1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
4#include <linux/sched.h>
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
9#include <linux/config.h>
10#include <linux/string.h>
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/swap.h>
14#include <linux/rbtree.h>
15
16extern unsigned long max_mapnr;
17extern unsigned long num_physpages;
18extern unsigned long num_mappedpages;
19extern void * high_memory;
20extern int page_cluster;
21/* The inactive_clean lists are per zone. */
22extern struct list_head active_list;
23extern struct list_head inactive_list;
24
25#include <asm/page.h>
26#include <asm/pgtable.h>
27#include <asm/atomic.h>
28
29/*
30 * Linux kernel virtual memory manager primitives.
31 * The idea being to have a "virtual" mm in the same way
32 * we have a virtual fs - giving a cleaner interface to the
33 * mm details, and allowing different kinds of memory mappings
34 * (from shared memory to executable loading to arbitrary
35 * mmap() functions).
36 */
37
38/*
39 * This struct defines a memory VMM memory area. There is one of these
40 * per VM-area/task.  A VM area is any part of the process virtual memory
41 * space that has a special rule for the page-fault handlers (ie a shared
42 * library, the executable area etc).
43 */
44struct vm_area_struct {
45	struct mm_struct * vm_mm;	/* The address space we belong to. */
46	unsigned long vm_start;		/* Our start address within vm_mm. */
47	unsigned long vm_end;		/* The first byte after our end address
48					   within vm_mm. */
49
50	/* linked list of VM areas per task, sorted by address */
51	struct vm_area_struct *vm_next;
52
53	pgprot_t vm_page_prot;		/* Access permissions of this VMA. */
54	unsigned long vm_flags;		/* Flags, listed below. */
55
56	rb_node_t vm_rb;
57
58	/*
59	 * For areas with an address space and backing store,
60	 * one of the address_space->i_mmap{,shared} lists,
61	 * for shm areas, the list of attaches, otherwise unused.
62	 */
63	struct vm_area_struct *vm_next_share;
64	struct vm_area_struct **vm_pprev_share;
65
66	/* Function pointers to deal with this struct. */
67	struct vm_operations_struct * vm_ops;
68
69	/* Information about our backing store: */
70	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
71					   units, *not* PAGE_CACHE_SIZE */
72	struct file * vm_file;		/* File we map to (can be NULL). */
73	unsigned long vm_raend;
74	void * vm_private_data;		/* was vm_pte (shared mem) */
75};
76
77/*
78 * vm_flags..
79 */
80#define VM_READ		0x00000001	/* currently active flags */
81#define VM_WRITE	0x00000002
82#define VM_EXEC		0x00000004
83#define VM_SHARED	0x00000008
84
85#define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
86#define VM_MAYWRITE	0x00000020
87#define VM_MAYEXEC	0x00000040
88#define VM_MAYSHARE	0x00000080
89
90#define VM_GROWSDOWN	0x00000100	/* general info on the segment */
91#define VM_GROWSUP	0x00000200
92#define VM_SHM		0x00000400	/* shared memory area, don't swap out */
93#define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
94
95#define VM_EXECUTABLE	0x00001000
96#define VM_LOCKED	0x00002000
97#define VM_IO           0x00004000	/* Memory mapped I/O or similar */
98
99					/* Used by sys_madvise() */
100#define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
101#define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
102
103#define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
104#define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
105#define VM_RESERVED	0x00080000	/* Don't unmap it from swap_out */
106
107#define VM_STACK_FLAGS	0x00000177
108
109#define VM_READHINTMASK			(VM_SEQ_READ | VM_RAND_READ)
110#define VM_ClearReadHint(v)		(v)->vm_flags &= ~VM_READHINTMASK
111#define VM_NormalReadHint(v)		(!((v)->vm_flags & VM_READHINTMASK))
112#define VM_SequentialReadHint(v)	((v)->vm_flags & VM_SEQ_READ)
113#define VM_RandomReadHint(v)		((v)->vm_flags & VM_RAND_READ)
114
115/* read ahead limits */
116extern int vm_min_readahead;
117extern int vm_max_readahead;
118
119/*
120 * mapping from the currently active vm_flags protection bits (the
121 * low four bits) to a page protection mask..
122 */
123extern pgprot_t protection_map[16];
124
125
126/*
127 * These are the virtual MM functions - opening of an area, closing and
128 * unmapping it (needed to keep files on disk up-to-date etc), pointer
129 * to the functions called when a no-page or a wp-page exception occurs.
130 */
131struct vm_operations_struct {
132	void (*open)(struct vm_area_struct * area);
133	void (*close)(struct vm_area_struct * area);
134	struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int unused);
135};
136
137/*
138 * Each physical page in the system has a struct page associated with
139 * it to keep track of whatever it is we are using the page for at the
140 * moment. Note that we have no way to track which tasks are using
141 * a page.
142 *
143 * Try to keep the most commonly accessed fields in single cache lines
144 * here (16 bytes or greater).  This ordering should be particularly
145 * beneficial on 32-bit processors.
146 *
147 * The first line is data used in page cache lookup, the second line
148 * is used for linear searches (eg. clock algorithm scans).
149 *
150 * TODO: make this structure smaller, it could be as small as 32 bytes.
151 */
152typedef struct page {
153	struct list_head list;		/* ->mapping has some page lists. */
154	struct address_space *mapping;	/* The inode (or ...) we belong to. */
155	unsigned long index;		/* Our offset within mapping. */
156	struct page *next_hash;		/* Next page sharing our hash bucket in
157					   the pagecache hash table. */
158	atomic_t count;			/* Usage count, see below. */
159	unsigned long flags;		/* atomic flags, some possibly
160					   updated asynchronously */
161	struct list_head lru;		/* Pageout list, eg. active_list;
162					   protected by pagemap_lru_lock !! */
163	struct page **pprev_hash;	/* Complement to *next_hash. */
164	struct buffer_head * buffers;	/* Buffer maps us to a disk block. */
165
166	/*
167	 * On machines where all RAM is mapped into kernel address space,
168	 * we can simply calculate the virtual address. On machines with
169	 * highmem some memory is mapped into kernel virtual memory
170	 * dynamically, so we need a place to store that address.
171	 * Note that this field could be 16 bits on x86 ... ;)
172	 *
173	 * Architectures with slow multiplication can define
174	 * WANT_PAGE_VIRTUAL in asm/page.h
175	 */
176#if defined(CONFIG_HIGHMEM) || defined(WANT_PAGE_VIRTUAL)
177	void *virtual;			/* Kernel virtual address (NULL if
178					   not kmapped, ie. highmem) */
179#endif /* CONFIG_HIGMEM || WANT_PAGE_VIRTUAL */
180} mem_map_t;
181
182/*
183 * Methods to modify the page usage count.
184 *
185 * What counts for a page usage:
186 * - cache mapping   (page->mapping)
187 * - disk mapping    (page->buffers)
188 * - page mapped in a task's page tables, each mapping
189 *   is counted separately
190 *
191 * Also, many kernel routines increase the page count before a critical
192 * routine so they can be sure the page doesn't go away from under them.
193 */
194#define get_page(p)		atomic_inc(&(p)->count)
195#define put_page(p)		__free_page(p)
196#define put_page_testzero(p) 	atomic_dec_and_test(&(p)->count)
197#define page_count(p)		atomic_read(&(p)->count)
198#define set_page_count(p,v) 	atomic_set(&(p)->count, v)
199
200/*
201 * Various page->flags bits:
202 *
203 * PG_reserved is set for special pages, which can never be swapped
204 * out. Some of them might not even exist (eg empty_bad_page)...
205 *
206 * Multiple processes may "see" the same page. E.g. for untouched
207 * mappings of /dev/null, all processes see the same page full of
208 * zeroes, and text pages of executables and shared libraries have
209 * only one copy in memory, at most, normally.
210 *
211 * For the non-reserved pages, page->count denotes a reference count.
212 *   page->count == 0 means the page is free.
213 *   page->count == 1 means the page is used for exactly one purpose
214 *   (e.g. a private data page of one process).
215 *
216 * A page may be used for kmalloc() or anyone else who does a
217 * __get_free_page(). In this case the page->count is at least 1, and
218 * all other fields are unused but should be 0 or NULL. The
219 * management of this page is the responsibility of the one who uses
220 * it.
221 *
222 * The other pages (we may call them "process pages") are completely
223 * managed by the Linux memory manager: I/O, buffers, swapping etc.
224 * The following discussion applies only to them.
225 *
226 * A page may belong to an inode's memory mapping. In this case,
227 * page->mapping is the pointer to the inode, and page->index is the
228 * file offset of the page, in units of PAGE_CACHE_SIZE.
229 *
230 * A page may have buffers allocated to it. In this case,
231 * page->buffers is a circular list of these buffer heads. Else,
232 * page->buffers == NULL.
233 *
234 * For pages belonging to inodes, the page->count is the number of
235 * attaches, plus 1 if buffers are allocated to the page, plus one
236 * for the page cache itself.
237 *
238 * All pages belonging to an inode are in these doubly linked lists:
239 * mapping->clean_pages, mapping->dirty_pages and mapping->locked_pages;
240 * using the page->list list_head. These fields are also used for
241 * freelist managemet (when page->count==0).
242 *
243 * There is also a hash table mapping (mapping,index) to the page
244 * in memory if present. The lists for this hash table use the fields
245 * page->next_hash and page->pprev_hash.
246 *
247 * All process pages can do I/O:
248 * - inode pages may need to be read from disk,
249 * - inode pages which have been modified and are MAP_SHARED may need
250 *   to be written to disk,
251 * - private pages which have been modified may need to be swapped out
252 *   to swap space and (later) to be read back into memory.
253 * During disk I/O, PG_locked is used. This bit is set before I/O
254 * and reset when I/O completes. page_waitqueue(page) is a wait queue of all
255 * tasks waiting for the I/O on this page to complete.
256 * PG_uptodate tells whether the page's contents is valid.
257 * When a read completes, the page becomes uptodate, unless a disk I/O
258 * error happened.
259 *
260 * For choosing which pages to swap out, inode pages carry a
261 * PG_referenced bit, which is set any time the system accesses
262 * that page through the (mapping,index) hash table. This referenced
263 * bit, together with the referenced bit in the page tables, is used
264 * to manipulate page->age and move the page across the active,
265 * inactive_dirty and inactive_clean lists.
266 *
267 * Note that the referenced bit, the page->lru list_head and the
268 * active, inactive_dirty and inactive_clean lists are protected by
269 * the pagemap_lru_lock, and *NOT* by the usual PG_locked bit!
270 *
271 * PG_skip is used on sparc/sparc64 architectures to "skip" certain
272 * parts of the address space.
273 *
274 * PG_error is set to indicate that an I/O error occurred on this page.
275 *
276 * PG_arch_1 is an architecture specific page state bit.  The generic
277 * code guarantees that this bit is cleared for a page when it first
278 * is entered into the page cache.
279 *
280 * PG_highmem pages are not permanently mapped into the kernel virtual
281 * address space, they need to be kmapped separately for doing IO on
282 * the pages. The struct page (these bits with information) are always
283 * mapped into kernel address space...
284 */
285#define PG_locked		 0	/* Page is locked. Don't touch. */
286#define PG_error		 1
287#define PG_referenced		 2
288#define PG_uptodate		 3
289#define PG_dirty		 4
290#define PG_unused		 5
291#define PG_lru			 6
292#define PG_active		 7
293#define PG_slab			 8
294#define PG_skip			10
295#define PG_highmem		11
296#define PG_checked		12	/* kill me in 2.5.<early>. */
297#define PG_arch_1		13
298#define PG_reserved		14
299#define PG_launder		15	/* written out by VM pressure.. */
300
301/* Make it prettier to test the above... */
302#define UnlockPage(page)	unlock_page(page)
303#define Page_Uptodate(page)	test_bit(PG_uptodate, &(page)->flags)
304#define SetPageUptodate(page)	set_bit(PG_uptodate, &(page)->flags)
305#define ClearPageUptodate(page)	clear_bit(PG_uptodate, &(page)->flags)
306#define PageDirty(page)		test_bit(PG_dirty, &(page)->flags)
307#define SetPageDirty(page)	set_bit(PG_dirty, &(page)->flags)
308#define ClearPageDirty(page)	clear_bit(PG_dirty, &(page)->flags)
309#define PageLocked(page)	test_bit(PG_locked, &(page)->flags)
310#define LockPage(page)		set_bit(PG_locked, &(page)->flags)
311#define TryLockPage(page)	test_and_set_bit(PG_locked, &(page)->flags)
312#define PageChecked(page)	test_bit(PG_checked, &(page)->flags)
313#define SetPageChecked(page)	set_bit(PG_checked, &(page)->flags)
314#define PageLaunder(page)	test_bit(PG_launder, &(page)->flags)
315#define SetPageLaunder(page)	set_bit(PG_launder, &(page)->flags)
316#define ClearPageLaunder(page)	clear_bit(PG_launder, &(page)->flags)
317
318/*
319 * The zone field is never updated after free_area_init_core()
320 * sets it, so none of the operations on it need to be atomic.
321 */
322#define NODE_SHIFT 4
323#define ZONE_SHIFT (BITS_PER_LONG - 8)
324
325struct zone_struct;
326extern struct zone_struct *zone_table[];
327
328static inline zone_t *page_zone(struct page *page)
329{
330	return zone_table[page->flags >> ZONE_SHIFT];
331}
332
333static inline void set_page_zone(struct page *page, unsigned long zone_num)
334{
335	page->flags &= ~(~0UL << ZONE_SHIFT);
336	page->flags |= zone_num << ZONE_SHIFT;
337}
338
339/*
340 * In order to avoid #ifdefs within C code itself, we define
341 * set_page_address to a noop for non-highmem machines, where
342 * the field isn't useful.
343 * The same is true for page_address() in arch-dependent code.
344 */
345#if defined(CONFIG_HIGHMEM) || defined(WANT_PAGE_VIRTUAL)
346
347#define set_page_address(page, address)			\
348	do {						\
349		(page)->virtual = (address);		\
350	} while(0)
351
352#else /* CONFIG_HIGHMEM || WANT_PAGE_VIRTUAL */
353#define set_page_address(page, address)  do { } while(0)
354#endif /* CONFIG_HIGHMEM || WANT_PAGE_VIRTUAL */
355
356/*
357 * Permanent address of a page. Obviously must never be
358 * called on a highmem page.
359 */
360#if defined(CONFIG_HIGHMEM) || defined(WANT_PAGE_VIRTUAL)
361
362#define page_address(page) ((page)->virtual)
363
364#else /* CONFIG_HIGHMEM || WANT_PAGE_VIRTUAL */
365
366#define page_address(page)						\
367	__va( (((page) - page_zone(page)->zone_mem_map) << PAGE_SHIFT)	\
368			+ page_zone(page)->zone_start_paddr)
369
370#endif /* CONFIG_HIGHMEM || WANT_PAGE_VIRTUAL */
371
372extern void FASTCALL(set_page_dirty(struct page *));
373
374/*
375 * The first mb is necessary to safely close the critical section opened by the
376 * TryLockPage(), the second mb is necessary to enforce ordering between
377 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
378 * parallel wait_on_page).
379 */
380#define PageError(page)		test_bit(PG_error, &(page)->flags)
381#define SetPageError(page)	set_bit(PG_error, &(page)->flags)
382#define ClearPageError(page)	clear_bit(PG_error, &(page)->flags)
383#define PageReferenced(page)	test_bit(PG_referenced, &(page)->flags)
384#define SetPageReferenced(page)	set_bit(PG_referenced, &(page)->flags)
385#define ClearPageReferenced(page)	clear_bit(PG_referenced, &(page)->flags)
386#define PageTestandClearReferenced(page)	test_and_clear_bit(PG_referenced, &(page)->flags)
387#define PageSlab(page)		test_bit(PG_slab, &(page)->flags)
388#define PageSetSlab(page)	set_bit(PG_slab, &(page)->flags)
389#define PageClearSlab(page)	clear_bit(PG_slab, &(page)->flags)
390#define PageReserved(page)	test_bit(PG_reserved, &(page)->flags)
391
392#define PageActive(page)	test_bit(PG_active, &(page)->flags)
393#define SetPageActive(page)	set_bit(PG_active, &(page)->flags)
394#define ClearPageActive(page)	clear_bit(PG_active, &(page)->flags)
395
396#define PageLRU(page)		test_bit(PG_lru, &(page)->flags)
397#define TestSetPageLRU(page)	test_and_set_bit(PG_lru, &(page)->flags)
398#define TestClearPageLRU(page)	test_and_clear_bit(PG_lru, &(page)->flags)
399
400#ifdef CONFIG_HIGHMEM
401#define PageHighMem(page)		test_bit(PG_highmem, &(page)->flags)
402#else
403#define PageHighMem(page)		0 /* needed to optimize away at compile time */
404#endif
405
406#define SetPageReserved(page)		set_bit(PG_reserved, &(page)->flags)
407#define ClearPageReserved(page)		clear_bit(PG_reserved, &(page)->flags)
408
409/*
410 * Error return values for the *_nopage functions
411 */
412#define NOPAGE_SIGBUS	(NULL)
413#define NOPAGE_OOM	((struct page *) (-1))
414
415/* The array of struct pages */
416extern mem_map_t * mem_map;
417
418/*
419 * There is only one page-allocator function, and two main namespaces to
420 * it. The alloc_page*() variants return 'struct page *' and as such
421 * can allocate highmem pages, the *get*page*() variants return
422 * virtual kernel addresses to the allocated page(s).
423 */
424extern struct page * FASTCALL(_alloc_pages(unsigned int gfp_mask, unsigned int order));
425extern struct page * FASTCALL(__alloc_pages(unsigned int gfp_mask, unsigned int order, zonelist_t *zonelist));
426extern struct page * alloc_pages_node(int nid, unsigned int gfp_mask, unsigned int order);
427
428static inline struct page * alloc_pages(unsigned int gfp_mask, unsigned int order)
429{
430	/*
431	 * Gets optimized away by the compiler.
432	 */
433	if (order >= MAX_ORDER)
434		return NULL;
435	return _alloc_pages(gfp_mask, order);
436}
437
438#define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0)
439
440extern unsigned long FASTCALL(__get_free_pages(unsigned int gfp_mask, unsigned int order));
441extern unsigned long FASTCALL(get_zeroed_page(unsigned int gfp_mask));
442
443#define __get_free_page(gfp_mask) \
444		__get_free_pages((gfp_mask),0)
445
446#define __get_dma_pages(gfp_mask, order) \
447		__get_free_pages((gfp_mask) | GFP_DMA,(order))
448
449/*
450 * The old interface name will be removed in 2.5:
451 */
452#define get_free_page get_zeroed_page
453
454/*
455 * There is only one 'core' page-freeing function.
456 */
457extern void FASTCALL(__free_pages(struct page *page, unsigned int order));
458extern void FASTCALL(free_pages(unsigned long addr, unsigned int order));
459
460#define __free_page(page) __free_pages((page), 0)
461#define free_page(addr) free_pages((addr),0)
462
463extern void show_free_areas(void);
464extern void show_free_areas_node(pg_data_t *pgdat);
465
466extern void clear_page_tables(struct mm_struct *, unsigned long, int);
467
468extern int fail_writepage(struct page *);
469struct page * shmem_nopage(struct vm_area_struct * vma, unsigned long address, int unused);
470struct file *shmem_file_setup(char * name, loff_t size);
471extern void shmem_lock(struct file * file, int lock);
472extern int shmem_zero_setup(struct vm_area_struct *);
473
474extern void zap_page_range(struct mm_struct *mm, unsigned long address, unsigned long size);
475extern int copy_page_range(struct mm_struct *dst, struct mm_struct *src, struct vm_area_struct *vma);
476extern int remap_page_range(unsigned long from, unsigned long to, unsigned long size, pgprot_t prot);
477extern int zeromap_page_range(unsigned long from, unsigned long size, pgprot_t prot);
478
479extern int vmtruncate(struct inode * inode, loff_t offset);
480extern pmd_t *FASTCALL(__pmd_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address));
481extern pte_t *FASTCALL(pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address));
482extern int handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma, unsigned long address, int write_access);
483extern int make_pages_present(unsigned long addr, unsigned long end);
484extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
485extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char *dst, int len);
486extern int ptrace_writedata(struct task_struct *tsk, char * src, unsigned long dst, int len);
487extern int ptrace_attach(struct task_struct *tsk);
488extern int ptrace_detach(struct task_struct *, unsigned int);
489extern void ptrace_disable(struct task_struct *);
490extern int ptrace_check_attach(struct task_struct *task, int kill);
491
492int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
493		int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
494
495/*
496 * On a two-level page table, this ends up being trivial. Thus the
497 * inlining and the symmetry break with pte_alloc() that does all
498 * of this out-of-line.
499 */
500static inline pmd_t *pmd_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
501{
502	if (pgd_none(*pgd))
503		return __pmd_alloc(mm, pgd, address);
504	return pmd_offset(pgd, address);
505}
506
507extern int pgt_cache_water[2];
508extern int check_pgt_cache(void);
509
510extern void free_area_init(unsigned long * zones_size);
511extern void free_area_init_node(int nid, pg_data_t *pgdat, struct page *pmap,
512	unsigned long * zones_size, unsigned long zone_start_paddr,
513	unsigned long *zholes_size);
514extern void mem_init(void);
515extern void show_mem(void);
516extern void si_meminfo(struct sysinfo * val);
517extern void swapin_readahead(swp_entry_t);
518
519extern struct address_space swapper_space;
520#define PageSwapCache(page) ((page)->mapping == &swapper_space)
521
522static inline int is_page_cache_freeable(struct page * page)
523{
524	return page_count(page) - !!page->buffers == 1;
525}
526
527extern int can_share_swap_page(struct page *);
528extern int remove_exclusive_swap_page(struct page *);
529
530extern void __free_pte(pte_t);
531
532/* mmap.c */
533extern void lock_vma_mappings(struct vm_area_struct *);
534extern void unlock_vma_mappings(struct vm_area_struct *);
535extern void insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
536extern void __insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
537extern void build_mmap_rb(struct mm_struct *);
538extern void exit_mmap(struct mm_struct *);
539
540extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
541
542extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
543	unsigned long len, unsigned long prot,
544	unsigned long flag, unsigned long pgoff);
545
546static inline unsigned long do_mmap(struct file *file, unsigned long addr,
547	unsigned long len, unsigned long prot,
548	unsigned long flag, unsigned long offset)
549{
550	unsigned long ret = -EINVAL;
551	if ((offset + PAGE_ALIGN(len)) < offset)
552		goto out;
553	if (!(offset & ~PAGE_MASK))
554		ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
555out:
556	return ret;
557}
558
559extern int do_munmap(struct mm_struct *, unsigned long, size_t);
560
561extern unsigned long do_brk(unsigned long, unsigned long);
562
563static inline void __vma_unlink(struct mm_struct * mm, struct vm_area_struct * vma, struct vm_area_struct * prev)
564{
565	prev->vm_next = vma->vm_next;
566	rb_erase(&vma->vm_rb, &mm->mm_rb);
567	if (mm->mmap_cache == vma)
568		mm->mmap_cache = prev;
569}
570
571static inline int can_vma_merge(struct vm_area_struct * vma, unsigned long vm_flags)
572{
573	if (!vma->vm_file && vma->vm_flags == vm_flags)
574		return 1;
575	else
576		return 0;
577}
578
579struct zone_t;
580/* filemap.c */
581extern void remove_inode_page(struct page *);
582extern unsigned long page_unuse(struct page *);
583extern void truncate_inode_pages(struct address_space *, loff_t);
584
585/* generic vm_area_ops exported for stackable file systems */
586extern int filemap_sync(struct vm_area_struct *, unsigned long,	size_t, unsigned int);
587extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int);
588
589/*
590 * GFP bitmasks..
591 */
592/* Zone modifiers in GFP_ZONEMASK (see linux/mmzone.h - low four bits) */
593#define __GFP_DMA	0x01
594#define __GFP_HIGHMEM	0x02
595
596/* Action modifiers - doesn't change the zoning */
597#define __GFP_WAIT	0x10	/* Can wait and reschedule? */
598#define __GFP_HIGH	0x20	/* Should access emergency pools? */
599#define __GFP_IO	0x40	/* Can start low memory physical IO? */
600#define __GFP_HIGHIO	0x80	/* Can start high mem physical IO? */
601#define __GFP_FS	0x100	/* Can call down to low-level FS? */
602
603#define GFP_NOHIGHIO	(__GFP_HIGH | __GFP_WAIT | __GFP_IO)
604#define GFP_NOIO	(__GFP_HIGH | __GFP_WAIT)
605#define GFP_NOFS	(__GFP_HIGH | __GFP_WAIT | __GFP_IO | __GFP_HIGHIO)
606#define GFP_ATOMIC	(__GFP_HIGH)
607#define GFP_USER	(             __GFP_WAIT | __GFP_IO | __GFP_HIGHIO | __GFP_FS)
608#define GFP_HIGHUSER	(             __GFP_WAIT | __GFP_IO | __GFP_HIGHIO | __GFP_FS | __GFP_HIGHMEM)
609#define GFP_KERNEL	(__GFP_HIGH | __GFP_WAIT | __GFP_IO | __GFP_HIGHIO | __GFP_FS)
610#define GFP_NFS		(__GFP_HIGH | __GFP_WAIT | __GFP_IO | __GFP_HIGHIO | __GFP_FS)
611#define GFP_KSWAPD	(             __GFP_WAIT | __GFP_IO | __GFP_HIGHIO | __GFP_FS)
612
613/* Flag - indicates that the buffer will be suitable for DMA.  Ignored on some
614   platforms, used as appropriate on others */
615
616#define GFP_DMA		__GFP_DMA
617
618static inline unsigned int pf_gfp_mask(unsigned int gfp_mask)
619{
620	/* avoid all memory balancing I/O methods if this task cannot block on I/O */
621	if (current->flags & PF_NOIO)
622		gfp_mask &= ~(__GFP_IO | __GFP_HIGHIO | __GFP_FS);
623
624	return gfp_mask;
625}
626
627/* vma is the first one with  address < vma->vm_end,
628 * and even  address < vma->vm_start. Have to extend vma. */
629static inline int expand_stack(struct vm_area_struct * vma, unsigned long address)
630{
631	unsigned long grow;
632
633	/*
634	 * vma->vm_start/vm_end cannot change under us because the caller is required
635	 * to hold the mmap_sem in write mode. We need to get the spinlock only
636	 * before relocating the vma range ourself.
637	 */
638	address &= PAGE_MASK;
639 	spin_lock(&vma->vm_mm->page_table_lock);
640	grow = (vma->vm_start - address) >> PAGE_SHIFT;
641	if (vma->vm_end - address > current->rlim[RLIMIT_STACK].rlim_cur ||
642	    ((vma->vm_mm->total_vm + grow) << PAGE_SHIFT) > current->rlim[RLIMIT_AS].rlim_cur) {
643		spin_unlock(&vma->vm_mm->page_table_lock);
644		return -ENOMEM;
645	}
646	vma->vm_start = address;
647	vma->vm_pgoff -= grow;
648	vma->vm_mm->total_vm += grow;
649	if (vma->vm_flags & VM_LOCKED)
650		vma->vm_mm->locked_vm += grow;
651	spin_unlock(&vma->vm_mm->page_table_lock);
652	return 0;
653}
654
655/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
656extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
657extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
658					     struct vm_area_struct **pprev);
659
660/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
661   NULL if none.  Assume start_addr < end_addr. */
662static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
663{
664	struct vm_area_struct * vma = find_vma(mm,start_addr);
665
666	if (vma && end_addr <= vma->vm_start)
667		vma = NULL;
668	return vma;
669}
670
671extern struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr);
672
673extern struct page * vmalloc_to_page(void *addr);
674
675#endif /* __KERNEL__ */
676
677#endif
678