1/* $Id: shubio.h,v 1.1.1.1 2008/10/15 03:27:19 james26_jang Exp $
2 *
3 * This file is subject to the terms and conditions of the GNU General Public
4 * License.  See the file "COPYING" in the main directory of this archive
5 * for more details.
6 *
7 * Copyright (C) 1992 - 1997, 2000-2002 Silicon Graphics, Inc. All rights reserved.
8 */
9
10#ifndef _ASM_IA64_SN_SN2_SHUBIO_H
11#define _ASM_IA64_SN_SN2_SHUBIO_H
12
13#include <asm/sn/arch.h>
14
15#define HUB_WIDGET_ID_MAX 0xf
16#define IIO_NUM_ITTES   7
17#define HUB_NUM_BIG_WINDOW      (IIO_NUM_ITTES - 1)
18
19#define    IIO_WID                   0x00400000    /* Crosstalk Widget Identification */
20                                                   /* This register is also accessible from
21                                                    * Crosstalk at address 0x0.  */
22#define    IIO_WSTAT                 0x00400008    /* Crosstalk Widget Status */
23#define    IIO_WCR                   0x00400020    /* Crosstalk Widget Control Register */
24#define    IIO_ILAPR                 0x00400100    /* IO Local Access Protection Register */
25#define    IIO_ILAPO                 0x00400108    /* IO Local Access Protection Override */
26#define    IIO_IOWA                  0x00400110    /* IO Outbound Widget Access */
27#define    IIO_IIWA                  0x00400118    /* IO Inbound Widget Access */
28#define    IIO_IIDEM                 0x00400120    /* IO Inbound Device Error Mask */
29#define    IIO_ILCSR                 0x00400128    /* IO LLP Control and Status Register */
30#define    IIO_ILLR                  0x00400130    /* IO LLP Log Register    */
31#define    IIO_IIDSR                 0x00400138    /* IO Interrupt Destination */
32
33#define    IIO_IGFX0                 0x00400140    /* IO Graphics Node-Widget Map 0 */
34#define    IIO_IGFX1                 0x00400148    /* IO Graphics Node-Widget Map 1 */
35
36#define    IIO_ISCR0                 0x00400150    /* IO Scratch Register 0 */
37#define    IIO_ISCR1                 0x00400158    /* IO Scratch Register 1 */
38
39#define    IIO_ITTE1                 0x00400160    /* IO Translation Table Entry 1 */
40#define    IIO_ITTE2                 0x00400168    /* IO Translation Table Entry 2 */
41#define    IIO_ITTE3                 0x00400170    /* IO Translation Table Entry 3 */
42#define    IIO_ITTE4                 0x00400178    /* IO Translation Table Entry 4 */
43#define    IIO_ITTE5                 0x00400180    /* IO Translation Table Entry 5 */
44#define    IIO_ITTE6                 0x00400188    /* IO Translation Table Entry 6 */
45#define    IIO_ITTE7                 0x00400190    /* IO Translation Table Entry 7 */
46
47#define    IIO_IPRB0                 0x00400198    /* IO PRB Entry 0         */
48#define    IIO_IPRB8                 0x004001A0    /* IO PRB Entry 8         */
49#define    IIO_IPRB9                 0x004001A8    /* IO PRB Entry 9         */
50#define    IIO_IPRBA                 0x004001B0    /* IO PRB Entry A         */
51#define    IIO_IPRBB                 0x004001B8    /* IO PRB Entry B         */
52#define    IIO_IPRBC                 0x004001C0    /* IO PRB Entry C         */
53#define    IIO_IPRBD                 0x004001C8    /* IO PRB Entry D         */
54#define    IIO_IPRBE                 0x004001D0    /* IO PRB Entry E         */
55#define    IIO_IPRBF                 0x004001D8    /* IO PRB Entry F         */
56
57#define    IIO_IXCC                  0x004001E0    /* IO Crosstalk Credit Count Timeout */
58#define    IIO_IMEM                  0x004001E8    /* IO Miscellaneous Error Mask */
59#define    IIO_IXTT                  0x004001F0    /* IO Crosstalk Timeout Threshold */
60#define    IIO_IECLR                 0x004001F8    /* IO Error Clear Register */
61#define    IIO_IBCR                  0x00400200    /* IO BTE Control Register */
62
63#define    IIO_IXSM                  0x00400208    /* IO Crosstalk Spurious Message */
64#define    IIO_IXSS                  0x00400210    /* IO Crosstalk Spurious Sideband */
65
66#define    IIO_ILCT                  0x00400218    /* IO LLP Channel Test    */
67
68#define    IIO_IIEPH1                0x00400220    /* IO Incoming Error Packet Header, Part 1 */
69#define    IIO_IIEPH2                0x00400228    /* IO Incoming Error Packet Header, Part 2 */
70
71
72#define    IIO_ISLAPR                0x00400230    /* IO SXB Local Access Protection Regster */
73#define    IIO_ISLAPO                0x00400238    /* IO SXB Local Access Protection Override */
74
75#define    IIO_IWI                   0x00400240    /* IO Wrapper Interrupt Register */
76#define    IIO_IWEL                  0x00400248    /* IO Wrapper Error Log Register */
77#define    IIO_IWC                   0x00400250    /* IO Wrapper Control Register */
78#define    IIO_IWS                   0x00400258    /* IO Wrapper Status Register */
79#define    IIO_IWEIM                 0x00400260    /* IO Wrapper Error Interrupt Masking Register */
80
81#define    IIO_IPCA                  0x00400300    /* IO PRB Counter Adjust */
82
83#define    IIO_IPRTE0_A              0x00400308    /* IO PIO Read Address Table Entry 0, Part A */
84#define    IIO_IPRTE1_A              0x00400310    /* IO PIO Read Address Table Entry 1, Part A */
85#define    IIO_IPRTE2_A              0x00400318    /* IO PIO Read Address Table Entry 2, Part A */
86#define    IIO_IPRTE3_A               0x00400320    /* IO PIO Read Address Table Entry 3, Part A */
87#define    IIO_IPRTE4_A               0x00400328    /* IO PIO Read Address Table Entry 4, Part A */
88#define    IIO_IPRTE5_A               0x00400330    /* IO PIO Read Address Table Entry 5, Part A */
89#define    IIO_IPRTE6_A               0x00400338    /* IO PIO Read Address Table Entry 6, Part A */
90#define    IIO_IPRTE7_A               0x00400340    /* IO PIO Read Address Table Entry 7, Part A */
91
92#define    IIO_IPRTE0_B              0x00400348    /* IO PIO Read Address Table Entry 0, Part B */
93#define    IIO_IPRTE1_B              0x00400350    /* IO PIO Read Address Table Entry 1, Part B */
94#define    IIO_IPRTE2_B              0x00400358    /* IO PIO Read Address Table Entry 2, Part B */
95#define    IIO_IPRTE3_B               0x00400360    /* IO PIO Read Address Table Entry 3, Part B */
96#define    IIO_IPRTE4_B               0x00400368    /* IO PIO Read Address Table Entry 4, Part B */
97#define    IIO_IPRTE5_B               0x00400370    /* IO PIO Read Address Table Entry 5, Part B */
98#define    IIO_IPRTE6_B               0x00400378    /* IO PIO Read Address Table Entry 6, Part B */
99#define    IIO_IPRTE7_B               0x00400380    /* IO PIO Read Address Table Entry 7, Part B */
100
101#define    IIO_IPDR                  0x00400388    /* IO PIO Deallocation Register */
102#define    IIO_ICDR                  0x00400390    /* IO CRB Entry Deallocation Register */
103#define    IIO_IFDR                  0x00400398    /* IO IOQ FIFO Depth Register */
104#define    IIO_IIAP                  0x004003A0    /* IO IIQ Arbitration Parameters */
105#define    IIO_ICMR                  0x004003A8    /* IO CRB Management Register */
106#define    IIO_ICCR                  0x004003B0    /* IO CRB Control Register */
107#define    IIO_ICTO                  0x004003B8    /* IO CRB Timeout         */
108#define    IIO_ICTP                  0x004003C0    /* IO CRB Timeout Prescalar */
109
110#define    IIO_ICRB0_A               0x00400400    /* IO CRB Entry 0_A       */
111#define    IIO_ICRB0_B               0x00400408    /* IO CRB Entry 0_B       */
112#define    IIO_ICRB0_C               0x00400410    /* IO CRB Entry 0_C       */
113#define    IIO_ICRB0_D               0x00400418    /* IO CRB Entry 0_D       */
114#define    IIO_ICRB0_E               0x00400420    /* IO CRB Entry 0_E       */
115
116#define    IIO_ICRB1_A               0x00400430    /* IO CRB Entry 1_A       */
117#define    IIO_ICRB1_B               0x00400438    /* IO CRB Entry 1_B       */
118#define    IIO_ICRB1_C               0x00400440    /* IO CRB Entry 1_C       */
119#define    IIO_ICRB1_D               0x00400448    /* IO CRB Entry 1_D       */
120#define    IIO_ICRB1_E               0x00400450    /* IO CRB Entry 1_E       */
121
122#define    IIO_ICRB2_A               0x00400460    /* IO CRB Entry 2_A       */
123#define    IIO_ICRB2_B               0x00400468    /* IO CRB Entry 2_B       */
124#define    IIO_ICRB2_C               0x00400470    /* IO CRB Entry 2_C       */
125#define    IIO_ICRB2_D               0x00400478    /* IO CRB Entry 2_D       */
126#define    IIO_ICRB2_E               0x00400480    /* IO CRB Entry 2_E       */
127
128#define    IIO_ICRB3_A               0x00400490    /* IO CRB Entry 3_A       */
129#define    IIO_ICRB3_B               0x00400498    /* IO CRB Entry 3_B       */
130#define    IIO_ICRB3_C               0x004004a0    /* IO CRB Entry 3_C       */
131#define    IIO_ICRB3_D               0x004004a8    /* IO CRB Entry 3_D       */
132#define    IIO_ICRB3_E               0x004004b0    /* IO CRB Entry 3_E       */
133
134#define    IIO_ICRB4_A               0x004004c0    /* IO CRB Entry 4_A       */
135#define    IIO_ICRB4_B               0x004004c8    /* IO CRB Entry 4_B       */
136#define    IIO_ICRB4_C               0x004004d0    /* IO CRB Entry 4_C       */
137#define    IIO_ICRB4_D               0x004004d8    /* IO CRB Entry 4_D       */
138#define    IIO_ICRB4_E               0x004004e0    /* IO CRB Entry 4_E       */
139
140#define    IIO_ICRB5_A               0x004004f0    /* IO CRB Entry 5_A       */
141#define    IIO_ICRB5_B               0x004004f8    /* IO CRB Entry 5_B       */
142#define    IIO_ICRB5_C               0x00400500    /* IO CRB Entry 5_C       */
143#define    IIO_ICRB5_D               0x00400508    /* IO CRB Entry 5_D       */
144#define    IIO_ICRB5_E               0x00400510    /* IO CRB Entry 5_E       */
145
146#define    IIO_ICRB6_A               0x00400520    /* IO CRB Entry 6_A       */
147#define    IIO_ICRB6_B               0x00400528    /* IO CRB Entry 6_B       */
148#define    IIO_ICRB6_C               0x00400530    /* IO CRB Entry 6_C       */
149#define    IIO_ICRB6_D               0x00400538    /* IO CRB Entry 6_D       */
150#define    IIO_ICRB6_E               0x00400540    /* IO CRB Entry 6_E       */
151
152#define    IIO_ICRB7_A               0x00400550    /* IO CRB Entry 7_A       */
153#define    IIO_ICRB7_B               0x00400558    /* IO CRB Entry 7_B       */
154#define    IIO_ICRB7_C               0x00400560    /* IO CRB Entry 7_C       */
155#define    IIO_ICRB7_D               0x00400568    /* IO CRB Entry 7_D       */
156#define    IIO_ICRB7_E               0x00400570    /* IO CRB Entry 7_E       */
157
158#define    IIO_ICRB8_A               0x00400580    /* IO CRB Entry 8_A       */
159#define    IIO_ICRB8_B               0x00400588    /* IO CRB Entry 8_B       */
160#define    IIO_ICRB8_C               0x00400590    /* IO CRB Entry 8_C       */
161#define    IIO_ICRB8_D               0x00400598    /* IO CRB Entry 8_D       */
162#define    IIO_ICRB8_E               0x004005a0    /* IO CRB Entry 8_E       */
163
164#define    IIO_ICRB9_A               0x004005b0    /* IO CRB Entry 9_A       */
165#define    IIO_ICRB9_B               0x004005b8    /* IO CRB Entry 9_B       */
166#define    IIO_ICRB9_C               0x004005c0    /* IO CRB Entry 9_C       */
167#define    IIO_ICRB9_D               0x004005c8    /* IO CRB Entry 9_D       */
168#define    IIO_ICRB9_E               0x004005d0    /* IO CRB Entry 9_E       */
169
170#define    IIO_ICRBA_A               0x004005e0    /* IO CRB Entry A_A       */
171#define    IIO_ICRBA_B               0x004005e8    /* IO CRB Entry A_B       */
172#define    IIO_ICRBA_C               0x004005f0    /* IO CRB Entry A_C       */
173#define    IIO_ICRBA_D               0x004005f8    /* IO CRB Entry A_D       */
174#define    IIO_ICRBA_E               0x00400600    /* IO CRB Entry A_E       */
175
176#define    IIO_ICRBB_A               0x00400610    /* IO CRB Entry B_A       */
177#define    IIO_ICRBB_B               0x00400618    /* IO CRB Entry B_B       */
178#define    IIO_ICRBB_C               0x00400620    /* IO CRB Entry B_C       */
179#define    IIO_ICRBB_D               0x00400628    /* IO CRB Entry B_D       */
180#define    IIO_ICRBB_E               0x00400630    /* IO CRB Entry B_E       */
181
182#define    IIO_ICRBC_A               0x00400640    /* IO CRB Entry C_A       */
183#define    IIO_ICRBC_B               0x00400648    /* IO CRB Entry C_B       */
184#define    IIO_ICRBC_C               0x00400650    /* IO CRB Entry C_C       */
185#define    IIO_ICRBC_D               0x00400658    /* IO CRB Entry C_D       */
186#define    IIO_ICRBC_E               0x00400660    /* IO CRB Entry C_E       */
187
188#define    IIO_ICRBD_A               0x00400670    /* IO CRB Entry D_A       */
189#define    IIO_ICRBD_B               0x00400678    /* IO CRB Entry D_B       */
190#define    IIO_ICRBD_C               0x00400680    /* IO CRB Entry D_C       */
191#define    IIO_ICRBD_D               0x00400688    /* IO CRB Entry D_D       */
192#define    IIO_ICRBD_E               0x00400690    /* IO CRB Entry D_E       */
193
194#define    IIO_ICRBE_A               0x004006a0    /* IO CRB Entry E_A       */
195#define    IIO_ICRBE_B               0x004006a8    /* IO CRB Entry E_B       */
196#define    IIO_ICRBE_C               0x004006b0    /* IO CRB Entry E_C       */
197#define    IIO_ICRBE_D               0x004006b8    /* IO CRB Entry E_D       */
198#define    IIO_ICRBE_E               0x004006c0    /* IO CRB Entry E_E       */
199
200#define    IIO_ICSML                 0x00400700    /* IO CRB Spurious Message Low */
201#define    IIO_ICSMM                 0x00400708    /* IO CRB Spurious Message Middle */
202#define    IIO_ICSMH                 0x00400710    /* IO CRB Spurious Message High */
203
204#define    IIO_IDBSS                 0x00400718    /* IO Debug Submenu Select */
205
206#define    IIO_IBLS0                 0x00410000    /* IO BTE Length Status 0 */
207#define    IIO_IBSA0                 0x00410008    /* IO BTE Source Address 0 */
208#define    IIO_IBDA0                 0x00410010    /* IO BTE Destination Address 0 */
209#define    IIO_IBCT0                 0x00410018    /* IO BTE Control Terminate 0 */
210#define    IIO_IBNA0                 0x00410020    /* IO BTE Notification Address 0 */
211#define    IIO_IBIA0                 0x00410028    /* IO BTE Interrupt Address 0 */
212#define    IIO_IBLS1                 0x00420000    /* IO BTE Length Status 1 */
213#define    IIO_IBSA1                 0x00420008    /* IO BTE Source Address 1 */
214#define    IIO_IBDA1                 0x00420010    /* IO BTE Destination Address 1 */
215#define    IIO_IBCT1                 0x00420018    /* IO BTE Control Terminate 1 */
216#define    IIO_IBNA1                 0x00420020    /* IO BTE Notification Address 1 */
217#define    IIO_IBIA1                 0x00420028    /* IO BTE Interrupt Address 1 */
218
219#define    IIO_IPCR                  0x00430000    /* IO Performance Control */
220#define    IIO_IPPR                  0x00430008    /* IO Performance Profiling */
221
222
223#ifndef __ASSEMBLY__
224
225/************************************************************************
226 *                                                                      *
227 * Description:  This register echoes some information from the         *
228 * LB_REV_ID register. It is available through Crosstalk as described   *
229 * above. The REV_NUM and MFG_NUM fields receive their values from      *
230 * the REVISION and MANUFACTURER fields in the LB_REV_ID register.      *
231 * The PART_NUM field's value is the Crosstalk device ID number that    *
232 * Steve Miller assigned to the SHub chip.                              *
233 *                                                                      *
234 ************************************************************************/
235
236typedef union ii_wid_u {
237	shubreg_t	ii_wid_regval;
238	struct	{
239		shubreg_t	w_rsvd_1		  :	 1;
240		shubreg_t	w_mfg_num		  :	11;
241		shubreg_t	w_part_num		  :	16;
242		shubreg_t	w_rev_num		  :	 4;
243		shubreg_t	w_rsvd			  :	32;
244	} ii_wid_fld_s;
245} ii_wid_u_t;
246
247
248/************************************************************************
249 *                                                                      *
250 *  The fields in this register are set upon detection of an error      *
251 * and cleared by various mechanisms, as explained in the               *
252 * description.                                                         *
253 *                                                                      *
254 ************************************************************************/
255
256typedef union ii_wstat_u {
257	shubreg_t	ii_wstat_regval;
258	struct	{
259		shubreg_t	w_pending		  :	 4;
260		shubreg_t	w_xt_crd_to		  :	 1;
261		shubreg_t	w_xt_tail_to		  :	 1;
262		shubreg_t	w_rsvd_3		  :	 3;
263		shubreg_t       w_tx_mx_rty               :      1;
264		shubreg_t	w_rsvd_2		  :	 6;
265		shubreg_t	w_llp_tx_cnt		  :	 8;
266		shubreg_t	w_rsvd_1		  :	 8;
267		shubreg_t	w_crazy			  :	 1;
268		shubreg_t	w_rsvd			  :	31;
269	} ii_wstat_fld_s;
270} ii_wstat_u_t;
271
272
273/************************************************************************
274 *                                                                      *
275 * Description:  This is a read-write enabled register. It controls     *
276 * various aspects of the Crosstalk flow control.                       *
277 *                                                                      *
278 ************************************************************************/
279
280typedef union ii_wcr_u {
281	shubreg_t	ii_wcr_regval;
282	struct	{
283		shubreg_t	w_wid			  :	 4;
284		shubreg_t	w_tag			  :	 1;
285		shubreg_t	w_rsvd_1		  :	 8;
286		shubreg_t	w_dst_crd		  :	 3;
287		shubreg_t	w_f_bad_pkt		  :	 1;
288		shubreg_t	w_dir_con		  :	 1;
289		shubreg_t	w_e_thresh		  :	 5;
290		shubreg_t	w_rsvd			  :	41;
291	} ii_wcr_fld_s;
292} ii_wcr_u_t;
293
294
295/************************************************************************
296 *                                                                      *
297 * Description:  This register's value is a bit vector that guards      *
298 * access to local registers within the II as well as to external       *
299 * Crosstalk widgets. Each bit in the register corresponds to a         *
300 * particular region in the system; a region consists of one, two or    *
301 * four nodes (depending on the value of the REGION_SIZE field in the   *
302 * LB_REV_ID register, which is documented in Section 8.3.1.1). The     *
303 * protection provided by this register applies to PIO read             *
304 * operations as well as PIO write operations. The II will perform a    *
305 * PIO read or write request only if the bit for the requestor's        *
306 * region is set; otherwise, the II will not perform the requested      *
307 * operation and will return an error response. When a PIO read or      *
308 * write request targets an external Crosstalk widget, then not only    *
309 * must the bit for the requestor's region be set in the ILAPR, but     *
310 * also the target widget's bit in the IOWA register must be set in     *
311 * order for the II to perform the requested operation; otherwise,      *
312 * the II will return an error response. Hence, the protection          *
313 * provided by the IOWA register supplements the protection provided    *
314 * by the ILAPR for requests that target external Crosstalk widgets.    *
315 * This register itself can be accessed only by the nodes whose         *
316 * region ID bits are enabled in this same register. It can also be     *
317 * accessed through the IAlias space by the local processors.           *
318 * The reset value of this register allows access by all nodes.         *
319 *                                                                      *
320 ************************************************************************/
321
322typedef union ii_ilapr_u {
323	shubreg_t	ii_ilapr_regval;
324	struct  {
325		shubreg_t	i_region                  :	64;
326	} ii_ilapr_fld_s;
327} ii_ilapr_u_t;
328
329
330
331
332/************************************************************************
333 *                                                                      *
334 * Description:  A write to this register of the 64-bit value           *
335 * "SGIrules" in ASCII, will cause the bit in the ILAPR register        *
336 * corresponding to the region of the requestor to be set (allow        *
337 * access). A write of any other value will be ignored. Access          *
338 * protection for this register is "SGIrules".                          *
339 * This register can also be accessed through the IAlias space.         *
340 * However, this access will not change the access permissions in the   *
341 * ILAPR.                                                               *
342 *                                                                      *
343 ************************************************************************/
344
345typedef union ii_ilapo_u {
346	shubreg_t	ii_ilapo_regval;
347	struct	{
348		shubreg_t	i_io_ovrride            :	64;
349	} ii_ilapo_fld_s;
350} ii_ilapo_u_t;
351
352
353
354/************************************************************************
355 *                                                                      *
356 *  This register qualifies all the PIO and Graphics writes launched    *
357 * from the SHUB towards a widget.                                      *
358 *                                                                      *
359 ************************************************************************/
360
361typedef union ii_iowa_u {
362	shubreg_t	ii_iowa_regval;
363	struct	{
364		shubreg_t	i_w0_oac		  :	 1;
365		shubreg_t	i_rsvd_1		  :	 7;
366                shubreg_t       i_wx_oac                  :      8;
367		shubreg_t	i_rsvd			  :	48;
368	} ii_iowa_fld_s;
369} ii_iowa_u_t;
370
371
372/************************************************************************
373 *                                                                      *
374 * Description:  This register qualifies all the requests launched      *
375 * from a widget towards the Shub. This register is intended to be      *
376 * used by software in case of misbehaving widgets.                     *
377 *                                                                      *
378 *                                                                      *
379 ************************************************************************/
380
381typedef union ii_iiwa_u {
382	shubreg_t	ii_iiwa_regval;
383	struct  {
384		shubreg_t	i_w0_iac                  :	 1;
385		shubreg_t	i_rsvd_1		  :	 7;
386		shubreg_t	i_wx_iac		  :	 8;
387		shubreg_t	i_rsvd			  :	48;
388	} ii_iiwa_fld_s;
389} ii_iiwa_u_t;
390
391
392
393/************************************************************************
394 *                                                                      *
395 * Description:  This register qualifies all the operations launched    *
396 * from a widget towards the SHub. It allows individual access          *
397 * control for up to 8 devices per widget. A device refers to           *
398 * individual DMA master hosted by a widget.                            *
399 * The bits in each field of this register are cleared by the Shub      *
400 * upon detection of an error which requires the device to be           *
401 * disabled. These fields assume that 0=TNUM=7 (i.e., Bridge-centric    *
402 * Crosstalk). Whether or not a device has access rights to this        *
403 * Shub is determined by an AND of the device enable bit in the         *
404 * appropriate field of this register and the corresponding bit in      *
405 * the Wx_IAC field (for the widget which this device belongs to).      *
406 * The bits in this field are set by writing a 1 to them. Incoming      *
407 * replies from Crosstalk are not subject to this access control        *
408 * mechanism.                                                           *
409 *                                                                      *
410 ************************************************************************/
411
412typedef union ii_iidem_u {
413	shubreg_t	ii_iidem_regval;
414	struct	{
415		shubreg_t	i_w8_dxs		  :	 8;
416		shubreg_t	i_w9_dxs		  :	 8;
417		shubreg_t	i_wa_dxs		  :	 8;
418		shubreg_t	i_wb_dxs		  :	 8;
419		shubreg_t	i_wc_dxs		  :	 8;
420		shubreg_t	i_wd_dxs		  :	 8;
421		shubreg_t	i_we_dxs		  :	 8;
422		shubreg_t	i_wf_dxs		  :	 8;
423	} ii_iidem_fld_s;
424} ii_iidem_u_t;
425
426
427/************************************************************************
428 *                                                                      *
429 *  This register contains the various programmable fields necessary    *
430 * for controlling and observing the LLP signals.                       *
431 *                                                                      *
432 ************************************************************************/
433
434typedef union ii_ilcsr_u {
435	shubreg_t	ii_ilcsr_regval;
436	struct  {
437		shubreg_t	i_nullto                  :	 6;
438		shubreg_t	i_rsvd_4		  :	 2;
439		shubreg_t	i_wrmrst		  :	 1;
440		shubreg_t	i_rsvd_3		  :	 1;
441		shubreg_t	i_llp_en		  :	 1;
442		shubreg_t	i_bm8			  :	 1;
443		shubreg_t	i_llp_stat		  :	 2;
444		shubreg_t	i_remote_power		  :	 1;
445		shubreg_t	i_rsvd_2		  :	 1;
446		shubreg_t	i_maxrtry		  :	10;
447		shubreg_t	i_d_avail_sel		  :	 2;
448		shubreg_t	i_rsvd_1		  :	 4;
449		shubreg_t	i_maxbrst		  :	10;
450                shubreg_t       i_rsvd                    :     22;
451
452	} ii_ilcsr_fld_s;
453} ii_ilcsr_u_t;
454
455
456/************************************************************************
457 *                                                                      *
458 *  This is simply a status registers that monitors the LLP error       *
459 * rate.                                                                *
460 *                                                                      *
461 ************************************************************************/
462
463typedef union ii_illr_u {
464	shubreg_t	ii_illr_regval;
465	struct	{
466		shubreg_t	i_sn_cnt		  :	16;
467		shubreg_t	i_cb_cnt		  :	16;
468		shubreg_t	i_rsvd			  :	32;
469	} ii_illr_fld_s;
470} ii_illr_u_t;
471
472
473/************************************************************************
474 *                                                                      *
475 * Description:  All II-detected non-BTE error interrupts are           *
476 * specified via this register.                                         *
477 * NOTE: The PI interrupt register address is hardcoded in the II. If   *
478 * PI_ID==0, then the II sends an interrupt request (Duplonet PWRI      *
479 * packet) to address offset 0x0180_0090 within the local register      *
480 * address space of PI0 on the node specified by the NODE field. If     *
481 * PI_ID==1, then the II sends the interrupt request to address         *
482 * offset 0x01A0_0090 within the local register address space of PI1    *
483 * on the node specified by the NODE field.                             *
484 *                                                                      *
485 ************************************************************************/
486
487typedef union ii_iidsr_u {
488	shubreg_t	ii_iidsr_regval;
489	struct  {
490		shubreg_t	i_level                   :	 8;
491		shubreg_t	i_pi_id			  :	 1;
492		shubreg_t	i_node			  :	11;
493		shubreg_t       i_rsvd_3                  :      4;
494		shubreg_t	i_enable		  :	 1;
495		shubreg_t	i_rsvd_2		  :	 3;
496		shubreg_t	i_int_sent		  :	 2;
497		shubreg_t       i_rsvd_1                  :      2;
498		shubreg_t	i_pi0_forward_int	  :	 1;
499		shubreg_t	i_pi1_forward_int	  :	 1;
500		shubreg_t	i_rsvd			  :	30;
501	} ii_iidsr_fld_s;
502} ii_iidsr_u_t;
503
504
505
506/************************************************************************
507 *                                                                      *
508 *  There are two instances of this register. This register is used     *
509 * for matching up the incoming responses from the graphics widget to   *
510 * the processor that initiated the graphics operation. The             *
511 * write-responses are converted to graphics credits and returned to    *
512 * the processor so that the processor interface can manage the flow    *
513 * control.                                                             *
514 *                                                                      *
515 ************************************************************************/
516
517typedef union ii_igfx0_u {
518	shubreg_t	ii_igfx0_regval;
519	struct	{
520		shubreg_t	i_w_num			  :	 4;
521		shubreg_t       i_pi_id                   :      1;
522		shubreg_t	i_n_num			  :	12;
523		shubreg_t       i_p_num                   :      1;
524		shubreg_t       i_rsvd                    :     46;
525	} ii_igfx0_fld_s;
526} ii_igfx0_u_t;
527
528
529/************************************************************************
530 *                                                                      *
531 *  There are two instances of this register. This register is used     *
532 * for matching up the incoming responses from the graphics widget to   *
533 * the processor that initiated the graphics operation. The             *
534 * write-responses are converted to graphics credits and returned to    *
535 * the processor so that the processor interface can manage the flow    *
536 * control.                                                             *
537 *                                                                      *
538 ************************************************************************/
539
540typedef union ii_igfx1_u {
541	shubreg_t	ii_igfx1_regval;
542	struct  {
543		shubreg_t	i_w_num			  :	 4;
544		shubreg_t       i_pi_id                   :      1;
545		shubreg_t	i_n_num			  :	12;
546		shubreg_t       i_p_num                   :      1;
547		shubreg_t       i_rsvd                    :     46;
548	} ii_igfx1_fld_s;
549} ii_igfx1_u_t;
550
551
552/************************************************************************
553 *                                                                      *
554 *  There are two instances of this registers. These registers are      *
555 * used as scratch registers for software use.                          *
556 *                                                                      *
557 ************************************************************************/
558
559typedef union ii_iscr0_u {
560	shubreg_t	ii_iscr0_regval;
561	struct  {
562		shubreg_t	i_scratch                 :	64;
563	} ii_iscr0_fld_s;
564} ii_iscr0_u_t;
565
566
567
568/************************************************************************
569 *                                                                      *
570 *  There are two instances of this registers. These registers are      *
571 * used as scratch registers for software use.                          *
572 *                                                                      *
573 ************************************************************************/
574
575typedef union ii_iscr1_u {
576	shubreg_t	ii_iscr1_regval;
577	struct  {
578		shubreg_t	i_scratch                 :	64;
579	} ii_iscr1_fld_s;
580} ii_iscr1_u_t;
581
582
583/************************************************************************
584 *                                                                      *
585 * Description:  There are seven instances of translation table entry   *
586 * registers. Each register maps a Shub Big Window to a 48-bit          *
587 * address on Crosstalk.                                                *
588 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
589 * number) are used to select one of these 7 registers. The Widget      *
590 * number field is then derived from the W_NUM field for synthesizing   *
591 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
592 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
593 * are padded with zeros. Although the maximum Crosstalk space          *
594 * addressable by the SHub is thus the lower 16 GBytes per widget       *
595 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
596 * space can be accessed.                                               *
597 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
598 * Window number) are used to select one of these 7 registers. The      *
599 * Widget number field is then derived from the W_NUM field for         *
600 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
601 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
602 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
603 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
604 * Crosstalk space addressable by the Shub is thus the lower            *
605 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
606 * of this space can be accessed.                                       *
607 *                                                                      *
608 ************************************************************************/
609
610typedef union ii_itte1_u {
611	shubreg_t	ii_itte1_regval;
612	struct  {
613		shubreg_t	i_offset                  :	 5;
614		shubreg_t	i_rsvd_1		  :	 3;
615		shubreg_t	i_w_num			  :	 4;
616		shubreg_t	i_iosp			  :	 1;
617		shubreg_t	i_rsvd			  :	51;
618	} ii_itte1_fld_s;
619} ii_itte1_u_t;
620
621
622/************************************************************************
623 *                                                                      *
624 * Description:  There are seven instances of translation table entry   *
625 * registers. Each register maps a Shub Big Window to a 48-bit          *
626 * address on Crosstalk.                                                *
627 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
628 * number) are used to select one of these 7 registers. The Widget      *
629 * number field is then derived from the W_NUM field for synthesizing   *
630 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
631 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
632 * are padded with zeros. Although the maximum Crosstalk space          *
633 * addressable by the Shub is thus the lower 16 GBytes per widget       *
634 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
635 * space can be accessed.                                               *
636 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
637 * Window number) are used to select one of these 7 registers. The      *
638 * Widget number field is then derived from the W_NUM field for         *
639 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
640 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
641 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
642 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
643 * Crosstalk space addressable by the Shub is thus the lower            *
644 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
645 * of this space can be accessed.                                       *
646 *                                                                      *
647 ************************************************************************/
648
649typedef union ii_itte2_u {
650	shubreg_t	ii_itte2_regval;
651	struct	{
652		shubreg_t	i_offset		  :	 5;
653		shubreg_t	i_rsvd_1		  :	 3;
654		shubreg_t	i_w_num			  :	 4;
655		shubreg_t	i_iosp			  :	 1;
656		shubreg_t       i_rsvd                    :     51;
657	} ii_itte2_fld_s;
658} ii_itte2_u_t;
659
660
661/************************************************************************
662 *                                                                      *
663 * Description:  There are seven instances of translation table entry   *
664 * registers. Each register maps a Shub Big Window to a 48-bit          *
665 * address on Crosstalk.                                                *
666 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
667 * number) are used to select one of these 7 registers. The Widget      *
668 * number field is then derived from the W_NUM field for synthesizing   *
669 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
670 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
671 * are padded with zeros. Although the maximum Crosstalk space          *
672 * addressable by the Shub is thus the lower 16 GBytes per widget       *
673 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
674 * space can be accessed.                                               *
675 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
676 * Window number) are used to select one of these 7 registers. The      *
677 * Widget number field is then derived from the W_NUM field for         *
678 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
679 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
680 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
681 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
682 * Crosstalk space addressable by the SHub is thus the lower            *
683 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
684 * of this space can be accessed.                                       *
685 *                                                                      *
686 ************************************************************************/
687
688typedef union ii_itte3_u {
689	shubreg_t	ii_itte3_regval;
690	struct  {
691		shubreg_t	i_offset                  :	 5;
692		shubreg_t       i_rsvd_1                  :      3;
693		shubreg_t       i_w_num                   :      4;
694		shubreg_t       i_iosp                    :      1;
695		shubreg_t       i_rsvd                    :     51;
696	} ii_itte3_fld_s;
697} ii_itte3_u_t;
698
699
700/************************************************************************
701 *                                                                      *
702 * Description:  There are seven instances of translation table entry   *
703 * registers. Each register maps a SHub Big Window to a 48-bit          *
704 * address on Crosstalk.                                                *
705 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
706 * number) are used to select one of these 7 registers. The Widget      *
707 * number field is then derived from the W_NUM field for synthesizing   *
708 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
709 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
710 * are padded with zeros. Although the maximum Crosstalk space          *
711 * addressable by the SHub is thus the lower 16 GBytes per widget       *
712 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
713 * space can be accessed.                                               *
714 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
715 * Window number) are used to select one of these 7 registers. The      *
716 * Widget number field is then derived from the W_NUM field for         *
717 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
718 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
719 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
720 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
721 * Crosstalk space addressable by the SHub is thus the lower            *
722 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
723 * of this space can be accessed.                                       *
724 *                                                                      *
725 ************************************************************************/
726
727typedef union ii_itte4_u {
728	shubreg_t	ii_itte4_regval;
729	struct  {
730		shubreg_t	i_offset                  :	 5;
731		shubreg_t	i_rsvd_1		  :	 3;
732		shubreg_t       i_w_num                   :      4;
733		shubreg_t       i_iosp                    :      1;
734		shubreg_t       i_rsvd                    :     51;
735	} ii_itte4_fld_s;
736} ii_itte4_u_t;
737
738
739/************************************************************************
740 *                                                                      *
741 * Description:  There are seven instances of translation table entry   *
742 * registers. Each register maps a SHub Big Window to a 48-bit          *
743 * address on Crosstalk.                                                *
744 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
745 * number) are used to select one of these 7 registers. The Widget      *
746 * number field is then derived from the W_NUM field for synthesizing   *
747 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
748 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
749 * are padded with zeros. Although the maximum Crosstalk space          *
750 * addressable by the Shub is thus the lower 16 GBytes per widget       *
751 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
752 * space can be accessed.                                               *
753 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
754 * Window number) are used to select one of these 7 registers. The      *
755 * Widget number field is then derived from the W_NUM field for         *
756 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
757 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
758 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
759 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
760 * Crosstalk space addressable by the Shub is thus the lower            *
761 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
762 * of this space can be accessed.                                       *
763 *                                                                      *
764 ************************************************************************/
765
766typedef union ii_itte5_u {
767	shubreg_t	ii_itte5_regval;
768	struct  {
769		shubreg_t	i_offset                  :	 5;
770		shubreg_t       i_rsvd_1                  :      3;
771		shubreg_t       i_w_num                   :      4;
772		shubreg_t       i_iosp                    :      1;
773		shubreg_t       i_rsvd                    :     51;
774	} ii_itte5_fld_s;
775} ii_itte5_u_t;
776
777
778/************************************************************************
779 *                                                                      *
780 * Description:  There are seven instances of translation table entry   *
781 * registers. Each register maps a Shub Big Window to a 48-bit          *
782 * address on Crosstalk.                                                *
783 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
784 * number) are used to select one of these 7 registers. The Widget      *
785 * number field is then derived from the W_NUM field for synthesizing   *
786 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
787 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
788 * are padded with zeros. Although the maximum Crosstalk space          *
789 * addressable by the Shub is thus the lower 16 GBytes per widget       *
790 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
791 * space can be accessed.                                               *
792 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
793 * Window number) are used to select one of these 7 registers. The      *
794 * Widget number field is then derived from the W_NUM field for         *
795 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
796 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
797 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
798 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
799 * Crosstalk space addressable by the Shub is thus the lower            *
800 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
801 * of this space can be accessed.                                       *
802 *                                                                      *
803 ************************************************************************/
804
805typedef union ii_itte6_u {
806	shubreg_t	ii_itte6_regval;
807	struct  {
808		shubreg_t	i_offset                  :	 5;
809		shubreg_t       i_rsvd_1                  :      3;
810		shubreg_t       i_w_num                   :      4;
811		shubreg_t       i_iosp                    :      1;
812		shubreg_t       i_rsvd                    :     51;
813	} ii_itte6_fld_s;
814} ii_itte6_u_t;
815
816
817/************************************************************************
818 *                                                                      *
819 * Description:  There are seven instances of translation table entry   *
820 * registers. Each register maps a Shub Big Window to a 48-bit          *
821 * address on Crosstalk.                                                *
822 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
823 * number) are used to select one of these 7 registers. The Widget      *
824 * number field is then derived from the W_NUM field for synthesizing   *
825 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
826 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
827 * are padded with zeros. Although the maximum Crosstalk space          *
828 * addressable by the Shub is thus the lower 16 GBytes per widget       *
829 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
830 * space can be accessed.                                               *
831 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
832 * Window number) are used to select one of these 7 registers. The      *
833 * Widget number field is then derived from the W_NUM field for         *
834 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
835 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
836 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
837 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
838 * Crosstalk space addressable by the SHub is thus the lower            *
839 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
840 * of this space can be accessed.                                       *
841 *                                                                      *
842 ************************************************************************/
843
844typedef union ii_itte7_u {
845	shubreg_t	ii_itte7_regval;
846	struct  {
847		shubreg_t	i_offset                  :	 5;
848		shubreg_t	i_rsvd_1		  :	 3;
849		shubreg_t       i_w_num                   :      4;
850		shubreg_t       i_iosp                    :      1;
851		shubreg_t       i_rsvd                    :     51;
852	} ii_itte7_fld_s;
853} ii_itte7_u_t;
854
855
856/************************************************************************
857 *                                                                      *
858 * Description:  There are 9 instances of this register, one per        *
859 * actual widget in this implementation of SHub and Crossbow.           *
860 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
861 * refers to Crossbow's internal space.                                 *
862 * This register contains the state elements per widget that are        *
863 * necessary to manage the PIO flow control on Crosstalk and on the     *
864 * Router Network. See the PIO Flow Control chapter for a complete      *
865 * description of this register                                         *
866 * The SPUR_WR bit requires some explanation. When this register is     *
867 * written, the new value of the C field is captured in an internal     *
868 * register so the hardware can remember what the programmer wrote      *
869 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
870 * increments above this stored value, which indicates that there       *
871 * have been more responses received than requests sent. The SPUR_WR    *
872 * bit cannot be cleared until a value is written to the IPRBx          *
873 * register; the write will correct the C field and capture its new     *
874 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
875 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
876 * .                                                                    *
877 *                                                                      *
878 ************************************************************************/
879
880typedef union ii_iprb0_u {
881	shubreg_t	ii_iprb0_regval;
882	struct  {
883		shubreg_t	i_c                       :	 8;
884		shubreg_t	i_na			  :	14;
885		shubreg_t       i_rsvd_2                  :      2;
886		shubreg_t	i_nb			  :	14;
887		shubreg_t	i_rsvd_1		  :	 2;
888		shubreg_t	i_m			  :	 2;
889		shubreg_t	i_f			  :	 1;
890		shubreg_t	i_of_cnt		  :	 5;
891		shubreg_t	i_error			  :	 1;
892		shubreg_t	i_rd_to			  :	 1;
893		shubreg_t	i_spur_wr		  :	 1;
894		shubreg_t	i_spur_rd		  :	 1;
895		shubreg_t	i_rsvd			  :	11;
896		shubreg_t	i_mult_err		  :	 1;
897	} ii_iprb0_fld_s;
898} ii_iprb0_u_t;
899
900
901/************************************************************************
902 *                                                                      *
903 * Description:  There are 9 instances of this register, one per        *
904 * actual widget in this implementation of SHub and Crossbow.           *
905 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
906 * refers to Crossbow's internal space.                                 *
907 * This register contains the state elements per widget that are        *
908 * necessary to manage the PIO flow control on Crosstalk and on the     *
909 * Router Network. See the PIO Flow Control chapter for a complete      *
910 * description of this register                                         *
911 * The SPUR_WR bit requires some explanation. When this register is     *
912 * written, the new value of the C field is captured in an internal     *
913 * register so the hardware can remember what the programmer wrote      *
914 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
915 * increments above this stored value, which indicates that there       *
916 * have been more responses received than requests sent. The SPUR_WR    *
917 * bit cannot be cleared until a value is written to the IPRBx          *
918 * register; the write will correct the C field and capture its new     *
919 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
920 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
921 * .                                                                    *
922 *                                                                      *
923 ************************************************************************/
924
925typedef union ii_iprb8_u {
926	shubreg_t	ii_iprb8_regval;
927	struct  {
928		shubreg_t	i_c                       :	 8;
929		shubreg_t	i_na			  :	14;
930		shubreg_t       i_rsvd_2                  :      2;
931		shubreg_t	i_nb			  :	14;
932		shubreg_t       i_rsvd_1                  :      2;
933		shubreg_t       i_m                       :      2;
934		shubreg_t       i_f                       :      1;
935		shubreg_t       i_of_cnt                  :      5;
936		shubreg_t       i_error                   :      1;
937		shubreg_t       i_rd_to                   :      1;
938		shubreg_t       i_spur_wr                 :      1;
939		shubreg_t	i_spur_rd		  :	 1;
940		shubreg_t       i_rsvd                    :     11;
941		shubreg_t	i_mult_err		  :	 1;
942	} ii_iprb8_fld_s;
943} ii_iprb8_u_t;
944
945
946/************************************************************************
947 *                                                                      *
948 * Description:  There are 9 instances of this register, one per        *
949 * actual widget in this implementation of SHub and Crossbow.           *
950 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
951 * refers to Crossbow's internal space.                                 *
952 * This register contains the state elements per widget that are        *
953 * necessary to manage the PIO flow control on Crosstalk and on the     *
954 * Router Network. See the PIO Flow Control chapter for a complete      *
955 * description of this register                                         *
956 * The SPUR_WR bit requires some explanation. When this register is     *
957 * written, the new value of the C field is captured in an internal     *
958 * register so the hardware can remember what the programmer wrote      *
959 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
960 * increments above this stored value, which indicates that there       *
961 * have been more responses received than requests sent. The SPUR_WR    *
962 * bit cannot be cleared until a value is written to the IPRBx          *
963 * register; the write will correct the C field and capture its new     *
964 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
965 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
966 * .                                                                    *
967 *                                                                      *
968 ************************************************************************/
969
970typedef union ii_iprb9_u {
971	shubreg_t	ii_iprb9_regval;
972	struct	{
973		shubreg_t	i_c			  :	 8;
974		shubreg_t	i_na			  :	14;
975		shubreg_t	i_rsvd_2		  :	 2;
976		shubreg_t	i_nb			  :	14;
977		shubreg_t	i_rsvd_1		  :	 2;
978		shubreg_t	i_m			  :	 2;
979		shubreg_t	i_f			  :	 1;
980		shubreg_t	i_of_cnt		  :	 5;
981		shubreg_t	i_error			  :	 1;
982		shubreg_t	i_rd_to			  :	 1;
983		shubreg_t	i_spur_wr		  :	 1;
984		shubreg_t	i_spur_rd		  :	 1;
985		shubreg_t	i_rsvd			  :	11;
986		shubreg_t	i_mult_err		  :	 1;
987	} ii_iprb9_fld_s;
988} ii_iprb9_u_t;
989
990
991/************************************************************************
992 *                                                                      *
993 * Description:  There are 9 instances of this register, one per        *
994 * actual widget in this implementation of SHub and Crossbow.        *
995 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
996 * refers to Crossbow's internal space.                                 *
997 * This register contains the state elements per widget that are        *
998 * necessary to manage the PIO flow control on Crosstalk and on the     *
999 * Router Network. See the PIO Flow Control chapter for a complete      *
1000 * description of this register                                         *
1001 * The SPUR_WR bit requires some explanation. When this register is     *
1002 * written, the new value of the C field is captured in an internal     *
1003 * register so the hardware can remember what the programmer wrote      *
1004 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
1005 * increments above this stored value, which indicates that there       *
1006 * have been more responses received than requests sent. The SPUR_WR    *
1007 * bit cannot be cleared until a value is written to the IPRBx          *
1008 * register; the write will correct the C field and capture its new     *
1009 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
1010 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
1011 *                                                                      *
1012 *                                                                      *
1013 ************************************************************************/
1014
1015typedef union ii_iprba_u {
1016	shubreg_t	ii_iprba_regval;
1017	struct  {
1018		shubreg_t	i_c                       :	 8;
1019		shubreg_t	i_na			  :	14;
1020		shubreg_t       i_rsvd_2                  :      2;
1021		shubreg_t	i_nb			  :	14;
1022		shubreg_t	i_rsvd_1		  :	 2;
1023		shubreg_t	i_m			  :	 2;
1024		shubreg_t	i_f			  :	 1;
1025		shubreg_t	i_of_cnt		  :	 5;
1026		shubreg_t	i_error			  :	 1;
1027		shubreg_t	i_rd_to			  :	 1;
1028		shubreg_t	i_spur_wr		  :	 1;
1029		shubreg_t	i_spur_rd		  :	 1;
1030		shubreg_t	i_rsvd			  :	11;
1031		shubreg_t	i_mult_err		  :	 1;
1032	} ii_iprba_fld_s;
1033} ii_iprba_u_t;
1034
1035
1036/************************************************************************
1037 *                                                                      *
1038 * Description:  There are 9 instances of this register, one per        *
1039 * actual widget in this implementation of SHub and Crossbow.           *
1040 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
1041 * refers to Crossbow's internal space.                                 *
1042 * This register contains the state elements per widget that are        *
1043 * necessary to manage the PIO flow control on Crosstalk and on the     *
1044 * Router Network. See the PIO Flow Control chapter for a complete      *
1045 * description of this register                                         *
1046 * The SPUR_WR bit requires some explanation. When this register is     *
1047 * written, the new value of the C field is captured in an internal     *
1048 * register so the hardware can remember what the programmer wrote      *
1049 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
1050 * increments above this stored value, which indicates that there       *
1051 * have been more responses received than requests sent. The SPUR_WR    *
1052 * bit cannot be cleared until a value is written to the IPRBx          *
1053 * register; the write will correct the C field and capture its new     *
1054 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
1055 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
1056 * .                                                                    *
1057 *                                                                      *
1058 ************************************************************************/
1059
1060typedef union ii_iprbb_u {
1061	shubreg_t	ii_iprbb_regval;
1062	struct	{
1063		shubreg_t	i_c			  :	 8;
1064		shubreg_t	i_na			  :	14;
1065		shubreg_t	i_rsvd_2		  :	 2;
1066		shubreg_t	i_nb			  :	14;
1067		shubreg_t	i_rsvd_1		  :	 2;
1068		shubreg_t	i_m			  :	 2;
1069		shubreg_t	i_f			  :	 1;
1070		shubreg_t	i_of_cnt		  :	 5;
1071		shubreg_t	i_error			  :	 1;
1072		shubreg_t	i_rd_to			  :	 1;
1073		shubreg_t	i_spur_wr		  :	 1;
1074		shubreg_t	i_spur_rd		  :	 1;
1075		shubreg_t	i_rsvd			  :	11;
1076		shubreg_t	i_mult_err		  :	 1;
1077	} ii_iprbb_fld_s;
1078} ii_iprbb_u_t;
1079
1080
1081/************************************************************************
1082 *                                                                      *
1083 * Description:  There are 9 instances of this register, one per        *
1084 * actual widget in this implementation of SHub and Crossbow.           *
1085 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
1086 * refers to Crossbow's internal space.                                 *
1087 * This register contains the state elements per widget that are        *
1088 * necessary to manage the PIO flow control on Crosstalk and on the     *
1089 * Router Network. See the PIO Flow Control chapter for a complete      *
1090 * description of this register                                         *
1091 * The SPUR_WR bit requires some explanation. When this register is     *
1092 * written, the new value of the C field is captured in an internal     *
1093 * register so the hardware can remember what the programmer wrote      *
1094 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
1095 * increments above this stored value, which indicates that there       *
1096 * have been more responses received than requests sent. The SPUR_WR    *
1097 * bit cannot be cleared until a value is written to the IPRBx          *
1098 * register; the write will correct the C field and capture its new     *
1099 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
1100 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
1101 * .                                                                    *
1102 *                                                                      *
1103 ************************************************************************/
1104
1105typedef union ii_iprbc_u {
1106	shubreg_t	ii_iprbc_regval;
1107	struct	{
1108		shubreg_t	i_c			  :	 8;
1109		shubreg_t	i_na			  :	14;
1110		shubreg_t	i_rsvd_2		  :	 2;
1111		shubreg_t	i_nb			  :	14;
1112		shubreg_t	i_rsvd_1		  :	 2;
1113		shubreg_t	i_m			  :	 2;
1114		shubreg_t	i_f			  :	 1;
1115		shubreg_t	i_of_cnt		  :	 5;
1116		shubreg_t	i_error			  :	 1;
1117		shubreg_t	i_rd_to			  :	 1;
1118		shubreg_t	i_spur_wr		  :	 1;
1119		shubreg_t	i_spur_rd		  :	 1;
1120		shubreg_t	i_rsvd			  :	11;
1121		shubreg_t	i_mult_err		  :	 1;
1122	} ii_iprbc_fld_s;
1123} ii_iprbc_u_t;
1124
1125
1126/************************************************************************
1127 *                                                                      *
1128 * Description:  There are 9 instances of this register, one per        *
1129 * actual widget in this implementation of SHub and Crossbow.           *
1130 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
1131 * refers to Crossbow's internal space.                                 *
1132 * This register contains the state elements per widget that are        *
1133 * necessary to manage the PIO flow control on Crosstalk and on the     *
1134 * Router Network. See the PIO Flow Control chapter for a complete      *
1135 * description of this register                                         *
1136 * The SPUR_WR bit requires some explanation. When this register is     *
1137 * written, the new value of the C field is captured in an internal     *
1138 * register so the hardware can remember what the programmer wrote      *
1139 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
1140 * increments above this stored value, which indicates that there       *
1141 * have been more responses received than requests sent. The SPUR_WR    *
1142 * bit cannot be cleared until a value is written to the IPRBx          *
1143 * register; the write will correct the C field and capture its new     *
1144 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
1145 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
1146 * .                                                                    *
1147 *                                                                      *
1148 ************************************************************************/
1149
1150typedef union ii_iprbd_u {
1151	shubreg_t	ii_iprbd_regval;
1152	struct	{
1153		shubreg_t	i_c			  :	 8;
1154		shubreg_t	i_na			  :	14;
1155		shubreg_t	i_rsvd_2		  :	 2;
1156		shubreg_t	i_nb			  :	14;
1157		shubreg_t	i_rsvd_1		  :	 2;
1158		shubreg_t	i_m			  :	 2;
1159		shubreg_t	i_f			  :	 1;
1160		shubreg_t	i_of_cnt		  :	 5;
1161		shubreg_t	i_error			  :	 1;
1162		shubreg_t	i_rd_to			  :	 1;
1163		shubreg_t	i_spur_wr		  :	 1;
1164		shubreg_t	i_spur_rd		  :	 1;
1165		shubreg_t	i_rsvd			  :	11;
1166		shubreg_t	i_mult_err		  :	 1;
1167	} ii_iprbd_fld_s;
1168} ii_iprbd_u_t;
1169
1170
1171/************************************************************************
1172 *                                                                      *
1173 * Description:  There are 9 instances of this register, one per        *
1174 * actual widget in this implementation of SHub and Crossbow.           *
1175 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
1176 * refers to Crossbow's internal space.                                 *
1177 * This register contains the state elements per widget that are        *
1178 * necessary to manage the PIO flow control on Crosstalk and on the     *
1179 * Router Network. See the PIO Flow Control chapter for a complete      *
1180 * description of this register                                         *
1181 * The SPUR_WR bit requires some explanation. When this register is     *
1182 * written, the new value of the C field is captured in an internal     *
1183 * register so the hardware can remember what the programmer wrote      *
1184 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
1185 * increments above this stored value, which indicates that there       *
1186 * have been more responses received than requests sent. The SPUR_WR    *
1187 * bit cannot be cleared until a value is written to the IPRBx          *
1188 * register; the write will correct the C field and capture its new     *
1189 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
1190 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
1191 * .                                                                    *
1192 *                                                                      *
1193 ************************************************************************/
1194
1195typedef union ii_iprbe_u {
1196	shubreg_t	ii_iprbe_regval;
1197	struct	{
1198		shubreg_t	i_c			  :	 8;
1199		shubreg_t	i_na			  :	14;
1200		shubreg_t	i_rsvd_2		  :	 2;
1201		shubreg_t	i_nb			  :	14;
1202		shubreg_t	i_rsvd_1		  :	 2;
1203		shubreg_t	i_m			  :	 2;
1204		shubreg_t	i_f			  :	 1;
1205		shubreg_t	i_of_cnt		  :	 5;
1206		shubreg_t	i_error			  :	 1;
1207		shubreg_t	i_rd_to			  :	 1;
1208		shubreg_t	i_spur_wr		  :	 1;
1209		shubreg_t	i_spur_rd		  :	 1;
1210		shubreg_t	i_rsvd			  :	11;
1211		shubreg_t	i_mult_err		  :	 1;
1212	} ii_iprbe_fld_s;
1213} ii_iprbe_u_t;
1214
1215
1216/************************************************************************
1217 *                                                                      *
1218 * Description:  There are 9 instances of this register, one per        *
1219 * actual widget in this implementation of Shub and Crossbow.           *
1220 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
1221 * refers to Crossbow's internal space.                                 *
1222 * This register contains the state elements per widget that are        *
1223 * necessary to manage the PIO flow control on Crosstalk and on the     *
1224 * Router Network. See the PIO Flow Control chapter for a complete      *
1225 * description of this register                                         *
1226 * The SPUR_WR bit requires some explanation. When this register is     *
1227 * written, the new value of the C field is captured in an internal     *
1228 * register so the hardware can remember what the programmer wrote      *
1229 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
1230 * increments above this stored value, which indicates that there       *
1231 * have been more responses received than requests sent. The SPUR_WR    *
1232 * bit cannot be cleared until a value is written to the IPRBx          *
1233 * register; the write will correct the C field and capture its new     *
1234 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
1235 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
1236 * .                                                                    *
1237 *                                                                      *
1238 ************************************************************************/
1239
1240typedef union ii_iprbf_u {
1241        shubreg_t       ii_iprbf_regval;
1242        struct  {
1243                shubreg_t       i_c                       :      8;
1244                shubreg_t       i_na                      :     14;
1245                shubreg_t       i_rsvd_2                  :      2;
1246                shubreg_t       i_nb                      :     14;
1247                shubreg_t       i_rsvd_1                  :      2;
1248                shubreg_t       i_m                       :      2;
1249                shubreg_t       i_f                       :      1;
1250                shubreg_t       i_of_cnt                  :      5;
1251                shubreg_t       i_error                   :      1;
1252                shubreg_t       i_rd_to                   :      1;
1253                shubreg_t       i_spur_wr                 :      1;
1254                shubreg_t       i_spur_rd                 :      1;
1255                shubreg_t       i_rsvd                    :     11;
1256                shubreg_t       i_mult_err                :      1;
1257        } ii_iprbe_fld_s;
1258} ii_iprbf_u_t;
1259
1260
1261/************************************************************************
1262 *                                                                      *
1263 *  This register specifies the timeout value to use for monitoring     *
1264 * Crosstalk credits which are used outbound to Crosstalk. An           *
1265 * internal counter called the Crosstalk Credit Timeout Counter         *
1266 * increments every 128 II clocks. The counter starts counting          *
1267 * anytime the credit count drops below a threshold, and resets to      *
1268 * zero (stops counting) anytime the credit count is at or above the    *
1269 * threshold. The threshold is 1 credit in direct connect mode and 2    *
1270 * in Crossbow connect mode. When the internal Crosstalk Credit         *
1271 * Timeout Counter reaches the value programmed in this register, a     *
1272 * Crosstalk Credit Timeout has occurred. The internal counter is not   *
1273 * readable from software, and stops counting at its maximum value,     *
1274 * so it cannot cause more than one interrupt.                          *
1275 *                                                                      *
1276 ************************************************************************/
1277
1278typedef union ii_ixcc_u {
1279	shubreg_t	ii_ixcc_regval;
1280	struct  {
1281		shubreg_t	i_time_out                :	26;
1282		shubreg_t	i_rsvd			  :	38;
1283	} ii_ixcc_fld_s;
1284} ii_ixcc_u_t;
1285
1286
1287/************************************************************************
1288 *                                                                      *
1289 * Description:  This register qualifies all the PIO and DMA            *
1290 * operations launched from widget 0 towards the SHub. In               *
1291 * addition, it also qualifies accesses by the BTE streams.             *
1292 * The bits in each field of this register are cleared by the SHub      *
1293 * upon detection of an error which requires widget 0 or the BTE        *
1294 * streams to be terminated. Whether or not widget x has access         *
1295 * rights to this SHub is determined by an AND of the device            *
1296 * enable bit in the appropriate field of this register and bit 0 in    *
1297 * the Wx_IAC field. The bits in this field are set by writing a 1 to   *
1298 * them. Incoming replies from Crosstalk are not subject to this        *
1299 * access control mechanism.                                            *
1300 *                                                                      *
1301 ************************************************************************/
1302
1303typedef union ii_imem_u {
1304	shubreg_t	ii_imem_regval;
1305	struct  {
1306		shubreg_t	i_w0_esd                  :	 1;
1307		shubreg_t	i_rsvd_3		  :	 3;
1308		shubreg_t	i_b0_esd		  :	 1;
1309		shubreg_t	i_rsvd_2		  :	 3;
1310		shubreg_t	i_b1_esd		  :	 1;
1311		shubreg_t	i_rsvd_1		  :	 3;
1312		shubreg_t	i_clr_precise		  :	 1;
1313		shubreg_t       i_rsvd                    :     51;
1314	} ii_imem_fld_s;
1315} ii_imem_u_t;
1316
1317
1318
1319/************************************************************************
1320 *                                                                      *
1321 * Description:  This register specifies the timeout value to use for   *
1322 * monitoring Crosstalk tail flits coming into the Shub in the          *
1323 * TAIL_TO field. An internal counter associated with this register     *
1324 * is incremented every 128 II internal clocks (7 bits). The counter    *
1325 * starts counting anytime a header micropacket is received and stops   *
1326 * counting (and resets to zero) any time a micropacket with a Tail     *
1327 * bit is received. Once the counter reaches the threshold value        *
1328 * programmed in this register, it generates an interrupt to the        *
1329 * processor that is programmed into the IIDSR. The counter saturates   *
1330 * (does not roll over) at its maximum value, so it cannot cause        *
1331 * another interrupt until after it is cleared.                         *
1332 * The register also contains the Read Response Timeout values. The     *
1333 * Prescalar is 23 bits, and counts II clocks. An internal counter      *
1334 * increments on every II clock and when it reaches the value in the    *
1335 * Prescalar field, all IPRTE registers with their valid bits set       *
1336 * have their Read Response timers bumped. Whenever any of them match   *
1337 * the value in the RRSP_TO field, a Read Response Timeout has          *
1338 * occurred, and error handling occurs as described in the Error        *
1339 * Handling section of this document.                                   *
1340 *                                                                      *
1341 ************************************************************************/
1342
1343typedef union ii_ixtt_u {
1344	shubreg_t	ii_ixtt_regval;
1345	struct  {
1346		shubreg_t	i_tail_to                 :	26;
1347		shubreg_t	i_rsvd_1		  :	 6;
1348		shubreg_t	i_rrsp_ps		  :	23;
1349		shubreg_t	i_rrsp_to		  :	 5;
1350		shubreg_t	i_rsvd			  :	 4;
1351	} ii_ixtt_fld_s;
1352} ii_ixtt_u_t;
1353
1354
1355/************************************************************************
1356 *                                                                      *
1357 *  Writing a 1 to the fields of this register clears the appropriate   *
1358 * error bits in other areas of SHub. Note that when the                *
1359 * E_PRB_x bits are used to clear error bits in PRB registers,          *
1360 * SPUR_RD and SPUR_WR may persist, because they require additional     *
1361 * action to clear them. See the IPRBx and IXSS Register                *
1362 * specifications.                                                      *
1363 *                                                                      *
1364 ************************************************************************/
1365
1366typedef union ii_ieclr_u {
1367	shubreg_t	ii_ieclr_regval;
1368	struct  {
1369		shubreg_t	i_e_prb_0                 :	 1;
1370		shubreg_t	i_rsvd			  :	 7;
1371		shubreg_t	i_e_prb_8		  :	 1;
1372		shubreg_t	i_e_prb_9		  :	 1;
1373		shubreg_t	i_e_prb_a		  :	 1;
1374		shubreg_t	i_e_prb_b		  :	 1;
1375		shubreg_t	i_e_prb_c		  :	 1;
1376		shubreg_t	i_e_prb_d		  :	 1;
1377		shubreg_t	i_e_prb_e		  :	 1;
1378		shubreg_t	i_e_prb_f		  :	 1;
1379		shubreg_t	i_e_crazy		  :	 1;
1380		shubreg_t	i_e_bte_0		  :	 1;
1381		shubreg_t	i_e_bte_1		  :	 1;
1382		shubreg_t	i_reserved_1		  :	10;
1383		shubreg_t	i_spur_rd_hdr		  :	 1;
1384		shubreg_t	i_cam_intr_to		  :	 1;
1385		shubreg_t	i_cam_overflow		  :	 1;
1386		shubreg_t	i_cam_read_miss		  :	 1;
1387		shubreg_t	i_ioq_rep_underflow	  :	 1;
1388		shubreg_t	i_ioq_req_underflow	  :	 1;
1389		shubreg_t	i_ioq_rep_overflow	  :	 1;
1390		shubreg_t	i_ioq_req_overflow	  :	 1;
1391		shubreg_t	i_iiq_rep_overflow	  :	 1;
1392		shubreg_t	i_iiq_req_overflow	  :	 1;
1393		shubreg_t	i_ii_xn_rep_cred_overflow :	 1;
1394		shubreg_t	i_ii_xn_req_cred_overflow :	 1;
1395		shubreg_t	i_ii_xn_invalid_cmd	  :	 1;
1396		shubreg_t	i_xn_ii_invalid_cmd	  :	 1;
1397		shubreg_t	i_reserved_2		  :	21;
1398	} ii_ieclr_fld_s;
1399} ii_ieclr_u_t;
1400
1401
1402/************************************************************************
1403 *                                                                      *
1404 *  This register controls both BTEs. SOFT_RESET is intended for        *
1405 * recovery after an error. COUNT controls the total number of CRBs     *
1406 * that both BTEs (combined) can use, which affects total BTE           *
1407 * bandwidth.                                                           *
1408 *                                                                      *
1409 ************************************************************************/
1410
1411typedef union ii_ibcr_u {
1412	shubreg_t	ii_ibcr_regval;
1413	struct  {
1414		shubreg_t	i_count                   :	 4;
1415		shubreg_t	i_rsvd_1		  :	 4;
1416		shubreg_t	i_soft_reset		  :	 1;
1417		shubreg_t	i_rsvd			  :	55;
1418	} ii_ibcr_fld_s;
1419} ii_ibcr_u_t;
1420
1421
1422/************************************************************************
1423 *                                                                      *
1424 *  This register contains the header of a spurious read response       *
1425 * received from Crosstalk. A spurious read response is defined as a    *
1426 * read response received by II from a widget for which (1) the SIDN    *
1427 * has a value between 1 and 7, inclusive (II never sends requests to   *
1428 * these widgets (2) there is no valid IPRTE register which             *
1429 * corresponds to the TNUM, or (3) the widget indicated in SIDN is      *
1430 * not the same as the widget recorded in the IPRTE register            *
1431 * referenced by the TNUM. If this condition is true, and if the        *
1432 * IXSS[VALID] bit is clear, then the header of the spurious read       *
1433 * response is capture in IXSM and IXSS, and IXSS[VALID] is set. The    *
1434 * errant header is thereby captured, and no further spurious read      *
1435 * respones are captured until IXSS[VALID] is cleared by setting the    *
1436 * appropriate bit in IECLR.Everytime a spurious read response is       *
1437 * detected, the SPUR_RD bit of the PRB corresponding to the incoming   *
1438 * message's SIDN field is set. This always happens, regarless of       *
1439 * whether a header is captured. The programmer should check            *
1440 * IXSM[SIDN] to determine which widget sent the spurious response,     *
1441 * because there may be more than one SPUR_RD bit set in the PRB        *
1442 * registers. The widget indicated by IXSM[SIDN] was the first          *
1443 * spurious read response to be received since the last time            *
1444 * IXSS[VALID] was clear. The SPUR_RD bit of the corresponding PRB      *
1445 * will be set. Any SPUR_RD bits in any other PRB registers indicate    *
1446 * spurious messages from other widets which were detected after the    *
1447 * header was captured..                                                *
1448 *                                                                      *
1449 ************************************************************************/
1450
1451typedef union ii_ixsm_u {
1452	shubreg_t	ii_ixsm_regval;
1453	struct  {
1454		shubreg_t	i_byte_en                 :	32;
1455		shubreg_t	i_reserved		  :	 1;
1456		shubreg_t	i_tag			  :	 3;
1457		shubreg_t	i_alt_pactyp		  :	 4;
1458		shubreg_t	i_bo			  :	 1;
1459		shubreg_t	i_error			  :	 1;
1460		shubreg_t	i_vbpm			  :	 1;
1461		shubreg_t	i_gbr			  :	 1;
1462		shubreg_t	i_ds			  :	 2;
1463		shubreg_t	i_ct			  :	 1;
1464		shubreg_t	i_tnum			  :	 5;
1465		shubreg_t	i_pactyp		  :	 4;
1466		shubreg_t	i_sidn			  :	 4;
1467		shubreg_t	i_didn			  :	 4;
1468	} ii_ixsm_fld_s;
1469} ii_ixsm_u_t;
1470
1471
1472/************************************************************************
1473 *                                                                      *
1474 *  This register contains the sideband bits of a spurious read         *
1475 * response received from Crosstalk.                                    *
1476 *                                                                      *
1477 ************************************************************************/
1478
1479typedef union ii_ixss_u {
1480	shubreg_t	ii_ixss_regval;
1481	struct  {
1482		shubreg_t	i_sideband                :	 8;
1483		shubreg_t	i_rsvd			  :	55;
1484		shubreg_t	i_valid			  :	 1;
1485	} ii_ixss_fld_s;
1486} ii_ixss_u_t;
1487
1488
1489/************************************************************************
1490 *                                                                      *
1491 *  This register enables software to access the II LLP's test port.    *
1492 * Refer to the LLP 2.5 documentation for an explanation of the test    *
1493 * port. Software can write to this register to program the values      *
1494 * for the control fields (TestErrCapture, TestClear, TestFlit,         *
1495 * TestMask and TestSeed). Similarly, software can read from this       *
1496 * register to obtain the values of the test port's status outputs      *
1497 * (TestCBerr, TestValid and TestData).                                 *
1498 *                                                                      *
1499 ************************************************************************/
1500
1501typedef union ii_ilct_u {
1502	shubreg_t	ii_ilct_regval;
1503	struct  {
1504		shubreg_t	i_test_seed               :	20;
1505		shubreg_t	i_test_mask               :	 8;
1506		shubreg_t	i_test_data               :	20;
1507		shubreg_t	i_test_valid              :	 1;
1508		shubreg_t	i_test_cberr              :	 1;
1509		shubreg_t	i_test_flit               :	 3;
1510		shubreg_t	i_test_clear              :	 1;
1511		shubreg_t	i_test_err_capture        :	 1;
1512		shubreg_t	i_rsvd                    :	 9;
1513	} ii_ilct_fld_s;
1514} ii_ilct_u_t;
1515
1516
1517/************************************************************************
1518 *                                                                      *
1519 *  If the II detects an illegal incoming Duplonet packet (request or   *
1520 * reply) when VALID==0 in the IIEPH1 register, then it saves the       *
1521 * contents of the packet's header flit in the IIEPH1 and IIEPH2        *
1522 * registers, sets the VALID bit in IIEPH1, clears the OVERRUN bit,     *
1523 * and assigns a value to the ERR_TYPE field which indicates the        *
1524 * specific nature of the error. The II recognizes four different       *
1525 * types of errors: short request packets (ERR_TYPE==2), short reply    *
1526 * packets (ERR_TYPE==3), long request packets (ERR_TYPE==4) and long   *
1527 * reply packets (ERR_TYPE==5). The encodings for these types of        *
1528 * errors were chosen to be consistent with the same types of errors    *
1529 * indicated by the ERR_TYPE field in the LB_ERROR_HDR1 register (in    *
1530 * the LB unit). If the II detects an illegal incoming Duplonet         *
1531 * packet when VALID==1 in the IIEPH1 register, then it merely sets     *
1532 * the OVERRUN bit to indicate that a subsequent error has happened,    *
1533 * and does nothing further.                                            *
1534 *                                                                      *
1535 ************************************************************************/
1536
1537typedef union ii_iieph1_u {
1538	shubreg_t	ii_iieph1_regval;
1539	struct	{
1540		shubreg_t	i_command		  :	 7;
1541		shubreg_t	i_rsvd_5		  :	 1;
1542		shubreg_t	i_suppl			  :	14;
1543		shubreg_t	i_rsvd_4		  :	 1;
1544		shubreg_t	i_source		  :	14;
1545		shubreg_t	i_rsvd_3		  :	 1;
1546		shubreg_t	i_err_type		  :	 4;
1547		shubreg_t	i_rsvd_2		  :	 4;
1548		shubreg_t	i_overrun		  :	 1;
1549		shubreg_t	i_rsvd_1		  :	 3;
1550		shubreg_t	i_valid			  :	 1;
1551		shubreg_t	i_rsvd			  :	13;
1552	} ii_iieph1_fld_s;
1553} ii_iieph1_u_t;
1554
1555
1556/************************************************************************
1557 *                                                                      *
1558 *  This register holds the Address field from the header flit of an    *
1559 * incoming erroneous Duplonet packet, along with the tail bit which    *
1560 * accompanied this header flit. This register is essentially an        *
1561 * extension of IIEPH1. Two registers were necessary because the 64     *
1562 * bits available in only a single register were insufficient to        *
1563 * capture the entire header flit of an erroneous packet.               *
1564 *                                                                      *
1565 ************************************************************************/
1566
1567typedef union ii_iieph2_u {
1568	shubreg_t	ii_iieph2_regval;
1569	struct  {
1570		shubreg_t	i_rsvd_0		  :	 3;
1571		shubreg_t	i_address                 :	47;
1572		shubreg_t	i_rsvd_1		  :	10;
1573		shubreg_t	i_tail			  :	 1;
1574		shubreg_t	i_rsvd			  :	 3;
1575	} ii_iieph2_fld_s;
1576} ii_iieph2_u_t;
1577
1578
1579/******************************/
1580
1581
1582
1583/************************************************************************
1584 *                                                                      *
1585 *  This register's value is a bit vector that guards access from SXBs  *
1586 * to local registers within the II as well as to external Crosstalk    *
1587 * widgets								*
1588 *                                                                      *
1589 ************************************************************************/
1590
1591typedef union ii_islapr_u {
1592	shubreg_t	ii_islapr_regval;
1593	struct  {
1594		shubreg_t	i_region		  :	64;
1595	} ii_islapr_fld_s;
1596} ii_islapr_u_t;
1597
1598
1599/************************************************************************
1600 *                                                                      *
1601 *  A write to this register of the 56-bit value "Pup+Bun" will cause	*
1602 * the bit in the ISLAPR register corresponding to the region of the	*
1603 * requestor to be set (access allowed).				(
1604 *                                                                      *
1605 ************************************************************************/
1606
1607typedef union ii_islapo_u {
1608	shubreg_t	ii_islapo_regval;
1609	struct  {
1610		shubreg_t	i_io_sbx_ovrride	  :	56;
1611		shubreg_t	i_rsvd			  :	 8;
1612	} ii_islapo_fld_s;
1613} ii_islapo_u_t;
1614
1615/************************************************************************
1616 *                                                                      *
1617 *  Determines how long the wrapper will wait aftr an interrupt is	*
1618 * initially issued from the II before it times out the outstanding	*
1619 * interrupt and drops it from the interrupt queue.			*
1620 *                                                                      *
1621 ************************************************************************/
1622
1623typedef union ii_iwi_u {
1624	shubreg_t	ii_iwi_regval;
1625	struct  {
1626		shubreg_t	i_prescale		  :	24;
1627		shubreg_t	i_rsvd			  :	 8;
1628		shubreg_t	i_timeout		  :	 8;
1629		shubreg_t	i_rsvd1			  :	 8;
1630		shubreg_t	i_intrpt_retry_period	  :	 8;
1631		shubreg_t	i_rsvd2			  :	 8;
1632	} ii_iwi_fld_s;
1633} ii_iwi_u_t;
1634
1635/************************************************************************
1636 *                                                                      *
1637 *  Log errors which have occurred in the II wrapper. The errors are	*
1638 * cleared by writing to the IECLR register.				*
1639 *                                                                      *
1640 ************************************************************************/
1641
1642typedef union ii_iwel_u {
1643	shubreg_t	ii_iwel_regval;
1644	struct  {
1645		shubreg_t	i_intr_timed_out	  :	 1;
1646		shubreg_t	i_rsvd			  :	 7;
1647		shubreg_t	i_cam_overflow		  :	 1;
1648		shubreg_t	i_cam_read_miss		  :	 1;
1649		shubreg_t	i_rsvd1			  :	 2;
1650		shubreg_t	i_ioq_rep_underflow	  :	 1;
1651		shubreg_t	i_ioq_req_underflow	  :	 1;
1652		shubreg_t	i_ioq_rep_overflow	  :	 1;
1653		shubreg_t	i_ioq_req_overflow	  :	 1;
1654		shubreg_t	i_iiq_rep_overflow	  :	 1;
1655		shubreg_t	i_iiq_req_overflow	  :	 1;
1656		shubreg_t	i_rsvd2			  :	 6;
1657		shubreg_t	i_ii_xn_rep_cred_over_under:	 1;
1658		shubreg_t	i_ii_xn_req_cred_over_under:	 1;
1659		shubreg_t	i_rsvd3			  :	 6;
1660		shubreg_t	i_ii_xn_invalid_cmd	  :	 1;
1661		shubreg_t	i_xn_ii_invalid_cmd	  :	 1;
1662		shubreg_t	i_rsvd4			  :	30;
1663	} ii_iwel_fld_s;
1664} ii_iwel_u_t;
1665
1666/************************************************************************
1667 *                                                                      *
1668 *  Controls the II wrapper.						*
1669 *                                                                      *
1670 ************************************************************************/
1671
1672typedef union ii_iwc_u {
1673	shubreg_t	ii_iwc_regval;
1674	struct  {
1675		shubreg_t	i_dma_byte_swap		  :	 1;
1676		shubreg_t	i_rsvd			  :	 3;
1677		shubreg_t	i_cam_read_lines_reset	  :	 1;
1678		shubreg_t	i_rsvd1			  :	 3;
1679		shubreg_t	i_ii_xn_cred_over_under_log:	 1;
1680		shubreg_t	i_rsvd2			  :	19;
1681		shubreg_t	i_xn_rep_iq_depth	  :	 5;
1682		shubreg_t	i_rsvd3			  :	 3;
1683		shubreg_t	i_xn_req_iq_depth	  :	 5;
1684		shubreg_t	i_rsvd4			  :	 3;
1685		shubreg_t	i_iiq_depth		  :	 6;
1686		shubreg_t	i_rsvd5			  :	12;
1687		shubreg_t	i_force_rep_cred	  :	 1;
1688		shubreg_t	i_force_req_cred	  :	 1;
1689	} ii_iwc_fld_s;
1690} ii_iwc_u_t;
1691
1692/************************************************************************
1693 *                                                                      *
1694 *  Status in the II wrapper.						*
1695 *                                                                      *
1696 ************************************************************************/
1697
1698typedef union ii_iws_u {
1699	shubreg_t	ii_iws_regval;
1700	struct  {
1701		shubreg_t	i_xn_rep_iq_credits	  :	 5;
1702		shubreg_t	i_rsvd			  :	 3;
1703		shubreg_t	i_xn_req_iq_credits	  :	 5;
1704		shubreg_t	i_rsvd1			  :	51;
1705	} ii_iws_fld_s;
1706} ii_iws_u_t;
1707
1708/************************************************************************
1709 *                                                                      *
1710 *  Masks errors in the IWEL register.					*
1711 *                                                                      *
1712 ************************************************************************/
1713
1714typedef union ii_iweim_u {
1715	shubreg_t	ii_iweim_regval;
1716	struct  {
1717		shubreg_t	i_intr_timed_out	  :	 1;
1718		shubreg_t	i_rsvd			  :	 7;
1719		shubreg_t	i_cam_overflow		  :	 1;
1720		shubreg_t	i_cam_read_miss		  :	 1;
1721		shubreg_t	i_rsvd1			  :	 2;
1722		shubreg_t	i_ioq_rep_underflow	  :	 1;
1723		shubreg_t	i_ioq_req_underflow	  :	 1;
1724		shubreg_t	i_ioq_rep_overflow	  :	 1;
1725		shubreg_t	i_ioq_req_overflow	  :	 1;
1726		shubreg_t	i_iiq_rep_overflow	  :	 1;
1727		shubreg_t	i_iiq_req_overflow	  :	 1;
1728		shubreg_t	i_rsvd2			  :	 6;
1729		shubreg_t	i_ii_xn_rep_cred_overflow :	 1;
1730		shubreg_t	i_ii_xn_req_cred_overflow :	 1;
1731		shubreg_t	i_rsvd3			  :	 6;
1732		shubreg_t	i_ii_xn_invalid_cmd	  :	 1;
1733		shubreg_t	i_xn_ii_invalid_cmd	  :	 1;
1734		shubreg_t	i_rsvd4			  :	30;
1735	} ii_iweim_fld_s;
1736} ii_iweim_u_t;
1737
1738
1739/************************************************************************
1740 *                                                                      *
1741 *  A write to this register causes a particular field in the           *
1742 * corresponding widget's PRB entry to be adjusted up or down by 1.     *
1743 * This counter should be used when recovering from error and reset     *
1744 * conditions. Note that software would be capable of causing           *
1745 * inadvertent overflow or underflow of these counters.                 *
1746 *                                                                      *
1747 ************************************************************************/
1748
1749typedef union ii_ipca_u {
1750	shubreg_t	ii_ipca_regval;
1751	struct  {
1752		shubreg_t	i_wid                     :	 4;
1753		shubreg_t	i_adjust		  :	 1;
1754		shubreg_t	i_rsvd_1		  :	 3;
1755		shubreg_t	i_field			  :	 2;
1756		shubreg_t	i_rsvd			  :	54;
1757	} ii_ipca_fld_s;
1758} ii_ipca_u_t;
1759
1760
1761/************************************************************************
1762 *                                                                      *
1763 *  There are 8 instances of this register. This register contains      *
1764 * the information that the II has to remember once it has launched a   *
1765 * PIO Read operation. The contents are used to form the correct        *
1766 * Router Network packet and direct the Crosstalk reply to the          *
1767 * appropriate processor.                                               *
1768 *                                                                      *
1769 ************************************************************************/
1770
1771
1772typedef union ii_iprte0a_u {
1773	shubreg_t	ii_iprte0a_regval;
1774	struct  {
1775		shubreg_t	i_rsvd_1                  :	54;
1776		shubreg_t	i_widget		  :	 4;
1777		shubreg_t	i_to_cnt		  :	 5;
1778		shubreg_t       i_vld                     :      1;
1779	} ii_iprte0a_fld_s;
1780} ii_iprte0a_u_t;
1781
1782
1783/************************************************************************
1784 *                                                                      *
1785 *  There are 8 instances of this register. This register contains      *
1786 * the information that the II has to remember once it has launched a   *
1787 * PIO Read operation. The contents are used to form the correct        *
1788 * Router Network packet and direct the Crosstalk reply to the          *
1789 * appropriate processor.                                               *
1790 *                                                                      *
1791 ************************************************************************/
1792
1793typedef union ii_iprte1a_u {
1794	shubreg_t	ii_iprte1a_regval;
1795	struct  {
1796		shubreg_t	i_rsvd_1                  :	54;
1797		shubreg_t	i_widget		  :	 4;
1798		shubreg_t	i_to_cnt		  :	 5;
1799		shubreg_t       i_vld                     :      1;
1800	} ii_iprte1a_fld_s;
1801} ii_iprte1a_u_t;
1802
1803
1804/************************************************************************
1805 *                                                                      *
1806 *  There are 8 instances of this register. This register contains      *
1807 * the information that the II has to remember once it has launched a   *
1808 * PIO Read operation. The contents are used to form the correct        *
1809 * Router Network packet and direct the Crosstalk reply to the          *
1810 * appropriate processor.                                               *
1811 *                                                                      *
1812 ************************************************************************/
1813
1814typedef union ii_iprte2a_u {
1815	shubreg_t	ii_iprte2a_regval;
1816	struct  {
1817		shubreg_t	i_rsvd_1                  :	54;
1818		shubreg_t	i_widget		  :	 4;
1819		shubreg_t	i_to_cnt		  :	 5;
1820		shubreg_t       i_vld                     :      1;
1821	} ii_iprte2a_fld_s;
1822} ii_iprte2a_u_t;
1823
1824
1825/************************************************************************
1826 *                                                                      *
1827 *  There are 8 instances of this register. This register contains      *
1828 * the information that the II has to remember once it has launched a   *
1829 * PIO Read operation. The contents are used to form the correct        *
1830 * Router Network packet and direct the Crosstalk reply to the          *
1831 * appropriate processor.                                               *
1832 *                                                                      *
1833 ************************************************************************/
1834
1835typedef union ii_iprte3a_u {
1836	shubreg_t	ii_iprte3a_regval;
1837	struct  {
1838		shubreg_t	i_rsvd_1                  :	54;
1839		shubreg_t	i_widget		  :	 4;
1840		shubreg_t	i_to_cnt		  :	 5;
1841		shubreg_t	i_vld			  :	 1;
1842	} ii_iprte3a_fld_s;
1843} ii_iprte3a_u_t;
1844
1845
1846/************************************************************************
1847 *                                                                      *
1848 *  There are 8 instances of this register. This register contains      *
1849 * the information that the II has to remember once it has launched a   *
1850 * PIO Read operation. The contents are used to form the correct        *
1851 * Router Network packet and direct the Crosstalk reply to the          *
1852 * appropriate processor.                                               *
1853 *                                                                      *
1854 ************************************************************************/
1855
1856typedef union ii_iprte4a_u {
1857	shubreg_t	ii_iprte4a_regval;
1858	struct	{
1859		shubreg_t	i_rsvd_1		  :	54;
1860		shubreg_t	i_widget		  :	 4;
1861		shubreg_t	i_to_cnt		  :	 5;
1862		shubreg_t	i_vld			  :	 1;
1863	} ii_iprte4a_fld_s;
1864} ii_iprte4a_u_t;
1865
1866
1867/************************************************************************
1868 *                                                                      *
1869 *  There are 8 instances of this register. This register contains      *
1870 * the information that the II has to remember once it has launched a   *
1871 * PIO Read operation. The contents are used to form the correct        *
1872 * Router Network packet and direct the Crosstalk reply to the          *
1873 * appropriate processor.                                               *
1874 *                                                                      *
1875 ************************************************************************/
1876
1877typedef union ii_iprte5a_u {
1878	shubreg_t	ii_iprte5a_regval;
1879	struct	{
1880		shubreg_t	i_rsvd_1		  :	54;
1881		shubreg_t	i_widget		  :	 4;
1882		shubreg_t	i_to_cnt		  :	 5;
1883		shubreg_t	i_vld			  :	 1;
1884	} ii_iprte5a_fld_s;
1885} ii_iprte5a_u_t;
1886
1887
1888/************************************************************************
1889 *                                                                      *
1890 *  There are 8 instances of this register. This register contains      *
1891 * the information that the II has to remember once it has launched a   *
1892 * PIO Read operation. The contents are used to form the correct        *
1893 * Router Network packet and direct the Crosstalk reply to the          *
1894 * appropriate processor.                                               *
1895 *                                                                      *
1896 ************************************************************************/
1897
1898typedef union ii_iprte6a_u {
1899	shubreg_t	ii_iprte6a_regval;
1900	struct	{
1901		shubreg_t	i_rsvd_1		  :	54;
1902		shubreg_t	i_widget		  :	 4;
1903		shubreg_t	i_to_cnt		  :	 5;
1904		shubreg_t	i_vld			  :	 1;
1905	} ii_iprte6a_fld_s;
1906} ii_iprte6a_u_t;
1907
1908
1909/************************************************************************
1910 *                                                                      *
1911 *  There are 8 instances of this register. This register contains      *
1912 * the information that the II has to remember once it has launched a   *
1913 * PIO Read operation. The contents are used to form the correct        *
1914 * Router Network packet and direct the Crosstalk reply to the          *
1915 * appropriate processor.                                               *
1916 *                                                                      *
1917 ************************************************************************/
1918
1919typedef union ii_iprte7a_u {
1920        shubreg_t       ii_iprte7a_regval;
1921        struct  {
1922                shubreg_t       i_rsvd_1                  :     54;
1923                shubreg_t       i_widget                  :      4;
1924                shubreg_t       i_to_cnt                  :      5;
1925                shubreg_t       i_vld                     :      1;
1926        } ii_iprtea7_fld_s;
1927} ii_iprte7a_u_t;
1928
1929
1930
1931/************************************************************************
1932 *                                                                      *
1933 *  There are 8 instances of this register. This register contains      *
1934 * the information that the II has to remember once it has launched a   *
1935 * PIO Read operation. The contents are used to form the correct        *
1936 * Router Network packet and direct the Crosstalk reply to the          *
1937 * appropriate processor.                                               *
1938 *                                                                      *
1939 ************************************************************************/
1940
1941
1942typedef union ii_iprte0b_u {
1943	shubreg_t	ii_iprte0b_regval;
1944	struct  {
1945		shubreg_t	i_rsvd_1                  :	 3;
1946		shubreg_t	i_address		  :	47;
1947		shubreg_t	i_init			  :	 3;
1948		shubreg_t       i_source                  :     11;
1949	} ii_iprte0b_fld_s;
1950} ii_iprte0b_u_t;
1951
1952
1953/************************************************************************
1954 *                                                                      *
1955 *  There are 8 instances of this register. This register contains      *
1956 * the information that the II has to remember once it has launched a   *
1957 * PIO Read operation. The contents are used to form the correct        *
1958 * Router Network packet and direct the Crosstalk reply to the          *
1959 * appropriate processor.                                               *
1960 *                                                                      *
1961 ************************************************************************/
1962
1963typedef union ii_iprte1b_u {
1964	shubreg_t	ii_iprte1b_regval;
1965	struct  {
1966		shubreg_t	i_rsvd_1                  :	 3;
1967		shubreg_t	i_address		  :	47;
1968		shubreg_t	i_init			  :	 3;
1969		shubreg_t       i_source                  :     11;
1970	} ii_iprte1b_fld_s;
1971} ii_iprte1b_u_t;
1972
1973
1974/************************************************************************
1975 *                                                                      *
1976 *  There are 8 instances of this register. This register contains      *
1977 * the information that the II has to remember once it has launched a   *
1978 * PIO Read operation. The contents are used to form the correct        *
1979 * Router Network packet and direct the Crosstalk reply to the          *
1980 * appropriate processor.                                               *
1981 *                                                                      *
1982 ************************************************************************/
1983
1984typedef union ii_iprte2b_u {
1985	shubreg_t	ii_iprte2b_regval;
1986	struct  {
1987		shubreg_t	i_rsvd_1                  :	 3;
1988		shubreg_t	i_address		  :	47;
1989		shubreg_t	i_init			  :	 3;
1990		shubreg_t       i_source                  :     11;
1991	} ii_iprte2b_fld_s;
1992} ii_iprte2b_u_t;
1993
1994
1995/************************************************************************
1996 *                                                                      *
1997 *  There are 8 instances of this register. This register contains      *
1998 * the information that the II has to remember once it has launched a   *
1999 * PIO Read operation. The contents are used to form the correct        *
2000 * Router Network packet and direct the Crosstalk reply to the          *
2001 * appropriate processor.                                               *
2002 *                                                                      *
2003 ************************************************************************/
2004
2005typedef union ii_iprte3b_u {
2006	shubreg_t	ii_iprte3b_regval;
2007	struct  {
2008		shubreg_t	i_rsvd_1                  :	 3;
2009		shubreg_t	i_address		  :	47;
2010		shubreg_t	i_init			  :	 3;
2011		shubreg_t       i_source                  :     11;
2012	} ii_iprte3b_fld_s;
2013} ii_iprte3b_u_t;
2014
2015
2016/************************************************************************
2017 *                                                                      *
2018 *  There are 8 instances of this register. This register contains      *
2019 * the information that the II has to remember once it has launched a   *
2020 * PIO Read operation. The contents are used to form the correct        *
2021 * Router Network packet and direct the Crosstalk reply to the          *
2022 * appropriate processor.                                               *
2023 *                                                                      *
2024 ************************************************************************/
2025
2026typedef union ii_iprte4b_u {
2027	shubreg_t	ii_iprte4b_regval;
2028	struct	{
2029		shubreg_t	i_rsvd_1                  :	 3;
2030		shubreg_t	i_address		  :	47;
2031		shubreg_t	i_init			  :	 3;
2032		shubreg_t       i_source                  :     11;
2033	} ii_iprte4b_fld_s;
2034} ii_iprte4b_u_t;
2035
2036
2037/************************************************************************
2038 *                                                                      *
2039 *  There are 8 instances of this register. This register contains      *
2040 * the information that the II has to remember once it has launched a   *
2041 * PIO Read operation. The contents are used to form the correct        *
2042 * Router Network packet and direct the Crosstalk reply to the          *
2043 * appropriate processor.                                               *
2044 *                                                                      *
2045 ************************************************************************/
2046
2047typedef union ii_iprte5b_u {
2048	shubreg_t	ii_iprte5b_regval;
2049	struct	{
2050		shubreg_t	i_rsvd_1                  :	 3;
2051		shubreg_t	i_address		  :	47;
2052		shubreg_t	i_init			  :	 3;
2053		shubreg_t       i_source                  :     11;
2054	} ii_iprte5b_fld_s;
2055} ii_iprte5b_u_t;
2056
2057
2058/************************************************************************
2059 *                                                                      *
2060 *  There are 8 instances of this register. This register contains      *
2061 * the information that the II has to remember once it has launched a   *
2062 * PIO Read operation. The contents are used to form the correct        *
2063 * Router Network packet and direct the Crosstalk reply to the          *
2064 * appropriate processor.                                               *
2065 *                                                                      *
2066 ************************************************************************/
2067
2068typedef union ii_iprte6b_u {
2069	shubreg_t	ii_iprte6b_regval;
2070	struct	{
2071		shubreg_t	i_rsvd_1                  :	 3;
2072		shubreg_t	i_address		  :	47;
2073		shubreg_t	i_init			  :	 3;
2074		shubreg_t       i_source                  :     11;
2075
2076	} ii_iprte6b_fld_s;
2077} ii_iprte6b_u_t;
2078
2079
2080/************************************************************************
2081 *                                                                      *
2082 *  There are 8 instances of this register. This register contains      *
2083 * the information that the II has to remember once it has launched a   *
2084 * PIO Read operation. The contents are used to form the correct        *
2085 * Router Network packet and direct the Crosstalk reply to the          *
2086 * appropriate processor.                                               *
2087 *                                                                      *
2088 ************************************************************************/
2089
2090typedef union ii_iprte7b_u {
2091        shubreg_t       ii_iprte7b_regval;
2092        struct  {
2093		shubreg_t	i_rsvd_1                  :	 3;
2094		shubreg_t	i_address		  :	47;
2095		shubreg_t	i_init			  :	 3;
2096		shubreg_t       i_source                  :     11;
2097        } ii_iprte7b_fld_s;
2098} ii_iprte7b_u_t;
2099
2100
2101/************************************************************************
2102 *                                                                      *
2103 * Description:  SHub II contains a feature which did not exist in      *
2104 * the Hub which automatically cleans up after a Read Response          *
2105 * timeout, including deallocation of the IPRTE and recovery of IBuf    *
2106 * space. The inclusion of this register in SHub is for backward        *
2107 * compatibility                                                        *
2108 * A write to this register causes an entry from the table of           *
2109 * outstanding PIO Read Requests to be freed and returned to the        *
2110 * stack of free entries. This register is used in handling the         *
2111 * timeout errors that result in a PIO Reply never returning from       *
2112 * Crosstalk.                                                           *
2113 * Note that this register does not affect the contents of the IPRTE    *
2114 * registers. The Valid bits in those registers have to be              *
2115 * specifically turned off by software.                                 *
2116 *                                                                      *
2117 ************************************************************************/
2118
2119typedef union ii_ipdr_u {
2120	shubreg_t	ii_ipdr_regval;
2121	struct  {
2122		shubreg_t	i_te                      :	 3;
2123		shubreg_t	i_rsvd_1		  :	 1;
2124		shubreg_t	i_pnd			  :	 1;
2125		shubreg_t	i_init_rpcnt		  :	 1;
2126		shubreg_t	i_rsvd			  :	58;
2127	} ii_ipdr_fld_s;
2128} ii_ipdr_u_t;
2129
2130
2131/************************************************************************
2132 *                                                                      *
2133 *  A write to this register causes a CRB entry to be returned to the   *
2134 * queue of free CRBs. The entry should have previously been cleared    *
2135 * (mark bit) via backdoor access to the pertinent CRB entry. This      *
2136 * register is used in the last step of handling the errors that are    *
2137 * captured and marked in CRB entries.  Briefly: 1) first error for     *
2138 * DMA write from a particular device, and first error for a            *
2139 * particular BTE stream, lead to a marked CRB entry, and processor     *
2140 * interrupt, 2) software reads the error information captured in the   *
2141 * CRB entry, and presumably takes some corrective action, 3)           *
2142 * software clears the mark bit, and finally 4) software writes to      *
2143 * the ICDR register to return the CRB entry to the list of free CRB    *
2144 * entries.                                                             *
2145 *                                                                      *
2146 ************************************************************************/
2147
2148typedef union ii_icdr_u {
2149	shubreg_t	ii_icdr_regval;
2150	struct  {
2151		shubreg_t	i_crb_num                 :	 4;
2152		shubreg_t	i_pnd			  :	 1;
2153		shubreg_t       i_rsvd                    :     59;
2154	} ii_icdr_fld_s;
2155} ii_icdr_u_t;
2156
2157
2158/************************************************************************
2159 *                                                                      *
2160 *  This register provides debug access to two FIFOs inside of II.      *
2161 * Both IOQ_MAX* fields of this register contain the instantaneous      *
2162 * depth (in units of the number of available entries) of the           *
2163 * associated IOQ FIFO.  A read of this register will return the        *
2164 * number of free entries on each FIFO at the time of the read.  So     *
2165 * when a FIFO is idle, the associated field contains the maximum       *
2166 * depth of the FIFO.  This register is writable for debug reasons      *
2167 * and is intended to be written with the maximum desired FIFO depth    *
2168 * while the FIFO is idle. Software must assure that II is idle when    *
2169 * this register is written. If there are any active entries in any     *
2170 * of these FIFOs when this register is written, the results are        *
2171 * undefined.                                                           *
2172 *                                                                      *
2173 ************************************************************************/
2174
2175typedef union ii_ifdr_u {
2176	shubreg_t	ii_ifdr_regval;
2177	struct  {
2178		shubreg_t	i_ioq_max_rq              :	 7;
2179		shubreg_t	i_set_ioq_rq		  :	 1;
2180		shubreg_t	i_ioq_max_rp		  :	 7;
2181		shubreg_t	i_set_ioq_rp		  :	 1;
2182		shubreg_t	i_rsvd			  :	48;
2183	} ii_ifdr_fld_s;
2184} ii_ifdr_u_t;
2185
2186
2187/************************************************************************
2188 *                                                                      *
2189 *  This register allows the II to become sluggish in removing          *
2190 * messages from its inbound queue (IIQ). This will cause messages to   *
2191 * back up in either virtual channel. Disabling the "molasses" mode     *
2192 * subsequently allows the II to be tested under stress. In the         *
2193 * sluggish ("Molasses") mode, the localized effects of congestion      *
2194 * can be observed.                                                     *
2195 *                                                                      *
2196 ************************************************************************/
2197
2198typedef union ii_iiap_u {
2199        shubreg_t       ii_iiap_regval;
2200        struct  {
2201                shubreg_t       i_rq_mls                  :      6;
2202		shubreg_t	i_rsvd_1		  :	 2;
2203		shubreg_t	i_rp_mls		  :	 6;
2204		shubreg_t       i_rsvd                    :     50;
2205        } ii_iiap_fld_s;
2206} ii_iiap_u_t;
2207
2208
2209/************************************************************************
2210 *                                                                      *
2211 *  This register allows several parameters of CRB operation to be      *
2212 * set. Note that writing to this register can have catastrophic side   *
2213 * effects, if the CRB is not quiescent, i.e. if the CRB is             *
2214 * processing protocol messages when the write occurs.                  *
2215 *                                                                      *
2216 ************************************************************************/
2217
2218typedef union ii_icmr_u {
2219	shubreg_t	ii_icmr_regval;
2220	struct  {
2221		shubreg_t	i_sp_msg                  :	 1;
2222		shubreg_t	i_rd_hdr		  :	 1;
2223		shubreg_t	i_rsvd_4		  :	 2;
2224		shubreg_t	i_c_cnt			  :	 4;
2225		shubreg_t	i_rsvd_3		  :	 4;
2226		shubreg_t	i_clr_rqpd		  :	 1;
2227		shubreg_t	i_clr_rppd		  :	 1;
2228		shubreg_t	i_rsvd_2		  :	 2;
2229		shubreg_t	i_fc_cnt		  :	 4;
2230		shubreg_t	i_crb_vld		  :	15;
2231		shubreg_t	i_crb_mark		  :	15;
2232		shubreg_t	i_rsvd_1		  :	 2;
2233		shubreg_t	i_precise		  :	 1;
2234		shubreg_t	i_rsvd			  :	11;
2235	} ii_icmr_fld_s;
2236} ii_icmr_u_t;
2237
2238
2239/************************************************************************
2240 *                                                                      *
2241 *  This register allows control of the table portion of the CRB        *
2242 * logic via software. Control operations from this register have       *
2243 * priority over all incoming Crosstalk or BTE requests.                *
2244 *                                                                      *
2245 ************************************************************************/
2246
2247typedef union ii_iccr_u {
2248	shubreg_t	ii_iccr_regval;
2249	struct  {
2250		shubreg_t	i_crb_num                 :	 4;
2251		shubreg_t	i_rsvd_1		  :	 4;
2252		shubreg_t	i_cmd			  :	 8;
2253		shubreg_t	i_pending		  :	 1;
2254		shubreg_t	i_rsvd			  :	47;
2255	} ii_iccr_fld_s;
2256} ii_iccr_u_t;
2257
2258
2259/************************************************************************
2260 *                                                                      *
2261 *  This register allows the maximum timeout value to be programmed.    *
2262 *                                                                      *
2263 ************************************************************************/
2264
2265typedef union ii_icto_u {
2266	shubreg_t	ii_icto_regval;
2267	struct  {
2268		shubreg_t	i_timeout                 :	 8;
2269		shubreg_t	i_rsvd			  :	56;
2270	} ii_icto_fld_s;
2271} ii_icto_u_t;
2272
2273
2274/************************************************************************
2275 *                                                                      *
2276 *  This register allows the timeout prescalar to be programmed. An     *
2277 * internal counter is associated with this register. When the          *
2278 * internal counter reaches the value of the PRESCALE field, the        *
2279 * timer registers in all valid CRBs are incremented (CRBx_D[TIMEOUT]   *
2280 * field). The internal counter resets to zero, and then continues      *
2281 * counting.                                                            *
2282 *                                                                      *
2283 ************************************************************************/
2284
2285typedef union ii_ictp_u {
2286	shubreg_t	ii_ictp_regval;
2287	struct  {
2288		shubreg_t	i_prescale                :	24;
2289		shubreg_t	i_rsvd			  :	40;
2290	} ii_ictp_fld_s;
2291} ii_ictp_u_t;
2292
2293
2294/************************************************************************
2295 *                                                                      *
2296 * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
2297 * used for Crosstalk operations (both cacheline and partial            *
2298 * operations) or BTE/IO. Because the CRB entries are very wide, five   *
2299 * registers (_A to _E) are required to read and write each entry.      *
2300 * The CRB Entry registers can be conceptualized as rows and columns    *
2301 * (illustrated in the table above). Each row contains the 4            *
2302 * registers required for a single CRB Entry. The first doubleword      *
2303 * (column) for each entry is labeled A, and the second doubleword      *
2304 * (higher address) is labeled B, the third doubleword is labeled C,    *
2305 * the fourth doubleword is labeled D and the fifth doubleword is       *
2306 * labeled E. All CRB entries have their addresses on a quarter         *
2307 * cacheline aligned boundary.                   *
2308 * Upon reset, only the following fields are initialized: valid         *
2309 * (VLD), priority count, timeout, timeout valid, and context valid.    *
2310 * All other bits should be cleared by software before use (after       *
2311 * recovering any potential error state from before the reset).         *
2312 * The following four tables summarize the format for the four          *
2313 * registers that are used for each ICRB# Entry.                        *
2314 *                                                                      *
2315 ************************************************************************/
2316
2317typedef union ii_icrb0_a_u {
2318	shubreg_t	ii_icrb0_a_regval;
2319	struct  {
2320		shubreg_t	ia_iow                    :	 1;
2321		shubreg_t	ia_vld			  :	 1;
2322		shubreg_t	ia_addr			  :	47;
2323		shubreg_t	ia_tnum			  :	 5;
2324		shubreg_t	ia_sidn			  :	 4;
2325		shubreg_t       ia_rsvd                   :      6;
2326	} ii_icrb0_a_fld_s;
2327} ii_icrb0_a_u_t;
2328
2329
2330/************************************************************************
2331 *                                                                      *
2332 * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
2333 * used for Crosstalk operations (both cacheline and partial            *
2334 * operations) or BTE/IO. Because the CRB entries are very wide, five   *
2335 * registers (_A to _E) are required to read and write each entry.      *
2336 *                                                                      *
2337 ************************************************************************/
2338
2339typedef union ii_icrb0_b_u {
2340	shubreg_t	ii_icrb0_b_regval;
2341	struct	{
2342		shubreg_t	ib_xt_err		  :	 1;
2343		shubreg_t	ib_mark			  :	 1;
2344		shubreg_t	ib_ln_uce		  :	 1;
2345		shubreg_t	ib_errcode		  :	 3;
2346		shubreg_t	ib_error		  :	 1;
2347		shubreg_t	ib_stall__bte_1		  :	 1;
2348		shubreg_t	ib_stall__bte_0		  :	 1;
2349		shubreg_t	ib_stall__intr		  :	 1;
2350		shubreg_t	ib_stall_ib		  :	 1;
2351		shubreg_t	ib_intvn		  :	 1;
2352		shubreg_t	ib_wb			  :	 1;
2353		shubreg_t	ib_hold			  :	 1;
2354		shubreg_t	ib_ack			  :	 1;
2355		shubreg_t	ib_resp			  :	 1;
2356		shubreg_t	ib_ack_cnt		  :	11;
2357		shubreg_t	ib_rsvd			  :	 7;
2358		shubreg_t	ib_exc			  :	 5;
2359		shubreg_t	ib_init			  :	 3;
2360		shubreg_t	ib_imsg			  :	 8;
2361		shubreg_t	ib_imsgtype		  :	 2;
2362		shubreg_t	ib_use_old		  :	 1;
2363		shubreg_t	ib_rsvd_1		  :	11;
2364	} ii_icrb0_b_fld_s;
2365} ii_icrb0_b_u_t;
2366
2367
2368/************************************************************************
2369 *                                                                      *
2370 * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
2371 * used for Crosstalk operations (both cacheline and partial            *
2372 * operations) or BTE/IO. Because the CRB entries are very wide, five   *
2373 * registers (_A to _E) are required to read and write each entry.      *
2374 *                                                                      *
2375 ************************************************************************/
2376
2377typedef union ii_icrb0_c_u {
2378	shubreg_t	ii_icrb0_c_regval;
2379	struct	{
2380		shubreg_t	ic_source		  :	15;
2381		shubreg_t	ic_size			  :	 2;
2382		shubreg_t	ic_ct			  :	 1;
2383		shubreg_t	ic_bte_num		  :	 1;
2384		shubreg_t	ic_gbr			  :	 1;
2385		shubreg_t	ic_resprqd		  :	 1;
2386		shubreg_t	ic_bo			  :	 1;
2387		shubreg_t	ic_suppl		  :	15;
2388		shubreg_t	ic_rsvd			  :	27;
2389	} ii_icrb0_c_fld_s;
2390} ii_icrb0_c_u_t;
2391
2392
2393/************************************************************************
2394 *                                                                      *
2395 * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
2396 * used for Crosstalk operations (both cacheline and partial            *
2397 * operations) or BTE/IO. Because the CRB entries are very wide, five   *
2398 * registers (_A to _E) are required to read and write each entry.      *
2399 *                                                                      *
2400 ************************************************************************/
2401
2402typedef union ii_icrb0_d_u {
2403	shubreg_t	ii_icrb0_d_regval;
2404	struct  {
2405		shubreg_t	id_pa_be                  :	43;
2406		shubreg_t	id_bte_op		  :	 1;
2407		shubreg_t	id_pr_psc		  :	 4;
2408		shubreg_t	id_pr_cnt		  :	 4;
2409		shubreg_t	id_sleep		  :	 1;
2410		shubreg_t	id_rsvd			  :	11;
2411	} ii_icrb0_d_fld_s;
2412} ii_icrb0_d_u_t;
2413
2414
2415/************************************************************************
2416 *                                                                      *
2417 * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
2418 * used for Crosstalk operations (both cacheline and partial            *
2419 * operations) or BTE/IO. Because the CRB entries are very wide, five   *
2420 * registers (_A to _E) are required to read and write each entry.      *
2421 *                                                                      *
2422 ************************************************************************/
2423
2424typedef union ii_icrb0_e_u {
2425	shubreg_t	ii_icrb0_e_regval;
2426	struct  {
2427		shubreg_t	ie_timeout                :	 8;
2428		shubreg_t	ie_context		  :	15;
2429		shubreg_t	ie_rsvd			  :	 1;
2430		shubreg_t	ie_tvld			  :	 1;
2431		shubreg_t	ie_cvld			  :	 1;
2432		shubreg_t	ie_rsvd_0		  :	38;
2433	} ii_icrb0_e_fld_s;
2434} ii_icrb0_e_u_t;
2435
2436
2437/************************************************************************
2438 *                                                                      *
2439 *  This register contains the lower 64 bits of the header of the       *
2440 * spurious message captured by II. Valid when the SP_MSG bit in ICMR   *
2441 * register is set.                                                     *
2442 *                                                                      *
2443 ************************************************************************/
2444
2445typedef union ii_icsml_u {
2446	shubreg_t	ii_icsml_regval;
2447	struct  {
2448		shubreg_t	i_tt_addr                 :	47;
2449		shubreg_t	i_newsuppl_ex		  :	14;
2450		shubreg_t	i_reserved		  :	 2;
2451		shubreg_t       i_overflow                :      1;
2452	} ii_icsml_fld_s;
2453} ii_icsml_u_t;
2454
2455
2456/************************************************************************
2457 *                                                                      *
2458 *  This register contains the middle 64 bits of the header of the      *
2459 * spurious message captured by II. Valid when the SP_MSG bit in ICMR   *
2460 * register is set.                                                     *
2461 *                                                                      *
2462 ************************************************************************/
2463
2464typedef union ii_icsmm_u {
2465	shubreg_t	ii_icsmm_regval;
2466	struct  {
2467		shubreg_t	i_tt_ack_cnt              :	11;
2468		shubreg_t	i_reserved		  :	53;
2469	} ii_icsmm_fld_s;
2470} ii_icsmm_u_t;
2471
2472
2473/************************************************************************
2474 *                                                                      *
2475 *  This register contains the microscopic state, all the inputs to     *
2476 * the protocol table, captured with the spurious message. Valid when   *
2477 * the SP_MSG bit in the ICMR register is set.                          *
2478 *                                                                      *
2479 ************************************************************************/
2480
2481typedef union ii_icsmh_u {
2482	shubreg_t	ii_icsmh_regval;
2483	struct  {
2484		shubreg_t	i_tt_vld                  :	 1;
2485		shubreg_t	i_xerr			  :	 1;
2486		shubreg_t	i_ft_cwact_o		  :	 1;
2487		shubreg_t	i_ft_wact_o		  :	 1;
2488		shubreg_t       i_ft_active_o             :      1;
2489		shubreg_t	i_sync			  :	 1;
2490		shubreg_t	i_mnusg			  :	 1;
2491		shubreg_t	i_mnusz			  :	 1;
2492		shubreg_t	i_plusz			  :	 1;
2493		shubreg_t	i_plusg			  :	 1;
2494		shubreg_t	i_tt_exc		  :	 5;
2495		shubreg_t	i_tt_wb			  :	 1;
2496		shubreg_t	i_tt_hold		  :	 1;
2497		shubreg_t	i_tt_ack		  :	 1;
2498		shubreg_t	i_tt_resp		  :	 1;
2499		shubreg_t	i_tt_intvn		  :	 1;
2500		shubreg_t	i_g_stall_bte1		  :	 1;
2501		shubreg_t	i_g_stall_bte0		  :	 1;
2502		shubreg_t	i_g_stall_il		  :	 1;
2503		shubreg_t	i_g_stall_ib		  :	 1;
2504		shubreg_t	i_tt_imsg		  :	 8;
2505		shubreg_t	i_tt_imsgtype		  :	 2;
2506		shubreg_t	i_tt_use_old		  :	 1;
2507		shubreg_t	i_tt_respreqd		  :	 1;
2508		shubreg_t	i_tt_bte_num		  :	 1;
2509		shubreg_t	i_cbn			  :	 1;
2510		shubreg_t	i_match			  :	 1;
2511		shubreg_t	i_rpcnt_lt_34		  :	 1;
2512		shubreg_t	i_rpcnt_ge_34		  :	 1;
2513		shubreg_t	i_rpcnt_lt_18		  :	 1;
2514		shubreg_t	i_rpcnt_ge_18		  :	 1;
2515		shubreg_t       i_rpcnt_lt_2              :      1;
2516		shubreg_t	i_rpcnt_ge_2		  :	 1;
2517		shubreg_t	i_rqcnt_lt_18		  :	 1;
2518		shubreg_t	i_rqcnt_ge_18		  :	 1;
2519		shubreg_t	i_rqcnt_lt_2		  :	 1;
2520		shubreg_t	i_rqcnt_ge_2		  :	 1;
2521		shubreg_t	i_tt_device		  :	 7;
2522		shubreg_t	i_tt_init		  :	 3;
2523		shubreg_t	i_reserved		  :	 5;
2524	} ii_icsmh_fld_s;
2525} ii_icsmh_u_t;
2526
2527
2528/************************************************************************
2529 *                                                                      *
2530 *  The Shub DEBUG unit provides a 3-bit selection signal to the        *
2531 * II core and a 3-bit selection signal to the fsbclk domain in the II  *
2532 * wrapper.                                                             *
2533 *                                                                      *
2534 ************************************************************************/
2535
2536typedef union ii_idbss_u {
2537	shubreg_t	ii_idbss_regval;
2538	struct  {
2539		shubreg_t	i_iioclk_core_submenu     :	 3;
2540		shubreg_t	i_rsvd			  :	 5;
2541		shubreg_t	i_fsbclk_wrapper_submenu  :	 3;
2542		shubreg_t	i_rsvd_1		  :	 5;
2543		shubreg_t	i_iioclk_menu		  :	 5;
2544		shubreg_t	i_rsvd_2		  :	43;
2545	} ii_idbss_fld_s;
2546} ii_idbss_u_t;
2547
2548
2549/************************************************************************
2550 *                                                                      *
2551 * Description:  This register is used to set up the length for a       *
2552 * transfer and then to monitor the progress of that transfer. This     *
2553 * register needs to be initialized before a transfer is started. A     *
2554 * legitimate write to this register will set the Busy bit, clear the   *
2555 * Error bit, and initialize the length to the value desired.           *
2556 * While the transfer is in progress, hardware will decrement the       *
2557 * length field with each successful block that is copied. Once the     *
2558 * transfer completes, hardware will clear the Busy bit. The length     *
2559 * field will also contain the number of cache lines left to be         *
2560 * transferred.                                                         *
2561 *                                                                      *
2562 ************************************************************************/
2563
2564typedef union ii_ibls0_u {
2565	shubreg_t	ii_ibls0_regval;
2566	struct	{
2567		shubreg_t	i_length		  :	16;
2568		shubreg_t	i_error			  :	 1;
2569		shubreg_t	i_rsvd_1		  :	 3;
2570		shubreg_t	i_busy			  :	 1;
2571		shubreg_t       i_rsvd                    :     43;
2572	} ii_ibls0_fld_s;
2573} ii_ibls0_u_t;
2574
2575
2576/************************************************************************
2577 *                                                                      *
2578 *  This register should be loaded before a transfer is started. The    *
2579 * address to be loaded in bits 39:0 is the 40-bit TRex+ physical       *
2580 * address as described in Section 1.3, Figure2 and Figure3. Since      *
2581 * the bottom 7 bits of the address are always taken to be zero, BTE    *
2582 * transfers are always cacheline-aligned.                              *
2583 *                                                                      *
2584 ************************************************************************/
2585
2586typedef union ii_ibsa0_u {
2587	shubreg_t	ii_ibsa0_regval;
2588	struct  {
2589		shubreg_t	i_rsvd_1                  :	 7;
2590		shubreg_t	i_addr			  :	42;
2591		shubreg_t       i_rsvd                    :     15;
2592	} ii_ibsa0_fld_s;
2593} ii_ibsa0_u_t;
2594
2595
2596/************************************************************************
2597 *                                                                      *
2598 *  This register should be loaded before a transfer is started. The    *
2599 * address to be loaded in bits 39:0 is the 40-bit TRex+ physical       *
2600 * address as described in Section 1.3, Figure2 and Figure3. Since      *
2601 * the bottom 7 bits of the address are always taken to be zero, BTE    *
2602 * transfers are always cacheline-aligned.                              *
2603 *                                                                      *
2604 ************************************************************************/
2605
2606typedef union ii_ibda0_u {
2607	shubreg_t	ii_ibda0_regval;
2608	struct  {
2609		shubreg_t	i_rsvd_1                  :	 7;
2610		shubreg_t	i_addr			  :	42;
2611		shubreg_t	i_rsvd			  :	15;
2612	} ii_ibda0_fld_s;
2613} ii_ibda0_u_t;
2614
2615
2616/************************************************************************
2617 *                                                                      *
2618 *  Writing to this register sets up the attributes of the transfer     *
2619 * and initiates the transfer operation. Reading this register has      *
2620 * the side effect of terminating any transfer in progress. Note:       *
2621 * stopping a transfer midstream could have an adverse impact on the    *
2622 * other BTE. If a BTE stream has to be stopped (due to error           *
2623 * handling for example), both BTE streams should be stopped and        *
2624 * their transfers discarded.                                           *
2625 *                                                                      *
2626 ************************************************************************/
2627
2628typedef union ii_ibct0_u {
2629	shubreg_t	ii_ibct0_regval;
2630	struct  {
2631		shubreg_t	i_zerofill                :	 1;
2632		shubreg_t	i_rsvd_2		  :	 3;
2633		shubreg_t	i_notify		  :	 1;
2634		shubreg_t	i_rsvd_1		  :	 3;
2635		shubreg_t       i_poison                  :      1;
2636		shubreg_t       i_rsvd                    :     55;
2637	} ii_ibct0_fld_s;
2638} ii_ibct0_u_t;
2639
2640
2641/************************************************************************
2642 *                                                                      *
2643 *  This register contains the address to which the WINV is sent.       *
2644 * This address has to be cache line aligned.                           *
2645 *                                                                      *
2646 ************************************************************************/
2647
2648typedef union ii_ibna0_u {
2649	shubreg_t	ii_ibna0_regval;
2650	struct  {
2651		shubreg_t	i_rsvd_1                  :	 7;
2652		shubreg_t	i_addr			  :	42;
2653		shubreg_t	i_rsvd			  :	15;
2654	} ii_ibna0_fld_s;
2655} ii_ibna0_u_t;
2656
2657
2658/************************************************************************
2659 *                                                                      *
2660 *  This register contains the programmable level as well as the node   *
2661 * ID and PI unit of the processor to which the interrupt will be       *
2662 * sent.                                                                *
2663 *                                                                      *
2664 ************************************************************************/
2665
2666typedef union ii_ibia0_u {
2667	shubreg_t	ii_ibia0_regval;
2668	struct  {
2669		shubreg_t	i_rsvd_2                   :	 1;
2670		shubreg_t	i_node_id		  :	11;
2671		shubreg_t	i_rsvd_1		  :	 4;
2672		shubreg_t	i_level			  :	 7;
2673		shubreg_t       i_rsvd                    :     41;
2674	} ii_ibia0_fld_s;
2675} ii_ibia0_u_t;
2676
2677
2678/************************************************************************
2679 *                                                                      *
2680 * Description:  This register is used to set up the length for a       *
2681 * transfer and then to monitor the progress of that transfer. This     *
2682 * register needs to be initialized before a transfer is started. A     *
2683 * legitimate write to this register will set the Busy bit, clear the   *
2684 * Error bit, and initialize the length to the value desired.           *
2685 * While the transfer is in progress, hardware will decrement the       *
2686 * length field with each successful block that is copied. Once the     *
2687 * transfer completes, hardware will clear the Busy bit. The length     *
2688 * field will also contain the number of cache lines left to be         *
2689 * transferred.                                                         *
2690 *                                                                      *
2691 ************************************************************************/
2692
2693typedef union ii_ibls1_u {
2694	shubreg_t	ii_ibls1_regval;
2695	struct  {
2696		shubreg_t	i_length                  :	16;
2697		shubreg_t	i_error			  :	 1;
2698		shubreg_t	i_rsvd_1		  :	 3;
2699		shubreg_t	i_busy			  :	 1;
2700		shubreg_t       i_rsvd                    :     43;
2701	} ii_ibls1_fld_s;
2702} ii_ibls1_u_t;
2703
2704
2705/************************************************************************
2706 *                                                                      *
2707 *  This register should be loaded before a transfer is started. The    *
2708 * address to be loaded in bits 39:0 is the 40-bit TRex+ physical       *
2709 * address as described in Section 1.3, Figure2 and Figure3. Since      *
2710 * the bottom 7 bits of the address are always taken to be zero, BTE    *
2711 * transfers are always cacheline-aligned.                              *
2712 *                                                                      *
2713 ************************************************************************/
2714
2715typedef union ii_ibsa1_u {
2716	shubreg_t	ii_ibsa1_regval;
2717	struct  {
2718		shubreg_t	i_rsvd_1                  :	 7;
2719		shubreg_t	i_addr			  :	33;
2720		shubreg_t	i_rsvd			  :	24;
2721	} ii_ibsa1_fld_s;
2722} ii_ibsa1_u_t;
2723
2724
2725/************************************************************************
2726 *                                                                      *
2727 *  This register should be loaded before a transfer is started. The    *
2728 * address to be loaded in bits 39:0 is the 40-bit TRex+ physical       *
2729 * address as described in Section 1.3, Figure2 and Figure3. Since      *
2730 * the bottom 7 bits of the address are always taken to be zero, BTE    *
2731 * transfers are always cacheline-aligned.                              *
2732 *                                                                      *
2733 ************************************************************************/
2734
2735typedef union ii_ibda1_u {
2736	shubreg_t	ii_ibda1_regval;
2737	struct  {
2738		shubreg_t	i_rsvd_1                  :	 7;
2739		shubreg_t	i_addr			  :	33;
2740		shubreg_t	i_rsvd			  :	24;
2741	} ii_ibda1_fld_s;
2742} ii_ibda1_u_t;
2743
2744
2745/************************************************************************
2746 *                                                                      *
2747 *  Writing to this register sets up the attributes of the transfer     *
2748 * and initiates the transfer operation. Reading this register has      *
2749 * the side effect of terminating any transfer in progress. Note:       *
2750 * stopping a transfer midstream could have an adverse impact on the    *
2751 * other BTE. If a BTE stream has to be stopped (due to error           *
2752 * handling for example), both BTE streams should be stopped and        *
2753 * their transfers discarded.                                           *
2754 *                                                                      *
2755 ************************************************************************/
2756
2757typedef union ii_ibct1_u {
2758	shubreg_t	ii_ibct1_regval;
2759	struct  {
2760		shubreg_t	i_zerofill                :	 1;
2761		shubreg_t	i_rsvd_2		  :	 3;
2762		shubreg_t	i_notify		  :	 1;
2763		shubreg_t	i_rsvd_1		  :	 3;
2764		shubreg_t	i_poison		  :	 1;
2765		shubreg_t	i_rsvd			  :	55;
2766	} ii_ibct1_fld_s;
2767} ii_ibct1_u_t;
2768
2769
2770/************************************************************************
2771 *                                                                      *
2772 *  This register contains the address to which the WINV is sent.       *
2773 * This address has to be cache line aligned.                           *
2774 *                                                                      *
2775 ************************************************************************/
2776
2777typedef union ii_ibna1_u {
2778	shubreg_t	ii_ibna1_regval;
2779	struct  {
2780		shubreg_t	i_rsvd_1                  :	 7;
2781		shubreg_t	i_addr			  :	33;
2782		shubreg_t       i_rsvd                    :     24;
2783	} ii_ibna1_fld_s;
2784} ii_ibna1_u_t;
2785
2786
2787/************************************************************************
2788 *                                                                      *
2789 *  This register contains the programmable level as well as the node   *
2790 * ID and PI unit of the processor to which the interrupt will be       *
2791 * sent.                                                                *
2792 *                                                                      *
2793 ************************************************************************/
2794
2795typedef union ii_ibia1_u {
2796	shubreg_t	ii_ibia1_regval;
2797	struct  {
2798		shubreg_t	i_pi_id                   :	 1;
2799		shubreg_t	i_node_id		  :	 8;
2800		shubreg_t	i_rsvd_1		  :	 7;
2801		shubreg_t	i_level			  :	 7;
2802		shubreg_t	i_rsvd			  :	41;
2803	} ii_ibia1_fld_s;
2804} ii_ibia1_u_t;
2805
2806
2807/************************************************************************
2808 *                                                                      *
2809 *  This register defines the resources that feed information into      *
2810 * the two performance counters located in the IO Performance           *
2811 * Profiling Register. There are 17 different quantities that can be    *
2812 * measured. Given these 17 different options, the two performance      *
2813 * counters have 15 of them in common; menu selections 0 through 0xE    *
2814 * are identical for each performance counter. As for the other two     *
2815 * options, one is available from one performance counter and the       *
2816 * other is available from the other performance counter. Hence, the    *
2817 * II supports all 17*16=272 possible combinations of quantities to     *
2818 * measure.                                                             *
2819 *                                                                      *
2820 ************************************************************************/
2821
2822typedef union ii_ipcr_u {
2823	shubreg_t	ii_ipcr_regval;
2824	struct  {
2825		shubreg_t	i_ippr0_c                 :	 4;
2826		shubreg_t	i_ippr1_c		  :	 4;
2827		shubreg_t	i_icct			  :	 8;
2828		shubreg_t       i_rsvd                    :     48;
2829	} ii_ipcr_fld_s;
2830} ii_ipcr_u_t;
2831
2832
2833/************************************************************************
2834 *                                                                      *
2835 *                                                                      *
2836 *                                                                      *
2837 ************************************************************************/
2838
2839typedef union ii_ippr_u {
2840	shubreg_t	ii_ippr_regval;
2841	struct  {
2842		shubreg_t	i_ippr0                   :	32;
2843		shubreg_t	i_ippr1			  :	32;
2844	} ii_ippr_fld_s;
2845} ii_ippr_u_t;
2846
2847
2848#endif /* __ASSEMBLY__ */
2849
2850/**************************************************************************
2851 *                                                                        *
2852 * The following defines which were not formed into structures are        *
2853 * probably indentical to another register, and the name of the           *
2854 * register is provided against each of these registers. This             *
2855 * information needs to be checked carefully                              *
2856 *                                                                        *
2857 *           IIO_ICRB1_A                IIO_ICRB0_A                       *
2858 *           IIO_ICRB1_B                IIO_ICRB0_B                       *
2859 *           IIO_ICRB1_C                IIO_ICRB0_C                       *
2860 *           IIO_ICRB1_D                IIO_ICRB0_D                       *
2861 *           IIO_ICRB1_E                IIO_ICRB0_E                       *
2862 *           IIO_ICRB2_A                IIO_ICRB0_A                       *
2863 *           IIO_ICRB2_B                IIO_ICRB0_B                       *
2864 *           IIO_ICRB2_C                IIO_ICRB0_C                       *
2865 *           IIO_ICRB2_D                IIO_ICRB0_D                       *
2866 *           IIO_ICRB2_E                IIO_ICRB0_E                       *
2867 *           IIO_ICRB3_A                IIO_ICRB0_A                       *
2868 *           IIO_ICRB3_B                IIO_ICRB0_B                       *
2869 *           IIO_ICRB3_C                IIO_ICRB0_C                       *
2870 *           IIO_ICRB3_D                IIO_ICRB0_D                       *
2871 *           IIO_ICRB3_E                IIO_ICRB0_E                       *
2872 *           IIO_ICRB4_A                IIO_ICRB0_A                       *
2873 *           IIO_ICRB4_B                IIO_ICRB0_B                       *
2874 *           IIO_ICRB4_C                IIO_ICRB0_C                       *
2875 *           IIO_ICRB4_D                IIO_ICRB0_D                       *
2876 *           IIO_ICRB4_E                IIO_ICRB0_E                       *
2877 *           IIO_ICRB5_A                IIO_ICRB0_A                       *
2878 *           IIO_ICRB5_B                IIO_ICRB0_B                       *
2879 *           IIO_ICRB5_C                IIO_ICRB0_C                       *
2880 *           IIO_ICRB5_D                IIO_ICRB0_D                       *
2881 *           IIO_ICRB5_E                IIO_ICRB0_E                       *
2882 *           IIO_ICRB6_A                IIO_ICRB0_A                       *
2883 *           IIO_ICRB6_B                IIO_ICRB0_B                       *
2884 *           IIO_ICRB6_C                IIO_ICRB0_C                       *
2885 *           IIO_ICRB6_D                IIO_ICRB0_D                       *
2886 *           IIO_ICRB6_E                IIO_ICRB0_E                       *
2887 *           IIO_ICRB7_A                IIO_ICRB0_A                       *
2888 *           IIO_ICRB7_B                IIO_ICRB0_B                       *
2889 *           IIO_ICRB7_C                IIO_ICRB0_C                       *
2890 *           IIO_ICRB7_D                IIO_ICRB0_D                       *
2891 *           IIO_ICRB7_E                IIO_ICRB0_E                       *
2892 *           IIO_ICRB8_A                IIO_ICRB0_A                       *
2893 *           IIO_ICRB8_B                IIO_ICRB0_B                       *
2894 *           IIO_ICRB8_C                IIO_ICRB0_C                       *
2895 *           IIO_ICRB8_D                IIO_ICRB0_D                       *
2896 *           IIO_ICRB8_E                IIO_ICRB0_E                       *
2897 *           IIO_ICRB9_A                IIO_ICRB0_A                       *
2898 *           IIO_ICRB9_B                IIO_ICRB0_B                       *
2899 *           IIO_ICRB9_C                IIO_ICRB0_C                       *
2900 *           IIO_ICRB9_D                IIO_ICRB0_D                       *
2901 *           IIO_ICRB9_E                IIO_ICRB0_E                       *
2902 *           IIO_ICRBA_A                IIO_ICRB0_A                       *
2903 *           IIO_ICRBA_B                IIO_ICRB0_B                       *
2904 *           IIO_ICRBA_C                IIO_ICRB0_C                       *
2905 *           IIO_ICRBA_D                IIO_ICRB0_D                       *
2906 *           IIO_ICRBA_E                IIO_ICRB0_E                       *
2907 *           IIO_ICRBB_A                IIO_ICRB0_A                       *
2908 *           IIO_ICRBB_B                IIO_ICRB0_B                       *
2909 *           IIO_ICRBB_C                IIO_ICRB0_C                       *
2910 *           IIO_ICRBB_D                IIO_ICRB0_D                       *
2911 *           IIO_ICRBB_E                IIO_ICRB0_E                       *
2912 *           IIO_ICRBC_A                IIO_ICRB0_A                       *
2913 *           IIO_ICRBC_B                IIO_ICRB0_B                       *
2914 *           IIO_ICRBC_C                IIO_ICRB0_C                       *
2915 *           IIO_ICRBC_D                IIO_ICRB0_D                       *
2916 *           IIO_ICRBC_E                IIO_ICRB0_E                       *
2917 *           IIO_ICRBD_A                IIO_ICRB0_A                       *
2918 *           IIO_ICRBD_B                IIO_ICRB0_B                       *
2919 *           IIO_ICRBD_C                IIO_ICRB0_C                       *
2920 *           IIO_ICRBD_D                IIO_ICRB0_D                       *
2921 *           IIO_ICRBD_E                IIO_ICRB0_E                       *
2922 *           IIO_ICRBE_A                IIO_ICRB0_A                       *
2923 *           IIO_ICRBE_B                IIO_ICRB0_B                       *
2924 *           IIO_ICRBE_C                IIO_ICRB0_C                       *
2925 *           IIO_ICRBE_D                IIO_ICRB0_D                       *
2926 *           IIO_ICRBE_E                IIO_ICRB0_E                       *
2927 *                                                                        *
2928 **************************************************************************/
2929
2930
2931/*
2932 * Slightly friendlier names for some common registers.
2933 */
2934#define IIO_WIDGET              IIO_WID      /* Widget identification */
2935#define IIO_WIDGET_STAT         IIO_WSTAT    /* Widget status register */
2936#define IIO_WIDGET_CTRL         IIO_WCR      /* Widget control register */
2937#define IIO_PROTECT             IIO_ILAPR    /* IO interface protection */
2938#define IIO_PROTECT_OVRRD       IIO_ILAPO    /* IO protect override */
2939#define IIO_OUTWIDGET_ACCESS    IIO_IOWA     /* Outbound widget access */
2940#define IIO_INWIDGET_ACCESS     IIO_IIWA     /* Inbound widget access */
2941#define IIO_INDEV_ERR_MASK      IIO_IIDEM    /* Inbound device error mask */
2942#define IIO_LLP_CSR             IIO_ILCSR    /* LLP control and status */
2943#define IIO_LLP_LOG             IIO_ILLR     /* LLP log */
2944#define IIO_XTALKCC_TOUT        IIO_IXCC     /* Xtalk credit count timeout*/
2945#define IIO_XTALKTT_TOUT        IIO_IXTT     /* Xtalk tail timeout */
2946#define IIO_IO_ERR_CLR          IIO_IECLR    /* IO error clear */
2947#define IIO_IGFX_0 		IIO_IGFX0
2948#define IIO_IGFX_1 		IIO_IGFX1
2949#define IIO_IBCT_0		IIO_IBCT0
2950#define IIO_IBCT_1		IIO_IBCT1
2951#define IIO_IBLS_0		IIO_IBLS0
2952#define IIO_IBLS_1		IIO_IBLS1
2953#define IIO_IBSA_0		IIO_IBSA0
2954#define IIO_IBSA_1		IIO_IBSA1
2955#define IIO_IBDA_0		IIO_IBDA0
2956#define IIO_IBDA_1		IIO_IBDA1
2957#define IIO_IBNA_0		IIO_IBNA0
2958#define IIO_IBNA_1		IIO_IBNA1
2959#define IIO_IBIA_0		IIO_IBIA0
2960#define IIO_IBIA_1		IIO_IBIA1
2961#define IIO_IOPRB_0		IIO_IPRB0
2962
2963#define IIO_PRTE_A(_x)		(IIO_IPRTE0_A + (8 * (_x)))
2964#define IIO_PRTE_B(_x)		(IIO_IPRTE0_B + (8 * (_x)))
2965#define IIO_NUM_PRTES		8	/* Total number of PRB table entries */
2966#define IIO_WIDPRTE_A(x)	IIO_PRTE_A(((x) - 8)) /* widget ID to its PRTE num */
2967#define IIO_WIDPRTE_B(x)	IIO_PRTE_B(((x) - 8)) /* widget ID to its PRTE num */
2968
2969#define IIO_NUM_IPRBS 		(9)
2970
2971#define IIO_LLP_CSR_IS_UP               0x00002000
2972#define IIO_LLP_CSR_LLP_STAT_MASK       0x00003000
2973#define IIO_LLP_CSR_LLP_STAT_SHFT       12
2974
2975#define IIO_LLP_CB_MAX  0xffff	/* in ILLR CB_CNT, Max Check Bit errors */
2976#define IIO_LLP_SN_MAX  0xffff	/* in ILLR SN_CNT, Max Sequence Number errors */
2977
2978/* key to IIO_PROTECT_OVRRD */
2979#define IIO_PROTECT_OVRRD_KEY   0x53474972756c6573ull   /* "SGIrules" */
2980
2981/* BTE register names */
2982#define IIO_BTE_STAT_0          IIO_IBLS_0   /* Also BTE length/status 0 */
2983#define IIO_BTE_SRC_0           IIO_IBSA_0   /* Also BTE source address  0 */
2984#define IIO_BTE_DEST_0          IIO_IBDA_0   /* Also BTE dest. address 0 */
2985#define IIO_BTE_CTRL_0          IIO_IBCT_0   /* Also BTE control/terminate 0 */
2986#define IIO_BTE_NOTIFY_0        IIO_IBNA_0   /* Also BTE notification 0 */
2987#define IIO_BTE_INT_0           IIO_IBIA_0   /* Also BTE interrupt 0 */
2988#define IIO_BTE_OFF_0           0            /* Base offset from BTE 0 regs. */
2989#define IIO_BTE_OFF_1   	(IIO_IBLS_1 - IIO_IBLS_0) /* Offset from base to BTE 1 */
2990
2991/* BTE register offsets from base */
2992#define BTEOFF_STAT             0
2993#define BTEOFF_SRC              (IIO_BTE_SRC_0 - IIO_BTE_STAT_0)
2994#define BTEOFF_DEST             (IIO_BTE_DEST_0 - IIO_BTE_STAT_0)
2995#define BTEOFF_CTRL             (IIO_BTE_CTRL_0 - IIO_BTE_STAT_0)
2996#define BTEOFF_NOTIFY           (IIO_BTE_NOTIFY_0 - IIO_BTE_STAT_0)
2997#define BTEOFF_INT              (IIO_BTE_INT_0 - IIO_BTE_STAT_0)
2998
2999
3000/* names used in shub diags */
3001#define IIO_BASE_BTE0   IIO_IBLS_0
3002#define IIO_BASE_BTE1   IIO_IBLS_1
3003
3004/*
3005 * Macro which takes the widget number, and returns the
3006 * IO PRB address of that widget.
3007 * value _x is expected to be a widget number in the range
3008 * 0, 8 - 0xF
3009 */
3010#define IIO_IOPRB(_x)   (IIO_IOPRB_0 + ( ( (_x) < HUB_WIDGET_ID_MIN ? \
3011                        (_x) : \
3012                        (_x) - (HUB_WIDGET_ID_MIN-1)) << 3) )
3013
3014
3015/* GFX Flow Control Node/Widget Register */
3016#define IIO_IGFX_W_NUM_BITS	4	/* size of widget num field */
3017#define IIO_IGFX_W_NUM_MASK	((1<<IIO_IGFX_W_NUM_BITS)-1)
3018#define IIO_IGFX_W_NUM_SHIFT	0
3019#define IIO_IGFX_PI_NUM_BITS	1	/* size of PI num field */
3020#define IIO_IGFX_PI_NUM_MASK	((1<<IIO_IGFX_PI_NUM_BITS)-1)
3021#define IIO_IGFX_PI_NUM_SHIFT	4
3022#define IIO_IGFX_N_NUM_BITS	8	/* size of node num field */
3023#define IIO_IGFX_N_NUM_MASK	((1<<IIO_IGFX_N_NUM_BITS)-1)
3024#define IIO_IGFX_N_NUM_SHIFT	5
3025#define IIO_IGFX_P_NUM_BITS	1	/* size of processor num field */
3026#define IIO_IGFX_P_NUM_MASK	((1<<IIO_IGFX_P_NUM_BITS)-1)
3027#define IIO_IGFX_P_NUM_SHIFT	16
3028#define IIO_IGFX_INIT(widget, pi, node, cpu)				(\
3029	(((widget) & IIO_IGFX_W_NUM_MASK) << IIO_IGFX_W_NUM_SHIFT) |	 \
3030	(((pi)     & IIO_IGFX_PI_NUM_MASK)<< IIO_IGFX_PI_NUM_SHIFT)|	 \
3031	(((node)   & IIO_IGFX_N_NUM_MASK) << IIO_IGFX_N_NUM_SHIFT) |	 \
3032	(((cpu)    & IIO_IGFX_P_NUM_MASK) << IIO_IGFX_P_NUM_SHIFT))
3033
3034
3035/* Scratch registers (all bits available) */
3036#define IIO_SCRATCH_REG0        IIO_ISCR0
3037#define IIO_SCRATCH_REG1        IIO_ISCR1
3038#define IIO_SCRATCH_MASK        0xffffffffffffffff
3039
3040#define IIO_SCRATCH_BIT0_0      0x0000000000000001
3041#define IIO_SCRATCH_BIT0_1      0x0000000000000002
3042#define IIO_SCRATCH_BIT0_2      0x0000000000000004
3043#define IIO_SCRATCH_BIT0_3      0x0000000000000008
3044#define IIO_SCRATCH_BIT0_4      0x0000000000000010
3045#define IIO_SCRATCH_BIT0_5      0x0000000000000020
3046#define IIO_SCRATCH_BIT0_6      0x0000000000000040
3047#define IIO_SCRATCH_BIT0_7      0x0000000000000080
3048#define IIO_SCRATCH_BIT0_8      0x0000000000000100
3049#define IIO_SCRATCH_BIT0_9      0x0000000000000200
3050#define IIO_SCRATCH_BIT0_A      0x0000000000000400
3051
3052#define IIO_SCRATCH_BIT1_0      0x0000000000000001
3053#define IIO_SCRATCH_BIT1_1      0x0000000000000002
3054/* IO Translation Table Entries */
3055#define IIO_NUM_ITTES   7               /* ITTEs numbered 0..6 */
3056                                        /* Hw manuals number them 1..7! */
3057/*
3058 * IIO_IMEM Register fields.
3059 */
3060#define IIO_IMEM_W0ESD  0x1             /* Widget 0 shut down due to error */
3061#define IIO_IMEM_B0ESD  (1 << 4)        /* BTE 0 shut down due to error */
3062#define IIO_IMEM_B1ESD  (1 << 8)        /* BTE 1 Shut down due to error */
3063
3064#define HUB_NUM_BIG_WINDOW      (IIO_NUM_ITTES - 1)
3065
3066/*
3067 * Use the top big window as a surrogate for the first small window
3068 */
3069#define SWIN0_BIGWIN            HUB_NUM_BIG_WINDOW
3070
3071#define ILCSR_WARM_RESET        0x100
3072
3073/*
3074 * CRB manipulation macros
3075 *      The CRB macros are slightly complicated, since there are up to
3076 *      four registers associated with each CRB entry.
3077 */
3078#define IIO_NUM_CRBS            15      /* Number of CRBs */
3079#define IIO_NUM_PC_CRBS         4       /* Number of partial cache CRBs */
3080#define IIO_ICRB_OFFSET         8
3081#define IIO_ICRB_0              IIO_ICRB0_A
3082#define IIO_ICRB_ADDR_SHFT	2	/* Shift to get proper address */
3083
3084#define IIO_ICRB_A(_x)  (IIO_ICRB_0 + (6 * IIO_ICRB_OFFSET * (_x)))
3085#define IIO_ICRB_B(_x)  (IIO_ICRB_A(_x) + 1*IIO_ICRB_OFFSET)
3086#define IIO_ICRB_C(_x)  (IIO_ICRB_A(_x) + 2*IIO_ICRB_OFFSET)
3087#define IIO_ICRB_D(_x)  (IIO_ICRB_A(_x) + 3*IIO_ICRB_OFFSET)
3088#define IIO_ICRB_E(_x)  (IIO_ICRB_A(_x) + 4*IIO_ICRB_OFFSET)
3089
3090#define TNUM_TO_WIDGET_DEV(_tnum)	(_tnum & 0x7)
3091
3092/*
3093 * values for "ecode" field
3094 */
3095#define IIO_ICRB_ECODE_DERR     0       /* Directory error due to IIO access */
3096#define IIO_ICRB_ECODE_PERR     1       /* Poison error on IO access */
3097#define IIO_ICRB_ECODE_WERR     2       /* Write error by IIO access
3098                                         * e.g. WINV to a Read only line. */
3099#define IIO_ICRB_ECODE_AERR     3       /* Access error caused by IIO access */
3100#define IIO_ICRB_ECODE_PWERR    4       /* Error on partial write       */
3101#define IIO_ICRB_ECODE_PRERR    5       /* Error on partial read        */
3102#define IIO_ICRB_ECODE_TOUT     6       /* CRB timeout before deallocating */
3103#define IIO_ICRB_ECODE_XTERR    7       /* Incoming xtalk pkt had error bit */
3104
3105/*
3106 * Values for field imsgtype
3107 */
3108#define IIO_ICRB_IMSGT_XTALK    0       /* Incoming Meessage from Xtalk */
3109#define IIO_ICRB_IMSGT_BTE      1       /* Incoming message from BTE    */
3110#define IIO_ICRB_IMSGT_SN1NET   2       /* Incoming message from SN1 net */
3111#define IIO_ICRB_IMSGT_CRB      3       /* Incoming message from CRB ???  */
3112
3113/*
3114 * values for field initiator.
3115 */
3116#define IIO_ICRB_INIT_XTALK     0       /* Message originated in xtalk  */
3117#define IIO_ICRB_INIT_BTE0      0x1     /* Message originated in BTE 0  */
3118#define IIO_ICRB_INIT_SN1NET    0x2     /* Message originated in SN1net */
3119#define IIO_ICRB_INIT_CRB       0x3     /* Message originated in CRB ?  */
3120#define IIO_ICRB_INIT_BTE1      0x5     /* MEssage originated in BTE 1  */
3121
3122/*
3123 * Number of credits Hub widget has while sending req/response to
3124 * xbow.
3125 * Value of 3 is required by Xbow 1.1
3126 * We may be able to increase this to 4 with Xbow 1.2.
3127 */
3128#define       HUBII_XBOW_CREDIT       3
3129#define       HUBII_XBOW_REV2_CREDIT  4
3130
3131/*
3132 * Number of credits that xtalk devices should use when communicating
3133 * with a SHub (depth of SHub's queue).
3134 */
3135#define HUB_CREDIT 4
3136
3137/*
3138 * Some IIO_PRB fields
3139 */
3140#define IIO_PRB_MULTI_ERR	(1LL << 63)
3141#define IIO_PRB_SPUR_RD		(1LL << 51)
3142#define IIO_PRB_SPUR_WR		(1LL << 50)
3143#define IIO_PRB_RD_TO		(1LL << 49)
3144#define IIO_PRB_ERROR		(1LL << 48)
3145
3146/*************************************************************************
3147
3148 Some of the IIO field masks and shifts are defined here.
3149 This is in order to maintain compatibility in SN0 and SN1 code
3150
3151**************************************************************************/
3152
3153/*
3154 * ICMR register fields
3155 * (Note: the IIO_ICMR_P_CNT and IIO_ICMR_PC_VLD from Hub are not
3156 * present in SHub)
3157 */
3158
3159#define IIO_ICMR_CRB_VLD_SHFT   20
3160#define IIO_ICMR_CRB_VLD_MASK   (0x7fffUL << IIO_ICMR_CRB_VLD_SHFT)
3161
3162#define IIO_ICMR_FC_CNT_SHFT    16
3163#define IIO_ICMR_FC_CNT_MASK    (0xf << IIO_ICMR_FC_CNT_SHFT)
3164
3165#define IIO_ICMR_C_CNT_SHFT     4
3166#define IIO_ICMR_C_CNT_MASK     (0xf << IIO_ICMR_C_CNT_SHFT)
3167
3168#define IIO_ICMR_PRECISE        (1UL << 52)
3169#define IIO_ICMR_CLR_RPPD       (1UL << 13)
3170#define IIO_ICMR_CLR_RQPD       (1UL << 12)
3171
3172#define IIO_IPDR_PND    (1 << 4)
3173
3174/*
3175 * IIO CRB deallocation register field masks: (IIO_ICDR)
3176 */
3177#define IIO_ICDR_PND    (1 << 4)
3178
3179/*
3180 * IO BTE Length/Status (IIO_IBLS) register bit field definitions
3181 */
3182#define IBLS_BUSY		(0x1 << 20)
3183#define IBLS_ERROR_SHFT		16
3184#define IBLS_ERROR		(0x1 << IBLS_ERROR_SHFT)
3185#define IBLS_LENGTH_MASK	0xffff
3186
3187/*
3188 * IO BTE Control/Terminate register (IBCT) register bit field definitions
3189 */
3190#define IBCT_POISON		(0x1 << 8)
3191#define IBCT_NOTIFY		(0x1 << 4)
3192#define IBCT_ZFIL_MODE		(0x1 << 0)
3193
3194/*
3195 * IIO Incoming Error Packet Header (IIO_IIEPH1/IIO_IIEPH2)
3196 */
3197#define IIEPH1_VALID		(1 << 44)
3198#define IIEPH1_OVERRUN		(1 << 40)
3199#define IIEPH1_ERR_TYPE_SHFT	32
3200#define IIEPH1_ERR_TYPE_MASK	0xf
3201#define IIEPH1_SOURCE_SHFT	20
3202#define IIEPH1_SOURCE_MASK	11
3203#define IIEPH1_SUPPL_SHFT	8
3204#define IIEPH1_SUPPL_MASK	11
3205#define IIEPH1_CMD_SHFT		0
3206#define IIEPH1_CMD_MASK		7
3207
3208#define IIEPH2_TAIL		(1 << 40)
3209#define IIEPH2_ADDRESS_SHFT	0
3210#define IIEPH2_ADDRESS_MASK	38
3211
3212#define IIEPH1_ERR_SHORT_REQ	2
3213#define IIEPH1_ERR_SHORT_REPLY	3
3214#define IIEPH1_ERR_LONG_REQ	4
3215#define IIEPH1_ERR_LONG_REPLY	5
3216
3217/*
3218 * IO Error Clear register bit field definitions
3219 */
3220#define IECLR_PI1_FWD_INT	(1 << 31)  /* clear PI1_FORWARD_INT in iidsr */
3221#define IECLR_PI0_FWD_INT	(1 << 30)  /* clear PI0_FORWARD_INT in iidsr */
3222#define IECLR_SPUR_RD_HDR	(1 << 29)  /* clear valid bit in ixss reg */
3223#define IECLR_BTE1		(1 << 18)  /* clear bte error 1 */
3224#define IECLR_BTE0		(1 << 17)  /* clear bte error 0 */
3225#define IECLR_CRAZY		(1 << 16)  /* clear crazy bit in wstat reg */
3226#define IECLR_PRB_F		(1 << 15)  /* clear err bit in PRB_F reg */
3227#define IECLR_PRB_E		(1 << 14)  /* clear err bit in PRB_E reg */
3228#define IECLR_PRB_D		(1 << 13)  /* clear err bit in PRB_D reg */
3229#define IECLR_PRB_C		(1 << 12)  /* clear err bit in PRB_C reg */
3230#define IECLR_PRB_B		(1 << 11)  /* clear err bit in PRB_B reg */
3231#define IECLR_PRB_A		(1 << 10)  /* clear err bit in PRB_A reg */
3232#define IECLR_PRB_9		(1 << 9)   /* clear err bit in PRB_9 reg */
3233#define IECLR_PRB_8		(1 << 8)   /* clear err bit in PRB_8 reg */
3234#define IECLR_PRB_0		(1 << 0)   /* clear err bit in PRB_0 reg */
3235
3236/*
3237 * IIO CRB control register Fields: IIO_ICCR
3238 */
3239#define	IIO_ICCR_PENDING	(0x10000)
3240#define	IIO_ICCR_CMD_MASK	(0xFF)
3241#define	IIO_ICCR_CMD_SHFT	(7)
3242#define	IIO_ICCR_CMD_NOP	(0x0)	/* No Op */
3243#define	IIO_ICCR_CMD_WAKE	(0x100) /* Reactivate CRB entry and process */
3244#define	IIO_ICCR_CMD_TIMEOUT	(0x200)	/* Make CRB timeout & mark invalid */
3245#define	IIO_ICCR_CMD_EJECT	(0x400)	/* Contents of entry written to memory
3246					 * via a WB
3247					 */
3248#define	IIO_ICCR_CMD_FLUSH	(0x800)
3249
3250/*
3251 *
3252 * CRB Register description.
3253 *
3254 * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3255 * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3256 * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3257 * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3258 * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3259 *
3260 * Many of the fields in CRB are status bits used by hardware
3261 * for implementation of the protocol. It's very dangerous to
3262 * mess around with the CRB registers.
3263 *
3264 * It's OK to read the CRB registers and try to make sense out of the
3265 * fields in CRB.
3266 *
3267 * Updating CRB requires all activities in Hub IIO to be quiesced.
3268 * otherwise, a write to CRB could corrupt other CRB entries.
3269 * CRBs are here only as a back door peek to shub IIO's status.
3270 * Quiescing implies  no dmas no PIOs
3271 * either directly from the cpu or from sn0net.
3272 * this is not something that can be done easily. So, AVOID updating
3273 * CRBs.
3274 */
3275
3276#ifndef __ASSEMBLY__
3277
3278/*
3279 * Easy access macros for CRBs, all 4 registers (A-D)
3280 */
3281typedef ii_icrb0_a_u_t icrba_t;
3282#define a_lnetuce       ii_icrb0_a_fld_s.ia_ln_uce
3283#define a_mark          ii_icrb0_a_fld_s.ia_mark
3284#define a_xerr          ii_icrb0_a_fld_s.ia_xt_err
3285#define a_sidn          ii_icrb0_a_fld_s.ia_sidn
3286#define a_tnum          ii_icrb0_a_fld_s.ia_tnum
3287#define a_addr          ii_icrb0_a_fld_s.ia_addr
3288#define a_valid         ii_icrb0_a_fld_s.ia_vld
3289#define a_iow           ii_icrb0_a_fld_s.ia_iow
3290#define a_regvalue	ii_icrb0_a_regval
3291
3292typedef ii_icrb0_b_u_t icrbb_t;
3293#define b_error         ii_icrb0_b_fld_s.ib_error
3294#define b_ecode         ii_icrb0_b_fld_s.ib_errcode
3295#define b_cohtrans      ii_icrb0_b_fld_s.ib_ct
3296#define b_xtsize        ii_icrb0_b_fld_s.ib_size
3297#define b_source        ii_icrb0_b_fld_s.ib_source
3298#define b_imsgtype      ii_icrb0_b_fld_s.ib_imsgtype
3299#define b_imsg          ii_icrb0_b_fld_s.ib_imsg
3300#define b_initiator     ii_icrb0_b_fld_s.ib_init
3301#define b_regvalue	ii_icrb0_b_regval
3302
3303typedef ii_icrb0_c_u_t icrbc_t;
3304#define c_btenum        ii_icrb0_c_fld_s.ic_bte_num
3305#define c_pricnt        ii_icrb0_c_fld_s.ic_pr_cnt
3306#define c_pripsc        ii_icrb0_c_fld_s.ic_pr_psc
3307#define c_bteaddr       ii_icrb0_c_fld_s.ic_pa_be /* ic_pa_be fld has 2 names*/
3308#define c_benable       ii_icrb0_c_fld_s.ic_pa_be /* ic_pa_be fld has 2 names*/
3309#define c_suppl         ii_icrb0_c_fld_s.ic_suppl
3310#define c_barrop        ii_icrb0_c_fld_s.ic_bo
3311#define c_doresp        ii_icrb0_c_fld_s.ic_resprqd
3312#define c_gbr           ii_icrb0_c_fld_s.ic_gbr
3313#define c_regvalue	ii_icrb0_c_regval
3314
3315typedef ii_icrb0_d_u_t icrbd_t;
3316#define d_bteop         ii_icrb0_d_fld_s.id_bte_op
3317#define icrbd_ctxtvld   ii_icrb0_d_fld_s.id_cvld
3318#define icrbd_toutvld   ii_icrb0_d_fld_s.id_tvld
3319#define icrbd_context   ii_icrb0_d_fld_s.id_context
3320#define d_regvalue	ii_icrb0_d_regval
3321
3322#endif /* __ASSEMBLY__ */
3323
3324/* Number of widgets supported by shub */
3325#define HUB_NUM_WIDGET          9
3326#define HUB_WIDGET_ID_MIN       0x8
3327#define HUB_WIDGET_ID_MAX       0xf
3328
3329#define HUB_WIDGET_PART_NUM     0xc120
3330#define MAX_HUBS_PER_XBOW       2
3331
3332#ifndef __ASSEMBLY__
3333/* A few more #defines for backwards compatibility */
3334#define iprb_t          ii_iprb0_u_t
3335#define iprb_regval     ii_iprb0_regval
3336#define iprb_mult_err	ii_iprb0_fld_s.i_mult_err
3337#define iprb_spur_rd	ii_iprb0_fld_s.i_spur_rd
3338#define iprb_spur_wr	ii_iprb0_fld_s.i_spur_wr
3339#define iprb_rd_to	ii_iprb0_fld_s.i_rd_to
3340#define iprb_ovflow     ii_iprb0_fld_s.i_of_cnt
3341#define iprb_error      ii_iprb0_fld_s.i_error
3342#define iprb_ff         ii_iprb0_fld_s.i_f
3343#define iprb_mode       ii_iprb0_fld_s.i_m
3344#define iprb_bnakctr    ii_iprb0_fld_s.i_nb
3345#define iprb_anakctr    ii_iprb0_fld_s.i_na
3346#define iprb_xtalkctr   ii_iprb0_fld_s.i_c
3347#endif
3348
3349#define LNK_STAT_WORKING        0x2		/* LLP is working */
3350
3351#define IIO_WSTAT_ECRAZY        (1ULL << 32)    /* Hub gone crazy */
3352#define IIO_WSTAT_TXRETRY       (1ULL << 9)     /* Hub Tx Retry timeout */
3353#define IIO_WSTAT_TXRETRY_MASK  (0x7F)   /* should be 0xFF?? */
3354#define IIO_WSTAT_TXRETRY_SHFT  (16)
3355#define IIO_WSTAT_TXRETRY_CNT(w)        (((w) >> IIO_WSTAT_TXRETRY_SHFT) & \
3356                                          IIO_WSTAT_TXRETRY_MASK)
3357
3358/* Number of II perf. counters we can multiplex at once */
3359
3360#define IO_PERF_SETS	32
3361
3362#if __KERNEL__
3363#ifndef __ASSEMBLY__
3364#include <asm/sn/alenlist.h>
3365#include <asm/sn/dmamap.h>
3366#include <asm/sn/driver.h>
3367#include <asm/sn/xtalk/xtalk.h>
3368
3369/* Bit for the widget in inbound access register */
3370#define IIO_IIWA_WIDGET(_w)     ((uint64_t)(1ULL << _w))
3371/* Bit for the widget in outbound access register */
3372#define IIO_IOWA_WIDGET(_w)     ((uint64_t)(1ULL << _w))
3373
3374/* NOTE: The following define assumes that we are going to get
3375 * widget numbers from 8 thru F and the device numbers within
3376 * widget from 0 thru 7.
3377 */
3378#define IIO_IIDEM_WIDGETDEV_MASK(w, d)  ((uint64_t)(1ULL << (8 * ((w) - 8) + (d))))
3379
3380/* IO Interrupt Destination Register */
3381#define IIO_IIDSR_SENT_SHIFT    28
3382#define IIO_IIDSR_SENT_MASK     0x30000000
3383#define IIO_IIDSR_ENB_SHIFT     24
3384#define IIO_IIDSR_ENB_MASK      0x01000000
3385#define IIO_IIDSR_NODE_SHIFT    9
3386#define IIO_IIDSR_NODE_MASK     0x000ff700
3387#define IIO_IIDSR_PI_ID_SHIFT   8
3388#define IIO_IIDSR_PI_ID_MASK    0x00000100
3389#define IIO_IIDSR_LVL_SHIFT     0
3390#define IIO_IIDSR_LVL_MASK      0x000000ff
3391
3392/* Xtalk timeout threshhold register (IIO_IXTT) */
3393#define IXTT_RRSP_TO_SHFT	55	   /* read response timeout */
3394#define IXTT_RRSP_TO_MASK	(0x1FULL << IXTT_RRSP_TO_SHFT)
3395#define IXTT_RRSP_PS_SHFT	32	   /* read responsed TO prescalar */
3396#define IXTT_RRSP_PS_MASK	(0x7FFFFFULL << IXTT_RRSP_PS_SHFT)
3397#define IXTT_TAIL_TO_SHFT	0	   /* tail timeout counter threshold */
3398#define IXTT_TAIL_TO_MASK	(0x3FFFFFFULL << IXTT_TAIL_TO_SHFT)
3399
3400/*
3401 * The IO LLP control status register and widget control register
3402 */
3403
3404typedef union hubii_wcr_u {
3405        uint64_t      wcr_reg_value;
3406        struct {
3407	  uint64_t	wcr_widget_id:   4,     /* LLP crossbar credit */
3408			wcr_tag_mode:	 1,	/* Tag mode */
3409			wcr_rsvd1:	 8,	/* Reserved */
3410			wcr_xbar_crd:	 3,	/* LLP crossbar credit */
3411			wcr_f_bad_pkt:	 1,	/* Force bad llp pkt enable */
3412			wcr_dir_con:	 1,	/* widget direct connect */
3413			wcr_e_thresh:	 5,	/* elasticity threshold */
3414			wcr_rsvd:	41;	/* unused */
3415        } wcr_fields_s;
3416} hubii_wcr_t;
3417
3418#define iwcr_dir_con    wcr_fields_s.wcr_dir_con
3419
3420/* The structures below are defined to extract and modify the ii
3421performance registers */
3422
3423/* io_perf_sel allows the caller to specify what tests will be
3424   performed */
3425
3426typedef union io_perf_sel {
3427        uint64_t perf_sel_reg;
3428        struct {
3429               uint64_t	perf_ippr0 :  4,
3430				perf_ippr1 :  4,
3431				perf_icct  :  8,
3432				perf_rsvd  : 48;
3433        } perf_sel_bits;
3434} io_perf_sel_t;
3435
3436/* io_perf_cnt is to extract the count from the shub registers. Due to
3437   hardware problems there is only one counter, not two. */
3438
3439typedef union io_perf_cnt {
3440        uint64_t      perf_cnt;
3441        struct {
3442               uint64_t	perf_cnt   : 20,
3443				perf_rsvd2 : 12,
3444				perf_rsvd1 : 32;
3445        } perf_cnt_bits;
3446
3447} io_perf_cnt_t;
3448
3449typedef union iprte_a {
3450	shubreg_t	entry;
3451	struct {
3452		shubreg_t	i_rsvd_1                  :	 3;
3453		shubreg_t	i_addr			  :	38;
3454		shubreg_t	i_init			  :	 3;
3455		shubreg_t	i_source		  :	 8;
3456		shubreg_t	i_rsvd			  :	 2;
3457		shubreg_t	i_widget		  :	 4;
3458		shubreg_t	i_to_cnt		  :	 5;
3459		shubreg_t       i_vld                     :      1;
3460	} iprte_fields;
3461} iprte_a_t;
3462
3463
3464/* PIO MANAGEMENT */
3465typedef struct hub_piomap_s *hub_piomap_t;
3466
3467extern hub_piomap_t
3468hub_piomap_alloc(devfs_handle_t dev,      /* set up mapping for this device */
3469                device_desc_t dev_desc, /* device descriptor */
3470                iopaddr_t xtalk_addr,   /* map for this xtalk_addr range */
3471                size_t byte_count,
3472                size_t byte_count_max,  /* maximum size of a mapping */
3473                unsigned flags);                /* defined in sys/pio.h */
3474
3475extern void hub_piomap_free(hub_piomap_t hub_piomap);
3476
3477extern caddr_t
3478hub_piomap_addr(hub_piomap_t hub_piomap,        /* mapping resources */
3479                iopaddr_t xtalk_addr,           /* map for this xtalk addr */
3480                size_t byte_count);             /* map this many bytes */
3481
3482extern void
3483hub_piomap_done(hub_piomap_t hub_piomap);
3484
3485extern caddr_t
3486hub_piotrans_addr(      devfs_handle_t dev,       /* translate to this device */
3487                        device_desc_t dev_desc, /* device descriptor */
3488                        iopaddr_t xtalk_addr,   /* Crosstalk address */
3489                        size_t byte_count,      /* map this many bytes */
3490                        unsigned flags);        /* (currently unused) */
3491
3492/* DMA MANAGEMENT */
3493typedef struct hub_dmamap_s *hub_dmamap_t;
3494
3495extern hub_dmamap_t
3496hub_dmamap_alloc(       devfs_handle_t dev,       /* set up mappings for dev */
3497                        device_desc_t dev_desc, /* device descriptor */
3498                        size_t byte_count_max,  /* max size of a mapping */
3499                        unsigned flags);        /* defined in dma.h */
3500
3501extern void
3502hub_dmamap_free(hub_dmamap_t dmamap);
3503
3504extern iopaddr_t
3505hub_dmamap_addr(        hub_dmamap_t dmamap,    /* use mapping resources */
3506                        paddr_t paddr,          /* map for this address */
3507                        size_t byte_count);     /* map this many bytes */
3508
3509extern alenlist_t
3510hub_dmamap_list(        hub_dmamap_t dmamap,    /* use mapping resources */
3511                        alenlist_t alenlist,    /* map this Addr/Length List */
3512                        unsigned flags);
3513
3514extern void
3515hub_dmamap_done(        hub_dmamap_t dmamap);   /* done w/ mapping resources */
3516
3517extern iopaddr_t
3518hub_dmatrans_addr(      devfs_handle_t dev,       /* translate for this device */
3519                        device_desc_t dev_desc, /* device descriptor */
3520                        paddr_t paddr,          /* system physical address */
3521                        size_t byte_count,      /* length */
3522                        unsigned flags);                /* defined in dma.h */
3523
3524extern alenlist_t
3525hub_dmatrans_list(      devfs_handle_t dev,       /* translate for this device */
3526                        device_desc_t dev_desc, /* device descriptor */
3527                        alenlist_t palenlist,   /* system addr/length list */
3528                        unsigned flags);                /* defined in dma.h */
3529
3530extern void
3531hub_dmamap_drain(       hub_dmamap_t map);
3532
3533extern void
3534hub_dmaaddr_drain(      devfs_handle_t vhdl,
3535                        paddr_t addr,
3536                        size_t bytes);
3537
3538extern void
3539hub_dmalist_drain(      devfs_handle_t vhdl,
3540                        alenlist_t list);
3541
3542
3543/* INTERRUPT MANAGEMENT */
3544typedef struct hub_intr_s *hub_intr_t;
3545
3546extern hub_intr_t
3547hub_intr_alloc( devfs_handle_t dev,               /* which device */
3548                device_desc_t dev_desc,         /* device descriptor */
3549                devfs_handle_t owner_dev);        /* owner of this interrupt */
3550
3551extern hub_intr_t
3552hub_intr_alloc_nothd(devfs_handle_t dev,          /* which device */
3553                device_desc_t dev_desc,         /* device descriptor */
3554                devfs_handle_t owner_dev);        /* owner of this interrupt */
3555
3556extern void
3557hub_intr_free(hub_intr_t intr_hdl);
3558
3559extern int
3560hub_intr_connect(       hub_intr_t intr_hdl,    /* xtalk intr resource hndl */
3561                        xtalk_intr_setfunc_t setfunc,
3562                                                /* func to set intr hw */
3563                        void *setfunc_arg);     /* arg to setfunc */
3564
3565extern void
3566hub_intr_disconnect(hub_intr_t intr_hdl);
3567
3568extern devfs_handle_t
3569hub_intr_cpu_get(hub_intr_t intr_hdl);
3570
3571/* CONFIGURATION MANAGEMENT */
3572
3573extern void
3574hub_provider_startup(devfs_handle_t hub);
3575
3576extern void
3577hub_provider_shutdown(devfs_handle_t hub);
3578
3579#define HUB_PIO_CONVEYOR        0x1     /* PIO in conveyor belt mode */
3580#define HUB_PIO_FIRE_N_FORGET   0x2     /* PIO in fire-and-forget mode */
3581
3582/* Flags that make sense to hub_widget_flags_set */
3583#define HUB_WIDGET_FLAGS        (                               \
3584				 HUB_PIO_CONVEYOR       |       \
3585				 HUB_PIO_FIRE_N_FORGET          \
3586				)
3587
3588
3589typedef int     hub_widget_flags_t;
3590
3591/* Set the PIO mode for a widget.  These two functions perform the
3592 * same operation, but hub_device_flags_set() takes a hardware graph
3593 * vertex while hub_widget_flags_set() takes a nasid and widget
3594 * number.  In most cases, hub_device_flags_set() should be used.
3595 */
3596extern int      hub_widget_flags_set(nasid_t            nasid,
3597                                     xwidgetnum_t       widget_num,
3598                                     hub_widget_flags_t flags);
3599
3600/* Depending on the flags set take the appropriate actions */
3601extern int      hub_device_flags_set(devfs_handle_t       widget_dev,
3602                                     hub_widget_flags_t flags);
3603
3604
3605/* Error Handling. */
3606extern int hub_ioerror_handler(devfs_handle_t, int, int, struct io_error_s *);
3607extern int kl_ioerror_handler(cnodeid_t, cnodeid_t, cpuid_t,
3608                              int, paddr_t, caddr_t, ioerror_mode_t);
3609extern void hub_widget_reset(devfs_handle_t, xwidgetnum_t);
3610extern int hub_error_devenable(devfs_handle_t, int, int);
3611extern void hub_widgetdev_enable(devfs_handle_t, int);
3612extern void hub_widgetdev_shutdown(devfs_handle_t, int);
3613extern int  hub_dma_enabled(devfs_handle_t);
3614
3615/* hubdev */
3616extern void hubdev_init(void);
3617extern void hubdev_register(int (*attach_method)(devfs_handle_t));
3618extern int hubdev_unregister(int (*attach_method)(devfs_handle_t));
3619extern int hubdev_docallouts(devfs_handle_t hub);
3620
3621extern caddr_t hubdev_prombase_get(devfs_handle_t hub);
3622extern cnodeid_t hubdev_cnodeid_get(devfs_handle_t hub);
3623
3624#endif /* __ASSEMBLY__ */
3625#endif /* _KERNEL */
3626#endif /* _ASM_IA64_SN_SN2_SHUBIO_H */
3627
3628