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
1007/* generation number occupies 7 bits starting from 0 up to 6 */
1008#define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
1009#define MAX_GENERATION_NUMBER  127
1010
1011#define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
1012
1013
1014/*
1015 * Picture represents an internal node of the reiserfs tree
1016 *  ______________________________________________________
1017 * |      |  Array of     |  Array of         |  Free     |
1018 * |block |    keys       |  pointers         | space     |
1019 * | head |      N        |      N+1          |           |
1020 * |______|_______________|___________________|___________|
1021 */
1022
1023/***************************************************************************/
1024/*                      DISK CHILD                                         */
1025/***************************************************************************/
1026/* Disk child pointer: The pointer from an internal node of the tree
1027   to a node that is on disk. */
1028struct disk_child {
1029  __u32       dc_block_number;              /* Disk child's block number. */
1030  __u16       dc_size;		            /* Disk child's used space.   */
1031  __u16       dc_reserved;
1032};
1033
1034#define DC_SIZE (sizeof(struct disk_child))
1035#define dc_block_number(dc_p)	(le32_to_cpu((dc_p)->dc_block_number))
1036#define dc_size(dc_p)		(le16_to_cpu((dc_p)->dc_size))
1037#define put_dc_block_number(dc_p, val)   do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
1038#define put_dc_size(dc_p, val)   do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
1039
1040/* Get disk child by buffer header and position in the tree node. */
1041#define B_N_CHILD(p_s_bh,n_pos)  ((struct disk_child *)\
1042((p_s_bh)->b_data+BLKH_SIZE+B_NR_ITEMS(p_s_bh)*KEY_SIZE+DC_SIZE*(n_pos)))
1043
1044/* Get disk child number by buffer header and position in the tree node. */
1045#define B_N_CHILD_NUM(p_s_bh,n_pos) (dc_block_number(B_N_CHILD(p_s_bh,n_pos)))
1046#define PUT_B_N_CHILD_NUM(p_s_bh,n_pos, val) (put_dc_block_number(B_N_CHILD(p_s_bh,n_pos), val ))
1047
1048 /* maximal value of field child_size in structure disk_child */
1049 /* child size is the combined size of all items and their headers */
1050#define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
1051
1052/* amount of used space in buffer (not including block head) */
1053#define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
1054
1055/* max and min number of keys in internal node */
1056#define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
1057#define MIN_NR_KEY(bh)    (MAX_NR_KEY(bh)/2)
1058
1059/***************************************************************************/
1060/*                      PATH STRUCTURES AND DEFINES                        */
1061/***************************************************************************/
1062
1063
1064/* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the
1065   key.  It uses reiserfs_bread to try to find buffers in the cache given their block number.  If it
1066   does not find them in the cache it reads them from disk.  For each node search_by_key finds using
1067   reiserfs_bread it then uses bin_search to look through that node.  bin_search will find the
1068   position of the block_number of the next node if it is looking through an internal node.  If it
1069   is looking through a leaf node bin_search will find the position of the item which has key either
1070   equal to given key, or which is the maximal key less than the given key. */
1071
1072struct  path_element  {
1073  struct buffer_head *	pe_buffer;    /* Pointer to the buffer at the path in the tree. */
1074  int         		pe_position;  /* Position in the tree node which is placed in the */
1075                                      /* buffer above.                                  */
1076};
1077
1078#define MAX_HEIGHT 5 /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */
1079#define EXTENDED_MAX_HEIGHT         7 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
1080#define FIRST_PATH_ELEMENT_OFFSET   2 /* Must be equal to at least 2. */
1081
1082#define ILLEGAL_PATH_ELEMENT_OFFSET 1 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
1083#define MAX_FEB_SIZE 6   /* this MUST be MAX_HEIGHT + 1. See about FEB below */
1084
1085
1086
1087/* We need to keep track of who the ancestors of nodes are.  When we
1088   perform a search we record which nodes were visited while
1089   descending the tree looking for the node we searched for. This list
1090   of nodes is called the path.  This information is used while
1091   performing balancing.  Note that this path information may become
1092   invalid, and this means we must check it when using it to see if it
1093   is still valid. You'll need to read search_by_key and the comments
1094   in it, especially about decrement_counters_in_path(), to understand
1095   this structure.
1096
1097Paths make the code so much harder to work with and debug.... An
1098enormous number of bugs are due to them, and trying to write or modify
1099code that uses them just makes my head hurt.  They are based on an
1100excessive effort to avoid disturbing the precious VFS code.:-( The
1101gods only know how we are going to SMP the code that uses them.
1102znodes are the way! */
1103
1104
1105struct  path {
1106  int                   path_length;                      	/* Length of the array above.   */
1107  struct  path_element  path_elements[EXTENDED_MAX_HEIGHT];	/* Array of the path elements.  */
1108  int			pos_in_item;
1109};
1110
1111#define pos_in_item(path) ((path)->pos_in_item)
1112
1113#define INITIALIZE_PATH(var) \
1114struct path var = {ILLEGAL_PATH_ELEMENT_OFFSET, }
1115
1116/* Get path element by path and path position. */
1117#define PATH_OFFSET_PELEMENT(p_s_path,n_offset)  ((p_s_path)->path_elements +(n_offset))
1118
1119/* Get buffer header at the path by path and path position. */
1120#define PATH_OFFSET_PBUFFER(p_s_path,n_offset)   (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_buffer)
1121
1122/* Get position in the element at the path by path and path position. */
1123#define PATH_OFFSET_POSITION(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_position)
1124
1125
1126#define PATH_PLAST_BUFFER(p_s_path) (PATH_OFFSET_PBUFFER((p_s_path), (p_s_path)->path_length))
1127				/* you know, to the person who didn't
1128                                   write this the macro name does not
1129                                   at first suggest what it does.
1130                                   Maybe POSITION_FROM_PATH_END? Or
1131                                   maybe we should just focus on
1132                                   dumping paths... -Hans */
1133#define PATH_LAST_POSITION(p_s_path) (PATH_OFFSET_POSITION((p_s_path), (p_s_path)->path_length))
1134
1135
1136#define PATH_PITEM_HEAD(p_s_path)    B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_path),PATH_LAST_POSITION(p_s_path))
1137
1138/* in do_balance leaf has h == 0 in contrast with path structure,
1139   where root has level == 0. That is why we need these defines */
1140#define PATH_H_PBUFFER(p_s_path, h) PATH_OFFSET_PBUFFER (p_s_path, p_s_path->path_length - (h))	/* tb->S[h] */
1141#define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1)			/* tb->F[h] or tb->S[0]->b_parent */
1142#define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))
1143#define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1)		/* tb->S[h]->b_item_order */
1144
1145#define PATH_H_PATH_OFFSET(p_s_path, n_h) ((p_s_path)->path_length - (n_h))
1146
1147#define get_last_bh(path) PATH_PLAST_BUFFER(path)
1148#define get_ih(path) PATH_PITEM_HEAD(path)
1149#define get_item_pos(path) PATH_LAST_POSITION(path)
1150#define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path)))
1151#define item_moved(ih,path) comp_items(ih, path)
1152#define path_changed(ih,path) comp_items (ih, path)
1153
1154
1155/***************************************************************************/
1156/*                       MISC                                              */
1157/***************************************************************************/
1158
1159/* Size of pointer to the unformatted node. */
1160#define UNFM_P_SIZE (sizeof(unp_t))
1161
1162// in in-core inode key is stored on le form
1163#define INODE_PKEY(inode) ((struct key *)((inode)->u.reiserfs_i.i_key))
1164
1165#define MAX_UL_INT 0xffffffff
1166#define MAX_INT    0x7ffffff
1167#define MAX_US_INT 0xffff
1168
1169// reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
1170#define U32_MAX (~(__u32)0)
1171
1172static inline loff_t max_reiserfs_offset (const struct inode * inode)
1173{
1174    if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
1175	return (loff_t)U32_MAX;
1176
1177    return (loff_t)((~(__u64)0) >> 4);
1178}
1179
1180
1181/*#define MAX_KEY_UNIQUENESS	MAX_UL_INT*/
1182#define MAX_KEY_OBJECTID	MAX_UL_INT
1183
1184
1185#define MAX_B_NUM  MAX_UL_INT
1186#define MAX_FC_NUM MAX_US_INT
1187
1188
1189/* the purpose is to detect overflow of an unsigned short */
1190#define REISERFS_LINK_MAX (MAX_US_INT - 1000)
1191
1192
1193/* The following defines are used in reiserfs_insert_item and reiserfs_append_item  */
1194#define REISERFS_KERNEL_MEM		0	/* reiserfs kernel memory mode	*/
1195#define REISERFS_USER_MEM		1	/* reiserfs user memory mode		*/
1196
1197#define fs_generation(s) ((s)->u.reiserfs_sb.s_generation_counter)
1198#define get_generation(s) atomic_read (&fs_generation(s))
1199#define FILESYSTEM_CHANGED_TB(tb)  (get_generation((tb)->tb_sb) != (tb)->fs_gen)
1200#define fs_changed(gen,s) (gen != get_generation (s))
1201
1202
1203/***************************************************************************/
1204/*                  FIXATE NODES                                           */
1205/***************************************************************************/
1206
1207#define VI_TYPE_LEFT_MERGEABLE 1
1208#define VI_TYPE_RIGHT_MERGEABLE 2
1209
1210/* To make any changes in the tree we always first find node, that
1211   contains item to be changed/deleted or place to insert a new
1212   item. We call this node S. To do balancing we need to decide what
1213   we will shift to left/right neighbor, or to a new node, where new
1214   item will be etc. To make this analysis simpler we build virtual
1215   node. Virtual node is an array of items, that will replace items of
1216   node S. (For instance if we are going to delete an item, virtual
1217   node does not contain it). Virtual node keeps information about
1218   item sizes and types, mergeability of first and last items, sizes
1219   of all entries in directory item. We use this array of items when
1220   calculating what we can shift to neighbors and how many nodes we
1221   have to have if we do not any shiftings, if we shift to left/right
1222   neighbor or to both. */
1223struct virtual_item
1224{
1225    int vi_index; // index in the array of item operations
1226    unsigned short vi_type;	// left/right mergeability
1227    unsigned short vi_item_len;           /* length of item that it will have after balancing */
1228    struct item_head * vi_ih;
1229    const char * vi_item;     // body of item (old or new)
1230    const void * vi_new_data; // 0 always but paste mode
1231    void * vi_uarea;    // item specific area
1232};
1233
1234
1235struct virtual_node
1236{
1237  char * vn_free_ptr;		/* this is a pointer to the free space in the buffer */
1238  unsigned short vn_nr_item;	/* number of items in virtual node */
1239  short vn_size;        	/* size of node , that node would have if it has unlimited size and no balancing is performed */
1240  short vn_mode;		/* mode of balancing (paste, insert, delete, cut) */
1241  short vn_affected_item_num;
1242  short vn_pos_in_item;
1243  struct item_head * vn_ins_ih;	/* item header of inserted item, 0 for other modes */
1244  const void * vn_data;
1245  struct virtual_item * vn_vi;	/* array of items (including a new one, excluding item to be deleted) */
1246};
1247
1248/* used by directory items when creating virtual nodes */
1249struct direntry_uarea {
1250    int flags;
1251    __u16 entry_count;
1252    __u16 entry_sizes[1];
1253} __attribute__ ((__packed__)) ;
1254
1255
1256/***************************************************************************/
1257/*                  TREE BALANCE                                           */
1258/***************************************************************************/
1259
1260/* This temporary structure is used in tree balance algorithms, and
1261   constructed as we go to the extent that its various parts are
1262   needed.  It contains arrays of nodes that can potentially be
1263   involved in the balancing of node S, and parameters that define how
1264   each of the nodes must be balanced.  Note that in these algorithms
1265   for balancing the worst case is to need to balance the current node
1266   S and the left and right neighbors and all of their parents plus
1267   create a new node.  We implement S1 balancing for the leaf nodes
1268   and S0 balancing for the internal nodes (S1 and S0 are defined in
1269   our papers.)*/
1270
1271#define MAX_FREE_BLOCK 7	/* size of the array of buffers to free at end of do_balance */
1272
1273/* maximum number of FEB blocknrs on a single level */
1274#define MAX_AMOUNT_NEEDED 2
1275
1276/* someday somebody will prefix every field in this struct with tb_ */
1277struct tree_balance
1278{
1279  int tb_mode;
1280  int need_balance_dirty;
1281  struct super_block * tb_sb;
1282  struct reiserfs_transaction_handle *transaction_handle ;
1283  struct path * tb_path;
1284  struct buffer_head * L[MAX_HEIGHT];        /* array of left neighbors of nodes in the path */
1285  struct buffer_head * R[MAX_HEIGHT];        /* array of right neighbors of nodes in the path*/
1286  struct buffer_head * FL[MAX_HEIGHT];       /* array of fathers of the left  neighbors      */
1287  struct buffer_head * FR[MAX_HEIGHT];       /* array of fathers of the right neighbors      */
1288  struct buffer_head * CFL[MAX_HEIGHT];      /* array of common parents of center node and its left neighbor  */
1289  struct buffer_head * CFR[MAX_HEIGHT];      /* array of common parents of center node and its right neighbor */
1290
1291  struct buffer_head * FEB[MAX_FEB_SIZE]; /* array of empty buffers. Number of buffers in array equals
1292					     cur_blknum. */
1293  struct buffer_head * used[MAX_FEB_SIZE];
1294  struct buffer_head * thrown[MAX_FEB_SIZE];
1295  int lnum[MAX_HEIGHT];	/* array of number of items which must be
1296			   shifted to the left in order to balance the
1297			   current node; for leaves includes item that
1298			   will be partially shifted; for internal
1299			   nodes, it is the number of child pointers
1300			   rather than items. It includes the new item
1301			   being created. The code sometimes subtracts
1302			   one to get the number of wholly shifted
1303			   items for other purposes. */
1304  int rnum[MAX_HEIGHT];	/* substitute right for left in comment above */
1305  int lkey[MAX_HEIGHT];               /* array indexed by height h mapping the key delimiting L[h] and
1306					       S[h] to its item number within the node CFL[h] */
1307  int rkey[MAX_HEIGHT];               /* substitute r for l in comment above */
1308  int insert_size[MAX_HEIGHT];        /* the number of bytes by we are trying to add or remove from
1309					       S[h]. A negative value means removing.  */
1310  int blknum[MAX_HEIGHT];             /* number of nodes that will replace node S[h] after
1311					       balancing on the level h of the tree.  If 0 then S is
1312					       being deleted, if 1 then S is remaining and no new nodes
1313					       are being created, if 2 or 3 then 1 or 2 new nodes is
1314					       being created */
1315
1316  /* fields that are used only for balancing leaves of the tree */
1317  int cur_blknum;	/* number of empty blocks having been already allocated			*/
1318  int s0num;             /* number of items that fall into left most  node when S[0] splits	*/
1319  int s1num;             /* number of items that fall into first  new node when S[0] splits	*/
1320  int s2num;             /* number of items that fall into second new node when S[0] splits	*/
1321  int lbytes;            /* number of bytes which can flow to the left neighbor from the	left	*/
1322  /* most liquid item that cannot be shifted from S[0] entirely		*/
1323  /* if -1 then nothing will be partially shifted */
1324  int rbytes;            /* number of bytes which will flow to the right neighbor from the right	*/
1325  /* most liquid item that cannot be shifted from S[0] entirely		*/
1326  /* if -1 then nothing will be partially shifted                           */
1327  int s1bytes;		/* number of bytes which flow to the first  new node when S[0] splits	*/
1328            			/* note: if S[0] splits into 3 nodes, then items do not need to be cut	*/
1329  int s2bytes;
1330  struct buffer_head * buf_to_free[MAX_FREE_BLOCK]; /* buffers which are to be freed after do_balance finishes by unfix_nodes */
1331  char * vn_buf;		/* kmalloced memory. Used to create
1332				   virtual node and keep map of
1333				   dirtied bitmap blocks */
1334  int vn_buf_size;		/* size of the vn_buf */
1335  struct virtual_node * tb_vn;	/* VN starts after bitmap of bitmap blocks */
1336
1337  int fs_gen;                  /* saved value of `reiserfs_generation' counter
1338			          see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */
1339#ifdef DISPLACE_NEW_PACKING_LOCALITIES
1340  struct key  key;	      /* key pointer, to pass to block allocator or
1341				 another low-level subsystem */
1342#endif
1343} ;
1344
1345/* These are modes of balancing */
1346
1347/* When inserting an item. */
1348#define M_INSERT	'i'
1349/* When inserting into (directories only) or appending onto an already
1350   existant item. */
1351#define M_PASTE		'p'
1352/* When deleting an item. */
1353#define M_DELETE	'd'
1354/* When truncating an item or removing an entry from a (directory) item. */
1355#define M_CUT 		'c'
1356
1357/* used when balancing on leaf level skipped (in reiserfsck) */
1358#define M_INTERNAL	'n'
1359
1360/* When further balancing is not needed, then do_balance does not need
1361   to be called. */
1362#define M_SKIP_BALANCING 		's'
1363#define M_CONVERT	'v'
1364
1365/* modes of leaf_move_items */
1366#define LEAF_FROM_S_TO_L 0
1367#define LEAF_FROM_S_TO_R 1
1368#define LEAF_FROM_R_TO_L 2
1369#define LEAF_FROM_L_TO_R 3
1370#define LEAF_FROM_S_TO_SNEW 4
1371
1372#define FIRST_TO_LAST 0
1373#define LAST_TO_FIRST 1
1374
1375/* used in do_balance for passing parent of node information that has
1376   been gotten from tb struct */
1377struct buffer_info {
1378    struct tree_balance * tb;
1379    struct buffer_head * bi_bh;
1380    struct buffer_head * bi_parent;
1381    int bi_position;
1382};
1383
1384
1385/* there are 4 types of items: stat data, directory item, indirect, direct.
1386+-------------------+------------+--------------+------------+
1387|	            |  k_offset  | k_uniqueness | mergeable? |
1388+-------------------+------------+--------------+------------+
1389|     stat data     |	0        |      0       |   no       |
1390+-------------------+------------+--------------+------------+
1391| 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS|   no       |
1392| non 1st directory | hash value |              |   yes      |
1393|     item          |            |              |            |
1394+-------------------+------------+--------------+------------+
1395| indirect item     | offset + 1 |TYPE_INDIRECT |   if this is not the first indirect item of the object
1396+-------------------+------------+--------------+------------+
1397| direct item       | offset + 1 |TYPE_DIRECT   | if not this is not the first direct item of the object
1398+-------------------+------------+--------------+------------+
1399*/
1400
1401struct item_operations {
1402    int (*bytes_number) (struct item_head * ih, int block_size);
1403    void (*decrement_key) (struct cpu_key *);
1404    int (*is_left_mergeable) (struct key * ih, unsigned long bsize);
1405    void (*print_item) (struct item_head *, char * item);
1406    void (*check_item) (struct item_head *, char * item);
1407
1408    int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
1409		      int is_affected, int insert_size);
1410    int (*check_left) (struct virtual_item * vi, int free,
1411			    int start_skip, int end_skip);
1412    int (*check_right) (struct virtual_item * vi, int free);
1413    int (*part_size) (struct virtual_item * vi, int from, int to);
1414    int (*unit_num) (struct virtual_item * vi);
1415    void (*print_vi) (struct virtual_item * vi);
1416};
1417
1418
1419extern struct item_operations stat_data_ops, indirect_ops, direct_ops,
1420  direntry_ops;
1421extern struct item_operations * item_ops [TYPE_ANY + 1];
1422
1423#define op_bytes_number(ih,bsize)                    item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
1424#define op_is_left_mergeable(key,bsize)              item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
1425#define op_print_item(ih,item)                       item_ops[le_ih_k_type (ih)]->print_item (ih, item)
1426#define op_check_item(ih,item)                       item_ops[le_ih_k_type (ih)]->check_item (ih, item)
1427#define op_create_vi(vn,vi,is_affected,insert_size)  item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
1428#define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
1429#define op_check_right(vi,free)                      item_ops[(vi)->vi_index]->check_right (vi, free)
1430#define op_part_size(vi,from,to)                     item_ops[(vi)->vi_index]->part_size (vi, from, to)
1431#define op_unit_num(vi)				     item_ops[(vi)->vi_index]->unit_num (vi)
1432#define op_print_vi(vi)                              item_ops[(vi)->vi_index]->print_vi (vi)
1433
1434
1435
1436
1437
1438#define COMP_KEYS comp_keys
1439#define COMP_SHORT_KEYS comp_short_keys
1440/*#define keys_of_same_object comp_short_keys*/
1441
1442/* number of blocks pointed to by the indirect item */
1443#define I_UNFM_NUM(p_s_ih)	( ih_item_len(p_s_ih) / UNFM_P_SIZE )
1444
1445/* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
1446#define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
1447
1448/* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */
1449
1450
1451/* get the item header */
1452#define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1453
1454/* get key */
1455#define B_N_PDELIM_KEY(bh,item_num) ( (struct key * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1456
1457/* get the key */
1458#define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) )
1459
1460/* get item body */
1461#define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num))))
1462
1463/* get the stat data by the buffer header and the item order */
1464#define B_N_STAT_DATA(bh,nr) \
1465( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) )
1466
1467    /* following defines use reiserfs buffer header and item header */
1468
1469/* get stat-data */
1470#define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
1471
1472// this is 3976 for size==4096
1473#define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
1474
1475/* indirect items consist of entries which contain blocknrs, pos
1476   indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
1477   blocknr contained by the entry pos points to */
1478#define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)))
1479#define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0)
1480
1481struct reiserfs_iget4_args {
1482    __u32 objectid ;
1483} ;
1484
1485/***************************************************************************/
1486/*                    FUNCTION DECLARATIONS                                */
1487/***************************************************************************/
1488
1489/*#ifdef __KERNEL__*/
1490
1491/* journal.c see journal.c for all the comments here */
1492
1493#define JOURNAL_TRANS_HALF 1018   /* must be correct to keep the desc and commit structs at 4k */
1494
1495
1496/* first block written in a commit.  */
1497struct reiserfs_journal_desc {
1498  __u32 j_trans_id ;			/* id of commit */
1499  __u32 j_len ;			/* length of commit. len +1 is the commit block */
1500  __u32 j_mount_id ;				/* mount id of this trans*/
1501  __u32 j_realblock[JOURNAL_TRANS_HALF] ; /* real locations for each block */
1502  char j_magic[12] ;
1503} ;
1504
1505/* last block written in a commit */
1506struct reiserfs_journal_commit {
1507  __u32 j_trans_id ;			/* must match j_trans_id from the desc block */
1508  __u32 j_len ;			/* ditto */
1509  __u32 j_realblock[JOURNAL_TRANS_HALF] ; /* real locations for each block */
1510  char j_digest[16] ;			/* md5 sum of all the blocks involved, including desc and commit. not used, kill it */
1511} ;
1512
1513/* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the
1514** last fully flushed transaction.  fully flushed means all the log blocks and all the real blocks are on disk,
1515** and this transaction does not need to be replayed.
1516*/
1517struct reiserfs_journal_header {
1518  __u32 j_last_flush_trans_id ;		/* id of last fully flushed transaction */
1519  __u32 j_first_unflushed_offset ;      /* offset in the log of where to start replay after a crash */
1520  __u32 j_mount_id ;
1521} ;
1522
1523extern task_queue reiserfs_commit_thread_tq ;
1524extern wait_queue_head_t reiserfs_commit_thread_wait ;
1525
1526/* biggest tunable defines are right here */
1527#define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */
1528#define JOURNAL_MAX_BATCH   900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */
1529#define JOURNAL_MAX_COMMIT_AGE 30
1530#define JOURNAL_MAX_TRANS_AGE 30
1531#define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
1532
1533/* both of these can be as low as 1, or as high as you want.  The min is the
1534** number of 4k bitmap nodes preallocated on mount. New nodes are allocated
1535** as needed, and released when transactions are committed.  On release, if
1536** the current number of nodes is > max, the node is freed, otherwise,
1537** it is put on a free list for faster use later.
1538*/
1539#define REISERFS_MIN_BITMAP_NODES 10
1540#define REISERFS_MAX_BITMAP_NODES 100
1541
1542#define JBH_HASH_SHIFT 13 /* these are based on journal hash size of 8192 */
1543#define JBH_HASH_MASK 8191
1544
1545/* After several hours of tedious analysis, the following hash
1546 * function won.  Do not mess with it... -DaveM
1547 */
1548/* The two definitions below were borrowed from fs/buffer.c file of Linux kernel
1549 * sources and are not licensed by Namesys to its non-GPL license customers */
1550#define _jhashfn(dev,block)	\
1551	((((dev)<<(JBH_HASH_SHIFT - 6)) ^ ((dev)<<(JBH_HASH_SHIFT - 9))) ^ \
1552	 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
1553#define journal_hash(t,dev,block) ((t)[_jhashfn((dev),(block)) & JBH_HASH_MASK])
1554
1555/* finds n'th buffer with 0 being the start of this commit.  Needs to go away, j_ap_blocks has changed
1556** since I created this.  One chunk of code in journal.c needs changing before deleting it
1557*/
1558#define JOURNAL_BUFFER(j,n) ((j)->j_ap_blocks[((j)->j_start + (n)) % JOURNAL_BLOCK_COUNT])
1559
1560void reiserfs_commit_for_inode(struct inode *) ;
1561void reiserfs_update_inode_transaction(struct inode *) ;
1562void reiserfs_wait_on_write_block(struct super_block *s) ;
1563void reiserfs_block_writes(struct reiserfs_transaction_handle *th) ;
1564void reiserfs_allow_writes(struct super_block *s) ;
1565void reiserfs_check_lock_depth(char *caller) ;
1566void reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh, int wait) ;
1567void reiserfs_restore_prepared_buffer(struct super_block *, struct buffer_head *bh) ;
1568int journal_init(struct super_block *) ;
1569int journal_release(struct reiserfs_transaction_handle*, struct super_block *) ;
1570int journal_release_error(struct reiserfs_transaction_handle*, struct super_block *) ;
1571int journal_end(struct reiserfs_transaction_handle *, struct super_block *, unsigned long) ;
1572int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *, unsigned long) ;
1573int journal_mark_dirty_nolog(struct reiserfs_transaction_handle *, struct super_block *, struct buffer_head *bh) ;
1574int journal_mark_freed(struct reiserfs_transaction_handle *, struct super_block *, unsigned long blocknr) ;
1575int push_journal_writer(char *w) ;
1576int pop_journal_writer(int windex) ;
1577int journal_transaction_should_end(struct reiserfs_transaction_handle *, int) ;
1578int reiserfs_in_journal(struct super_block *p_s_sb, kdev_t dev, int bmap_nr, int bit_nr, int size, int searchall, unsigned int *next) ;
1579int journal_begin(struct reiserfs_transaction_handle *, struct super_block *p_s_sb, unsigned long) ;
1580struct super_block *reiserfs_get_super(kdev_t dev) ;
1581void flush_async_commits(struct super_block *p_s_sb) ;
1582
1583int buffer_journaled(const struct buffer_head *bh) ;
1584int mark_buffer_journal_new(struct buffer_head *bh) ;
1585int reiserfs_sync_all_buffers(kdev_t dev, int wait) ;
1586int reiserfs_sync_buffers(kdev_t dev, int wait) ;
1587int reiserfs_add_page_to_flush_list(struct reiserfs_transaction_handle *,
1588                                    struct inode *, struct buffer_head *) ;
1589int reiserfs_remove_page_from_flush_list(struct reiserfs_transaction_handle *,
1590                                         struct inode *) ;
1591
1592int reiserfs_allocate_list_bitmaps(struct super_block *s, struct reiserfs_list_bitmap *, int) ;
1593
1594				/* why is this kerplunked right here? */
1595static inline int reiserfs_buffer_prepared(const struct buffer_head *bh) {
1596  if (bh && test_bit(BH_JPrepared, &( (struct buffer_head *)bh)->b_state))
1597    return 1 ;
1598  else
1599    return 0 ;
1600}
1601
1602/* buffer was journaled, waiting to get to disk */
1603static inline int buffer_journal_dirty(const struct buffer_head *bh) {
1604  if (bh)
1605    return test_bit(BH_JDirty_wait, &( (struct buffer_head *)bh)->b_state) ;
1606  else
1607    return 0 ;
1608}
1609static inline int mark_buffer_notjournal_dirty(struct buffer_head *bh) {
1610  if (bh)
1611    clear_bit(BH_JDirty_wait, &bh->b_state) ;
1612  return 0 ;
1613}
1614static inline int mark_buffer_notjournal_new(struct buffer_head *bh) {
1615  if (bh) {
1616    clear_bit(BH_JNew, &bh->b_state) ;
1617  }
1618  return 0 ;
1619}
1620
1621void add_save_link (struct reiserfs_transaction_handle * th,
1622					struct inode * inode, int truncate);
1623void remove_save_link (struct inode * inode, int truncate);
1624
1625/* objectid.c */
1626__u32 reiserfs_get_unused_objectid (struct reiserfs_transaction_handle *th);
1627void reiserfs_release_objectid (struct reiserfs_transaction_handle *th, __u32 objectid_to_release);
1628int reiserfs_convert_objectid_map_v1(struct super_block *) ;
1629
1630/* stree.c */
1631int B_IS_IN_TREE(const struct buffer_head *);
1632extern inline void copy_short_key (void * to, const void * from);
1633extern inline void copy_item_head(struct item_head * p_v_to,
1634								  const struct item_head * p_v_from);
1635
1636// first key is in cpu form, second - le
1637extern inline int comp_keys (const struct key * le_key,
1638			     const struct cpu_key * cpu_key);
1639extern inline int  comp_short_keys (const struct key * le_key,
1640				    const struct cpu_key * cpu_key);
1641extern inline void le_key2cpu_key (struct cpu_key * to, const struct key * from);
1642
1643// both are cpu keys
1644extern inline int comp_cpu_keys (const struct cpu_key *, const struct cpu_key *);
1645extern inline int comp_short_cpu_keys (const struct cpu_key *,
1646				       const struct cpu_key *);
1647extern inline void cpu_key2cpu_key (struct cpu_key *, const struct cpu_key *);
1648
1649// both are in le form
1650extern inline int comp_le_keys (const struct key *, const struct key *);
1651extern inline int comp_short_le_keys (const struct key *, const struct key *);
1652
1653//
1654// get key version from on disk key - kludge
1655//
1656static inline int le_key_version (const struct key * key)
1657{
1658    int type;
1659
1660    type = offset_v2_k_type( &(key->u.k_offset_v2));
1661    if (type != TYPE_DIRECT && type != TYPE_INDIRECT && type != TYPE_DIRENTRY)
1662	return KEY_FORMAT_3_5;
1663
1664    return KEY_FORMAT_3_6;
1665
1666}
1667
1668
1669static inline void copy_key (struct key *to, const struct key *from)
1670{
1671    memcpy (to, from, KEY_SIZE);
1672}
1673
1674
1675int comp_items (const struct item_head * stored_ih, const struct path * p_s_path);
1676const struct key * get_rkey (const struct path * p_s_chk_path,
1677							 const struct super_block  * p_s_sb);
1678inline int bin_search (const void * p_v_key, const void * p_v_base,
1679					   int p_n_num, int p_n_width, int * p_n_pos);
1680int search_by_key (struct super_block *, const struct cpu_key *,
1681				   struct path *, int);
1682#define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
1683int search_for_position_by_key (struct super_block * p_s_sb,
1684								const struct cpu_key * p_s_cpu_key,
1685								struct path * p_s_search_path);
1686extern inline void decrement_bcount (struct buffer_head * p_s_bh);
1687void decrement_counters_in_path (struct path * p_s_search_path);
1688void pathrelse (struct path * p_s_search_path);
1689int reiserfs_check_path(struct path *p) ;
1690void pathrelse_and_restore (struct super_block *s, struct path * p_s_search_path);
1691
1692int reiserfs_insert_item (struct reiserfs_transaction_handle *th,
1693			  struct path * path,
1694			  const struct cpu_key * key,
1695			  struct item_head * ih, const char * body);
1696
1697int reiserfs_paste_into_item (struct reiserfs_transaction_handle *th,
1698			      struct path * path,
1699			      const struct cpu_key * key,
1700			      const char * body, int paste_size);
1701
1702int reiserfs_cut_from_item (struct reiserfs_transaction_handle *th,
1703			    struct path * path,
1704			    struct cpu_key * key,
1705			    struct inode * inode,
1706			    struct page *page,
1707			    loff_t new_file_size);
1708
1709int reiserfs_delete_item (struct reiserfs_transaction_handle *th,
1710			  struct path * path,
1711			  const struct cpu_key * key,
1712			  struct inode * inode,
1713			  struct buffer_head  * p_s_un_bh);
1714
1715void reiserfs_delete_solid_item (struct reiserfs_transaction_handle *th,
1716                                                                struct key * key);
1717void reiserfs_delete_object (struct reiserfs_transaction_handle *th, struct inode * p_s_inode);
1718void reiserfs_do_truncate (struct reiserfs_transaction_handle *th,
1719			   struct  inode * p_s_inode, struct page *,
1720			   int update_timestamps);
1721
1722#define block_size(inode) ((inode)->i_sb->s_blocksize)
1723#define file_size(inode) ((inode)->i_size)
1724#define tail_size(inode) (file_size (inode) & (block_size (inode) - 1))
1725
1726#define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
1727!STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), block_size (inode)):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), block_size (inode)):0 )
1728
1729void padd_item (char * item, int total_length, int length);
1730
1731/* inode.c */
1732
1733void reiserfs_read_inode (struct inode * inode) ;
1734void reiserfs_read_inode2(struct inode * inode, void *p) ;
1735void reiserfs_delete_inode (struct inode * inode);
1736void reiserfs_write_inode (struct inode * inode, int) ;
1737struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, __u32 *data,
1738									 int len, int fhtype, int parent);
1739int reiserfs_dentry_to_fh(struct dentry *dentry, __u32 *data, int *lenp, int need_parent);
1740
1741int reiserfs_prepare_write(struct file *, struct page *, unsigned, unsigned) ;
1742void reiserfs_truncate_file(struct inode *, int update_timestamps) ;
1743void make_cpu_key (struct cpu_key * cpu_key, const struct inode * inode, loff_t offset,
1744		   int type, int key_length);
1745void make_le_item_head (struct item_head * ih, const struct cpu_key * key,
1746			int version,
1747			loff_t offset, int type, int length, int entry_count);
1748struct inode * reiserfs_iget (struct super_block * s,
1749			      const struct cpu_key * key);
1750
1751
1752struct inode * reiserfs_new_inode (struct reiserfs_transaction_handle *th,
1753				   struct inode * dir, int mode,
1754				   const char * symname, int item_len,
1755				   struct dentry *dentry, struct inode *inode, int * err);
1756int reiserfs_sync_inode (struct reiserfs_transaction_handle *th, struct inode * inode);
1757void reiserfs_update_sd (struct reiserfs_transaction_handle *th, struct inode * inode);
1758
1759void sd_attrs_to_i_attrs( __u16 sd_attrs, struct inode *inode );
1760void i_attrs_to_sd_attrs( struct inode *inode, __u16 *sd_attrs );
1761
1762/* namei.c */
1763inline void set_de_name_and_namelen (struct reiserfs_dir_entry * de);
1764int search_by_entry_key (struct super_block * sb, const struct cpu_key * key,
1765			 struct path * path,
1766			 struct reiserfs_dir_entry * de);
1767/* procfs.c */
1768
1769#if defined(CONFIG_PROC_FS) && defined(CONFIG_REISERFS_PROC_INFO)
1770#define REISERFS_PROC_INFO
1771#else
1772#undef REISERFS_PROC_INFO
1773#endif
1774
1775int reiserfs_proc_info_init( struct super_block *sb );
1776int reiserfs_proc_info_done( struct super_block *sb );
1777struct proc_dir_entry *reiserfs_proc_register( struct super_block *sb,
1778											   char *name, read_proc_t *func );
1779void reiserfs_proc_unregister( struct super_block *sb, const char *name );
1780struct proc_dir_entry *reiserfs_proc_register_global( char *name,
1781													  read_proc_t *func );
1782void reiserfs_proc_unregister_global( const char *name );
1783int reiserfs_proc_info_global_init( void );
1784int reiserfs_proc_info_global_done( void );
1785int reiserfs_proc_tail( int len, char *buffer, char **start,
1786						off_t offset, int count, int *eof );
1787int reiserfs_global_version_in_proc( char *buffer, char **start, off_t offset,
1788									 int count, int *eof, void *data );
1789int reiserfs_version_in_proc( char *buffer, char **start, off_t offset,
1790							  int count, int *eof, void *data );
1791int reiserfs_super_in_proc( char *buffer, char **start, off_t offset,
1792							int count, int *eof, void *data );
1793int reiserfs_per_level_in_proc( char *buffer, char **start, off_t offset,
1794								int count, int *eof, void *data );
1795int reiserfs_bitmap_in_proc( char *buffer, char **start, off_t offset,
1796								int count, int *eof, void *data );
1797int reiserfs_on_disk_super_in_proc( char *buffer, char **start, off_t offset,
1798									int count, int *eof, void *data );
1799int reiserfs_oidmap_in_proc( char *buffer, char **start, off_t offset,
1800							 int count, int *eof, void *data );
1801int reiserfs_journal_in_proc( char *buffer, char **start, off_t offset,
1802							  int count, int *eof, void *data );
1803
1804#if defined(REISERFS_PROC_INFO)
1805
1806#define PROC_EXP( e )   e
1807
1808#define MAX( a, b ) ( ( ( a ) > ( b ) ) ? ( a ) : ( b ) )
1809#define __PINFO( sb ) ( sb ) -> u.reiserfs_sb.s_proc_info_data
1810#define PROC_INFO_MAX( sb, field, value )								\
1811    __PINFO( sb ).field =												\
1812        MAX( ( sb ) -> u.reiserfs_sb.s_proc_info_data.field, value )
1813#define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
1814#define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
1815#define PROC_INFO_BH_STAT( sb, bh, level )							\
1816    PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] );						\
1817    PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) );	\
1818    PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
1819#else
1820#define PROC_EXP( e )
1821#define VOID_V ( ( void ) 0 )
1822#define PROC_INFO_MAX( sb, field, value ) VOID_V
1823#define PROC_INFO_INC( sb, field ) VOID_V
1824#define PROC_INFO_ADD( sb, field, val ) VOID_V
1825#define PROC_INFO_BH_STAT( p_s_sb, p_s_bh, n_node_level ) VOID_V
1826#endif
1827
1828/* dir.c */
1829extern struct inode_operations reiserfs_dir_inode_operations;
1830extern struct file_operations reiserfs_dir_operations;
1831
1832/* tail_conversion.c */
1833int direct2indirect (struct reiserfs_transaction_handle *, struct inode *, struct path *, struct buffer_head *, loff_t);
1834int indirect2direct (struct reiserfs_transaction_handle *, struct inode *, struct page *, struct path *, const struct cpu_key *, loff_t, char *);
1835void reiserfs_unmap_buffer(struct buffer_head *) ;
1836
1837
1838/* file.c */
1839extern struct inode_operations reiserfs_file_inode_operations;
1840extern struct file_operations reiserfs_file_operations;
1841extern struct address_space_operations reiserfs_address_space_operations ;
1842int get_new_buffer (struct reiserfs_transaction_handle *th, struct buffer_head *,
1843		    struct buffer_head **, struct path *);
1844
1845
1846/* buffer2.c */
1847struct buffer_head * reiserfs_getblk (kdev_t n_dev, int n_block, int n_size);
1848void wait_buffer_until_released (const struct buffer_head * bh);
1849struct buffer_head * reiserfs_bread (struct super_block *super, int n_block,
1850				     int n_size);
1851
1852/* fix_nodes.c */
1853#ifdef CONFIG_REISERFS_CHECK
1854void * reiserfs_kmalloc (size_t size, int flags, struct super_block * s);
1855void reiserfs_kfree (const void * vp, size_t size, struct super_block * s);
1856#else
1857#define reiserfs_kmalloc(x, y, z) kmalloc(x, y)
1858#define reiserfs_kfree(x, y, z) kfree(x)
1859#endif
1860
1861int fix_nodes (int n_op_mode, struct tree_balance * p_s_tb,
1862	       struct item_head * p_s_ins_ih, const void *);
1863void unfix_nodes (struct tree_balance *);
1864void free_buffers_in_tb (struct tree_balance * p_s_tb);
1865
1866
1867/* prints.c */
1868void reiserfs_panic (struct super_block * s, const char * fmt, ...)
1869__attribute__ ( ( noreturn ) );/* __attribute__( ( format ( printf, 2, 3 ) ) ) */
1870void reiserfs_debug (struct super_block *s, int level, const char * fmt, ...);
1871/* __attribute__( ( format ( printf, 3, 4 ) ) ); */
1872void print_virtual_node (struct virtual_node * vn);
1873void print_indirect_item (struct buffer_head * bh, int item_num);
1874void store_print_tb (struct tree_balance * tb);
1875void print_cur_tb (char * mes);
1876void print_de (struct reiserfs_dir_entry * de);
1877void print_bi (struct buffer_info * bi, char * mes);
1878#define PRINT_LEAF_ITEMS 1   /* print all items */
1879#define PRINT_DIRECTORY_ITEMS 2 /* print directory items */
1880#define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */
1881void print_block (struct buffer_head * bh, ...);
1882void print_path (struct tree_balance * tb, struct path * path);
1883void print_bmap (struct super_block * s, int silent);
1884void print_bmap_block (int i, char * data, int size, int silent);
1885/*void print_super_block (struct super_block * s, char * mes);*/
1886void print_objectid_map (struct super_block * s);
1887void print_block_head (struct buffer_head * bh, char * mes);
1888void check_leaf (struct buffer_head * bh);
1889void check_internal (struct buffer_head * bh);
1890void print_statistics (struct super_block * s);
1891char * reiserfs_hashname(int code);
1892
1893/* lbalance.c */
1894int leaf_move_items (int shift_mode, struct tree_balance * tb, int mov_num, int mov_bytes, struct buffer_head * Snew);
1895int leaf_shift_left (struct tree_balance * tb, int shift_num, int shift_bytes);
1896int leaf_shift_right (struct tree_balance * tb, int shift_num, int shift_bytes);
1897void leaf_delete_items (struct buffer_info * cur_bi, int last_first, int first, int del_num, int del_bytes);
1898void leaf_insert_into_buf (struct buffer_info * bi, int before,
1899                           struct item_head * inserted_item_ih, const char * inserted_item_body, int zeros_number);
1900void leaf_paste_in_buffer (struct buffer_info * bi, int pasted_item_num,
1901                           int pos_in_item, int paste_size, const char * body, int zeros_number);
1902void leaf_cut_from_buffer (struct buffer_info * bi, int cut_item_num, int pos_in_item,
1903                           int cut_size);
1904void leaf_paste_entries (struct buffer_head * bh, int item_num, int before,
1905                         int new_entry_count, struct reiserfs_de_head * new_dehs, const char * records, int paste_size);
1906/* ibalance.c */
1907int balance_internal (struct tree_balance * , int, int, struct item_head * ,
1908                      struct buffer_head **);
1909
1910/* do_balance.c */
1911inline void do_balance_mark_leaf_dirty (struct tree_balance * tb,
1912					struct buffer_head * bh, int flag);
1913#define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
1914#define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
1915
1916void do_balance (struct tree_balance * tb, struct item_head * ih,
1917                 const char * body, int flag);
1918void reiserfs_invalidate_buffer (struct tree_balance * tb, struct buffer_head * bh);
1919
1920int get_left_neighbor_position (struct tree_balance * tb, int h);
1921int get_right_neighbor_position (struct tree_balance * tb, int h);
1922void replace_key (struct tree_balance * tb, struct buffer_head *, int, struct buffer_head *, int);
1923void replace_lkey (struct tree_balance *, int, struct item_head *);
1924void replace_rkey (struct tree_balance *, int, struct item_head *);
1925void make_empty_node (struct buffer_info *);
1926struct buffer_head * get_FEB (struct tree_balance *);
1927
1928/* bitmap.c */
1929
1930/* structure contains hints for block allocator, and it is a container for
1931 * arguments, such as node, search path, transaction_handle, etc. */
1932 struct __reiserfs_blocknr_hint {
1933     struct inode * inode;		/* inode passed to allocator, if we allocate unf. nodes */
1934     long block;			/* file offset, in blocks */
1935     struct key key;
1936     struct path * path;		/* search path, used by allocator to deternine search_start by
1937					 * various ways */
1938     struct reiserfs_transaction_handle * th; /* transaction handle is needed to log super blocks and
1939					       * bitmap blocks changes  */
1940     b_blocknr_t beg, end;
1941     b_blocknr_t search_start;		/* a field used to transfer search start value (block number)
1942					 * between different block allocator procedures
1943					 * (determine_search_start() and others) */
1944    int prealloc_size;			/* is set in determine_prealloc_size() function, used by underlayed
1945					 * function that do actual allocation */
1946
1947    int formatted_node:1;		/* the allocator uses different polices for getting disk space for
1948					 * formatted/unformatted blocks with/without preallocation */
1949    int preallocate:1;
1950};
1951
1952typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
1953
1954int reiserfs_parse_alloc_options (struct super_block *, char *);
1955int is_reusable (struct super_block * s, unsigned long block, int bit_value);
1956void reiserfs_free_block (struct reiserfs_transaction_handle *th, unsigned long);
1957int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t * , int, int);
1958extern inline int reiserfs_new_form_blocknrs (struct tree_balance * tb,
1959					      b_blocknr_t *new_blocknrs, int amount_needed)
1960{
1961    reiserfs_blocknr_hint_t hint = {
1962	th:tb->transaction_handle,
1963	path: tb->tb_path,
1964	inode: NULL,
1965	key: tb->key,
1966	block: 0,
1967	formatted_node:1
1968    };
1969    return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed, 0);
1970}
1971
1972extern inline int reiserfs_new_unf_blocknrs (struct reiserfs_transaction_handle *th,
1973					     struct inode *inode,
1974					     b_blocknr_t *new_blocknrs,
1975					     struct path * path, long block)
1976{
1977    reiserfs_blocknr_hint_t hint = {
1978	th: th,
1979	path: path,
1980	inode: inode,
1981	block: block,
1982	formatted_node: 0,
1983	preallocate: 0
1984    };
1985    return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
1986}
1987
1988#ifdef REISERFS_PREALLOCATE
1989extern inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle *th,
1990					     struct inode * inode,
1991					     b_blocknr_t *new_blocknrs,
1992					     struct path * path, long block)
1993{
1994    reiserfs_blocknr_hint_t hint = {
1995	th: th,
1996	path: path,
1997	inode: inode,
1998	block: block,
1999	formatted_node: 0,
2000	preallocate: 1
2001    };
2002    return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2003}
2004
2005void reiserfs_discard_prealloc (struct reiserfs_transaction_handle *th,
2006				struct inode * inode);
2007void reiserfs_discard_all_prealloc (struct reiserfs_transaction_handle *th);
2008#endif
2009void reiserfs_claim_blocks_to_be_allocated( struct super_block *sb, int blocks);
2010void reiserfs_release_claimed_blocks( struct super_block *sb, int blocks);
2011
2012/* hashes.c */
2013__u32 keyed_hash (const signed char *msg, int len);
2014__u32 yura_hash (const signed char *msg, int len);
2015__u32 r5_hash (const signed char *msg, int len);
2016
2017/* version.c */
2018const char *reiserfs_get_version_string(void) CONSTF;
2019
2020/* the ext2 bit routines adjust for big or little endian as
2021** appropriate for the arch, so in our laziness we use them rather
2022** than using the bit routines they call more directly.  These
2023** routines must be used when changing on disk bitmaps.  */
2024#define reiserfs_test_and_set_le_bit   ext2_set_bit
2025#define reiserfs_test_and_clear_le_bit ext2_clear_bit
2026#define reiserfs_test_le_bit           ext2_test_bit
2027#define reiserfs_find_next_zero_le_bit ext2_find_next_zero_bit
2028
2029/* sometimes reiserfs_truncate may require to allocate few new blocks
2030   to perform indirect2direct conversion. People probably used to
2031   think, that truncate should work without problems on a filesystem
2032   without free disk space. They may complain that they can not
2033   truncate due to lack of free disk space. This spare space allows us
2034   to not worry about it. 500 is probably too much, but it should be
2035   absolutely safe */
2036#define SPARE_SPACE 500
2037
2038static inline unsigned long reiserfs_get_journal_block(const struct super_block *s) {
2039    return le32_to_cpu(SB_DISK_SUPER_BLOCK(s)->s_journal_block) ;
2040}
2041static inline unsigned long reiserfs_get_journal_orig_size(const struct super_block *s) {
2042    return le32_to_cpu(SB_DISK_SUPER_BLOCK(s)->s_orig_journal_size) ;
2043}
2044
2045/* prototypes from ioctl.c */
2046int reiserfs_ioctl (struct inode * inode, struct file * filp,
2047 		    unsigned int cmd, unsigned long arg);
2048int reiserfs_unpack (struct inode * inode, struct file * filp);
2049
2050/* ioctl's command */
2051#define REISERFS_IOC_UNPACK		_IOW(0xCD,1,long)
2052/* define following flags to be the same as in ext2, so that chattr(1),
2053   lsattr(1) will work with us. */
2054#define REISERFS_IOC_GETFLAGS           EXT2_IOC_GETFLAGS
2055#define REISERFS_IOC_SETFLAGS           EXT2_IOC_SETFLAGS
2056#define REISERFS_IOC_GETVERSION 	EXT2_IOC_GETVERSION
2057#define REISERFS_IOC_SETVERSION         EXT2_IOC_SETVERSION
2058
2059#endif /* _LINUX_REISER_FS_H */
2060
2061
2062