1/*
2 * linux/include/asm/dma.h: Defines for using and allocating dma channels.
3 * Written by Hennus Bergman, 1992.
4 * High DMA channel support & info by Hannu Savolainen
5 * and John Boyd, Nov. 1992.
6 *
7 * NOTE: all this is true *only* for ISA/EISA expansions on Mips boards
8 * and can only be used for expansion cards. Onboard DMA controllers, such
9 * as the R4030 on Jazz boards behave totally different!
10 */
11
12#ifndef _ASM_DMA_H
13#define _ASM_DMA_H
14
15#include <linux/config.h>
16#include <asm/io.h>			/* need byte IO */
17#include <linux/spinlock.h>		/* And spinlocks */
18#include <linux/delay.h>
19#include <asm/system.h>
20
21
22#ifdef HAVE_REALLY_SLOW_DMA_CONTROLLER
23#define dma_outb	outb_p
24#else
25#define dma_outb	outb
26#endif
27
28#define dma_inb		inb
29
30/*
31 * NOTES about DMA transfers:
32 *
33 *  controller 1: channels 0-3, byte operations, ports 00-1F
34 *  controller 2: channels 4-7, word operations, ports C0-DF
35 *
36 *  - ALL registers are 8 bits only, regardless of transfer size
37 *  - channel 4 is not used - cascades 1 into 2.
38 *  - channels 0-3 are byte - addresses/counts are for physical bytes
39 *  - channels 5-7 are word - addresses/counts are for physical words
40 *  - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
41 *  - transfer count loaded to registers is 1 less than actual count
42 *  - controller 2 offsets are all even (2x offsets for controller 1)
43 *  - page registers for 5-7 don't use data bit 0, represent 128K pages
44 *  - page registers for 0-3 use bit 0, represent 64K pages
45 *
46 * DMA transfers are limited to the lower 16MB of _physical_ memory.
47 * Note that addresses loaded into registers must be _physical_ addresses,
48 * not logical addresses (which may differ if paging is active).
49 *
50 *  Address mapping for channels 0-3:
51 *
52 *   A23 ... A16 A15 ... A8  A7 ... A0    (Physical addresses)
53 *    |  ...  |   |  ... |   |  ... |
54 *    |  ...  |   |  ... |   |  ... |
55 *    |  ...  |   |  ... |   |  ... |
56 *   P7  ...  P0  A7 ... A0  A7 ... A0
57 * |    Page    | Addr MSB | Addr LSB |   (DMA registers)
58 *
59 *  Address mapping for channels 5-7:
60 *
61 *   A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0    (Physical addresses)
62 *    |  ...  |   \   \   ... \  \  \  ... \  \
63 *    |  ...  |    \   \   ... \  \  \  ... \  (not used)
64 *    |  ...  |     \   \   ... \  \  \  ... \
65 *   P7  ...  P1 (0) A7 A6  ... A0 A7 A6 ... A0
66 * |      Page      |  Addr MSB   |  Addr LSB  |   (DMA registers)
67 *
68 * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
69 * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
70 * the hardware level, so odd-byte transfers aren't possible).
71 *
72 * Transfer count (_not # bytes_) is limited to 64K, represented as actual
73 * count - 1 : 64K => 0xFFFF, 1 => 0x0000.  Thus, count is always 1 or more,
74 * and up to 128K bytes may be transferred on channels 5-7 in one operation.
75 *
76 */
77
78#define MAX_DMA_CHANNELS	8
79
80/*
81 * The maximum address in KSEG0 that we can perform a DMA transfer to on this
82 * platform.  This describes only the PC style part of the DMA logic like on
83 * Deskstations or Acer PICA but not the much more versatile DMA logic used
84 * for the local devices on Acer PICA or Magnums.
85 */
86#ifdef CONFIG_SGI_IP22
87/* Horrible hack to have a correct DMA window on IP22 */
88#include <asm/sgi/sgimc.h>
89#define MAX_DMA_ADDRESS		(PAGE_OFFSET + SGIMC_SEG0_BADDR + 0x01000000)
90#else
91#define MAX_DMA_ADDRESS		(PAGE_OFFSET + 0x01000000)
92#endif
93
94/* 8237 DMA controllers */
95#define IO_DMA1_BASE	0x00	/* 8 bit slave DMA, channels 0..3 */
96#define IO_DMA2_BASE	0xC0	/* 16 bit master DMA, ch 4(=slave input)..7 */
97
98/* DMA controller registers */
99#define DMA1_CMD_REG		0x08	/* command register (w) */
100#define DMA1_STAT_REG		0x08	/* status register (r) */
101#define DMA1_REQ_REG            0x09    /* request register (w) */
102#define DMA1_MASK_REG		0x0A	/* single-channel mask (w) */
103#define DMA1_MODE_REG		0x0B	/* mode register (w) */
104#define DMA1_CLEAR_FF_REG	0x0C	/* clear pointer flip-flop (w) */
105#define DMA1_TEMP_REG           0x0D    /* Temporary Register (r) */
106#define DMA1_RESET_REG		0x0D	/* Master Clear (w) */
107#define DMA1_CLR_MASK_REG       0x0E    /* Clear Mask */
108#define DMA1_MASK_ALL_REG       0x0F    /* all-channels mask (w) */
109
110#define DMA2_CMD_REG		0xD0	/* command register (w) */
111#define DMA2_STAT_REG		0xD0	/* status register (r) */
112#define DMA2_REQ_REG            0xD2    /* request register (w) */
113#define DMA2_MASK_REG		0xD4	/* single-channel mask (w) */
114#define DMA2_MODE_REG		0xD6	/* mode register (w) */
115#define DMA2_CLEAR_FF_REG	0xD8	/* clear pointer flip-flop (w) */
116#define DMA2_TEMP_REG           0xDA    /* Temporary Register (r) */
117#define DMA2_RESET_REG		0xDA	/* Master Clear (w) */
118#define DMA2_CLR_MASK_REG       0xDC    /* Clear Mask */
119#define DMA2_MASK_ALL_REG       0xDE    /* all-channels mask (w) */
120
121#define DMA_ADDR_0              0x00    /* DMA address registers */
122#define DMA_ADDR_1              0x02
123#define DMA_ADDR_2              0x04
124#define DMA_ADDR_3              0x06
125#define DMA_ADDR_4              0xC0
126#define DMA_ADDR_5              0xC4
127#define DMA_ADDR_6              0xC8
128#define DMA_ADDR_7              0xCC
129
130#define DMA_CNT_0               0x01    /* DMA count registers */
131#define DMA_CNT_1               0x03
132#define DMA_CNT_2               0x05
133#define DMA_CNT_3               0x07
134#define DMA_CNT_4               0xC2
135#define DMA_CNT_5               0xC6
136#define DMA_CNT_6               0xCA
137#define DMA_CNT_7               0xCE
138
139#define DMA_PAGE_0              0x87    /* DMA page registers */
140#define DMA_PAGE_1              0x83
141#define DMA_PAGE_2              0x81
142#define DMA_PAGE_3              0x82
143#define DMA_PAGE_5              0x8B
144#define DMA_PAGE_6              0x89
145#define DMA_PAGE_7              0x8A
146
147#define DMA_MODE_READ	0x44	/* I/O to memory, no autoinit, increment, single mode */
148#define DMA_MODE_WRITE	0x48	/* memory to I/O, no autoinit, increment, single mode */
149#define DMA_MODE_CASCADE 0xC0   /* pass thru DREQ->HRQ, DACK<-HLDA only */
150
151#define DMA_AUTOINIT	0x10
152
153extern spinlock_t  dma_spin_lock;
154
155static __inline__ unsigned long claim_dma_lock(void)
156{
157	unsigned long flags;
158	spin_lock_irqsave(&dma_spin_lock, flags);
159	return flags;
160}
161
162static __inline__ void release_dma_lock(unsigned long flags)
163{
164	spin_unlock_irqrestore(&dma_spin_lock, flags);
165}
166
167/* enable/disable a specific DMA channel */
168static __inline__ void enable_dma(unsigned int dmanr)
169{
170	if (dmanr<=3)
171		dma_outb(dmanr,  DMA1_MASK_REG);
172	else
173		dma_outb(dmanr & 3,  DMA2_MASK_REG);
174}
175
176static __inline__ void disable_dma(unsigned int dmanr)
177{
178	if (dmanr<=3)
179		dma_outb(dmanr | 4,  DMA1_MASK_REG);
180	else
181		dma_outb((dmanr & 3) | 4,  DMA2_MASK_REG);
182}
183
184/* Clear the 'DMA Pointer Flip Flop'.
185 * Write 0 for LSB/MSB, 1 for MSB/LSB access.
186 * Use this once to initialize the FF to a known state.
187 * After that, keep track of it. :-)
188 * --- In order to do that, the DMA routines below should ---
189 * --- only be used while holding the DMA lock ! ---
190 */
191static __inline__ void clear_dma_ff(unsigned int dmanr)
192{
193	if (dmanr<=3)
194		dma_outb(0,  DMA1_CLEAR_FF_REG);
195	else
196		dma_outb(0,  DMA2_CLEAR_FF_REG);
197}
198
199/* set mode (above) for a specific DMA channel */
200static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
201{
202	if (dmanr<=3)
203		dma_outb(mode | dmanr,  DMA1_MODE_REG);
204	else
205		dma_outb(mode | (dmanr&3),  DMA2_MODE_REG);
206}
207
208/* Set only the page register bits of the transfer address.
209 * This is used for successive transfers when we know the contents of
210 * the lower 16 bits of the DMA current address register, but a 64k boundary
211 * may have been crossed.
212 */
213static __inline__ void set_dma_page(unsigned int dmanr, char pagenr)
214{
215	switch(dmanr) {
216		case 0:
217			dma_outb(pagenr, DMA_PAGE_0);
218			break;
219		case 1:
220			dma_outb(pagenr, DMA_PAGE_1);
221			break;
222		case 2:
223			dma_outb(pagenr, DMA_PAGE_2);
224			break;
225		case 3:
226			dma_outb(pagenr, DMA_PAGE_3);
227			break;
228		case 5:
229			dma_outb(pagenr & 0xfe, DMA_PAGE_5);
230			break;
231		case 6:
232			dma_outb(pagenr & 0xfe, DMA_PAGE_6);
233			break;
234		case 7:
235			dma_outb(pagenr & 0xfe, DMA_PAGE_7);
236			break;
237	}
238}
239
240
241/* Set transfer address & page bits for specific DMA channel.
242 * Assumes dma flipflop is clear.
243 */
244static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
245{
246	set_dma_page(dmanr, a>>16);
247	if (dmanr <= 3)  {
248	    dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
249            dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
250	}  else  {
251	    dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
252	    dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
253	}
254}
255
256
257/* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for
258 * a specific DMA channel.
259 * You must ensure the parameters are valid.
260 * NOTE: from a manual: "the number of transfers is one more
261 * than the initial word count"! This is taken into account.
262 * Assumes dma flip-flop is clear.
263 * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
264 */
265static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
266{
267        count--;
268	if (dmanr <= 3)  {
269	    dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
270	    dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
271        } else {
272	    dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
273	    dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
274        }
275}
276
277
278/* Get DMA residue count. After a DMA transfer, this
279 * should return zero. Reading this while a DMA transfer is
280 * still in progress will return unpredictable results.
281 * If called before the channel has been used, it may return 1.
282 * Otherwise, it returns the number of _bytes_ left to transfer.
283 *
284 * Assumes DMA flip-flop is clear.
285 */
286static __inline__ int get_dma_residue(unsigned int dmanr)
287{
288	unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE
289					 : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE;
290
291	/* using short to get 16-bit wrap around */
292	unsigned short count;
293
294	count = 1 + dma_inb(io_port);
295	count += dma_inb(io_port) << 8;
296
297	return (dmanr<=3)? count : (count<<1);
298}
299
300
301/* These are in kernel/dma.c: */
302extern int request_dma(unsigned int dmanr, const char * device_id);	/* reserve a DMA channel */
303extern void free_dma(unsigned int dmanr);	/* release it again */
304
305/* From PCI */
306
307#ifdef CONFIG_PCI
308extern int isa_dma_bridge_buggy;
309#else
310#define isa_dma_bridge_buggy	(0)
311#endif
312
313#endif /* _ASM_DMA_H */
314