1/*
2 * Copyright 2000-2002 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5#include <linux/config.h>
6#include <asm/uaccess.h>
7#include <linux/string.h>
8#include <linux/sched.h>
9#include <linux/reiserfs_fs.h>
10
11/* this is one and only function that is used outside (do_balance.c) */
12int	balance_internal (
13			  struct tree_balance * ,
14			  int,
15			  int,
16			  struct item_head * ,
17			  struct buffer_head **
18			  );
19
20/* modes of internal_shift_left, internal_shift_right and internal_insert_childs */
21#define INTERNAL_SHIFT_FROM_S_TO_L 0
22#define INTERNAL_SHIFT_FROM_R_TO_S 1
23#define INTERNAL_SHIFT_FROM_L_TO_S 2
24#define INTERNAL_SHIFT_FROM_S_TO_R 3
25#define INTERNAL_INSERT_TO_S 4
26#define INTERNAL_INSERT_TO_L 5
27#define INTERNAL_INSERT_TO_R 6
28
29static void	internal_define_dest_src_infos (
30						int shift_mode,
31						struct tree_balance * tb,
32						int h,
33						struct buffer_info * dest_bi,
34						struct buffer_info * src_bi,
35						int * d_key,
36						struct buffer_head ** cf
37						)
38{
39    memset (dest_bi, 0, sizeof (struct buffer_info));
40    memset (src_bi, 0, sizeof (struct buffer_info));
41    /* define dest, src, dest parent, dest position */
42    switch (shift_mode) {
43    case INTERNAL_SHIFT_FROM_S_TO_L:	/* used in internal_shift_left */
44	src_bi->tb = tb;
45	src_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h);
46	src_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h);
47	src_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
48	dest_bi->tb = tb;
49	dest_bi->bi_bh = tb->L[h];
50	dest_bi->bi_parent = tb->FL[h];
51	dest_bi->bi_position = get_left_neighbor_position (tb, h);
52	*d_key = tb->lkey[h];
53	*cf = tb->CFL[h];
54	break;
55    case INTERNAL_SHIFT_FROM_L_TO_S:
56	src_bi->tb = tb;
57	src_bi->bi_bh = tb->L[h];
58	src_bi->bi_parent = tb->FL[h];
59	src_bi->bi_position = get_left_neighbor_position (tb, h);
60	dest_bi->tb = tb;
61	dest_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h);
62	dest_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h);
63	dest_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1); /* dest position is analog of dest->b_item_order */
64	*d_key = tb->lkey[h];
65	*cf = tb->CFL[h];
66	break;
67
68    case INTERNAL_SHIFT_FROM_R_TO_S:	/* used in internal_shift_left */
69	src_bi->tb = tb;
70	src_bi->bi_bh = tb->R[h];
71	src_bi->bi_parent = tb->FR[h];
72	src_bi->bi_position = get_right_neighbor_position (tb, h);
73	dest_bi->tb = tb;
74	dest_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h);
75	dest_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h);
76	dest_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
77	*d_key = tb->rkey[h];
78	*cf = tb->CFR[h];
79	break;
80
81    case INTERNAL_SHIFT_FROM_S_TO_R:
82	src_bi->tb = tb;
83	src_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h);
84	src_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h);
85	src_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
86	dest_bi->tb = tb;
87	dest_bi->bi_bh = tb->R[h];
88	dest_bi->bi_parent = tb->FR[h];
89	dest_bi->bi_position = get_right_neighbor_position (tb, h);
90	*d_key = tb->rkey[h];
91	*cf = tb->CFR[h];
92	break;
93
94    case INTERNAL_INSERT_TO_L:
95	dest_bi->tb = tb;
96	dest_bi->bi_bh = tb->L[h];
97	dest_bi->bi_parent = tb->FL[h];
98	dest_bi->bi_position = get_left_neighbor_position (tb, h);
99	break;
100
101    case INTERNAL_INSERT_TO_S:
102	dest_bi->tb = tb;
103	dest_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h);
104	dest_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h);
105	dest_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
106	break;
107
108    case INTERNAL_INSERT_TO_R:
109	dest_bi->tb = tb;
110	dest_bi->bi_bh = tb->R[h];
111	dest_bi->bi_parent = tb->FR[h];
112	dest_bi->bi_position = get_right_neighbor_position (tb, h);
113	break;
114
115    default:
116	reiserfs_panic (tb->tb_sb, "internal_define_dest_src_infos: shift type is unknown (%d)", shift_mode);
117    }
118}
119
120
121
122/* Insert count node pointers into buffer cur before position to + 1.
123 * Insert count items into buffer cur before position to.
124 * Items and node pointers are specified by inserted and bh respectively.
125 */
126static void internal_insert_childs (struct buffer_info * cur_bi,
127				    int to, int count,
128				    struct item_head * inserted,
129				    struct buffer_head ** bh
130    )
131{
132    struct buffer_head * cur = cur_bi->bi_bh;
133    struct block_head * blkh;
134    int nr;
135    struct key * ih;
136    struct disk_child new_dc[2];
137    struct disk_child * dc;
138    int i;
139
140    if (count <= 0)
141	return;
142
143    blkh = B_BLK_HEAD(cur);
144    nr = blkh_nr_item(blkh);
145
146    RFALSE( count > 2,
147	    "too many children (%d) are to be inserted", count);
148    RFALSE( B_FREE_SPACE (cur) < count * (KEY_SIZE + DC_SIZE),
149	    "no enough free space (%d), needed %d bytes",
150	    B_FREE_SPACE (cur), count * (KEY_SIZE + DC_SIZE));
151
152    /* prepare space for count disk_child */
153    dc = B_N_CHILD(cur,to+1);
154
155    memmove (dc + count, dc, (nr+1-(to+1)) * DC_SIZE);
156
157    /* copy to_be_insert disk children */
158    for (i = 0; i < count; i ++) {
159	put_dc_size( &(new_dc[i]), MAX_CHILD_SIZE(bh[i]) - B_FREE_SPACE(bh[i]));
160	put_dc_block_number( &(new_dc[i]), bh[i]->b_blocknr );
161    }
162    memcpy (dc, new_dc, DC_SIZE * count);
163
164
165    /* prepare space for count items  */
166    ih = B_N_PDELIM_KEY (cur, ((to == -1) ? 0 : to));
167
168    memmove (ih + count, ih, (nr - to) * KEY_SIZE + (nr + 1 + count) * DC_SIZE);
169
170    /* copy item headers (keys) */
171    memcpy (ih, inserted, KEY_SIZE);
172    if ( count > 1 )
173	memcpy (ih + 1, inserted + 1, KEY_SIZE);
174
175    /* sizes, item number */
176    set_blkh_nr_item( blkh, blkh_nr_item(blkh) + count );
177    set_blkh_free_space( blkh,
178                        blkh_free_space(blkh) - count * (DC_SIZE + KEY_SIZE ) );
179
180    do_balance_mark_internal_dirty (cur_bi->tb, cur,0);
181
182    /*&&&&&&&&&&&&&&&&&&&&&&&&*/
183    check_internal (cur);
184    /*&&&&&&&&&&&&&&&&&&&&&&&&*/
185
186    if (cur_bi->bi_parent) {
187	struct disk_child *t_dc = B_N_CHILD (cur_bi->bi_parent,cur_bi->bi_position);
188	put_dc_size( t_dc, dc_size(t_dc) + (count * (DC_SIZE + KEY_SIZE)));
189	do_balance_mark_internal_dirty(cur_bi->tb, cur_bi->bi_parent, 0);
190
191	/*&&&&&&&&&&&&&&&&&&&&&&&&*/
192	check_internal (cur_bi->bi_parent);
193	/*&&&&&&&&&&&&&&&&&&&&&&&&*/
194    }
195
196}
197
198
199/* Delete del_num items and node pointers from buffer cur starting from *
200 * the first_i'th item and first_p'th pointers respectively.		*/
201static void	internal_delete_pointers_items (
202						struct buffer_info * cur_bi,
203						int first_p,
204						int first_i,
205						int del_num
206						)
207{
208  struct buffer_head * cur = cur_bi->bi_bh;
209  int nr;
210  struct block_head * blkh;
211  struct key * key;
212  struct disk_child * dc;
213
214  RFALSE( cur == NULL, "buffer is 0");
215  RFALSE( del_num < 0,
216          "negative number of items (%d) can not be deleted", del_num);
217  RFALSE( first_p < 0 || first_p + del_num > B_NR_ITEMS (cur) + 1 || first_i < 0,
218          "first pointer order (%d) < 0 or "
219          "no so many pointers (%d), only (%d) or "
220          "first key order %d < 0", first_p,
221          first_p + del_num, B_NR_ITEMS (cur) + 1, first_i);
222  if ( del_num == 0 )
223    return;
224
225  blkh = B_BLK_HEAD(cur);
226  nr = blkh_nr_item(blkh);
227
228  if ( first_p == 0 && del_num == nr + 1 ) {
229    RFALSE( first_i != 0, "1st deleted key must have order 0, not %d", first_i);
230    make_empty_node (cur_bi);
231    return;
232  }
233
234  RFALSE( first_i + del_num > B_NR_ITEMS (cur),
235          "first_i = %d del_num = %d "
236          "no so many keys (%d) in the node (%b)(%z)",
237          first_i, del_num, first_i + del_num, cur, cur);
238
239
240  /* deleting */
241  dc = B_N_CHILD (cur, first_p);
242
243  memmove (dc, dc + del_num, (nr + 1 - first_p - del_num) * DC_SIZE);
244  key = B_N_PDELIM_KEY (cur, first_i);
245  memmove (key, key + del_num, (nr - first_i - del_num) * KEY_SIZE + (nr + 1 - del_num) * DC_SIZE);
246
247
248  /* sizes, item number */
249  set_blkh_nr_item( blkh, blkh_nr_item(blkh) - del_num );
250  set_blkh_free_space( blkh,
251                    blkh_free_space(blkh) + (del_num * (KEY_SIZE + DC_SIZE) ) );
252
253  do_balance_mark_internal_dirty (cur_bi->tb, cur, 0);
254  /*&&&&&&&&&&&&&&&&&&&&&&&*/
255  check_internal (cur);
256  /*&&&&&&&&&&&&&&&&&&&&&&&*/
257
258  if (cur_bi->bi_parent) {
259    struct disk_child *t_dc;
260    t_dc = B_N_CHILD (cur_bi->bi_parent, cur_bi->bi_position);
261    put_dc_size( t_dc, dc_size(t_dc) - (del_num * (KEY_SIZE + DC_SIZE) ) );
262
263    do_balance_mark_internal_dirty (cur_bi->tb, cur_bi->bi_parent,0);
264    /*&&&&&&&&&&&&&&&&&&&&&&&&*/
265    check_internal (cur_bi->bi_parent);
266    /*&&&&&&&&&&&&&&&&&&&&&&&&*/
267  }
268}
269
270
271/* delete n node pointers and items starting from given position */
272static void  internal_delete_childs (struct buffer_info * cur_bi,
273				     int from, int n)
274{
275  int i_from;
276
277  i_from = (from == 0) ? from : from - 1;
278
279  /* delete n pointers starting from `from' position in CUR;
280     delete n keys starting from 'i_from' position in CUR;
281     */
282  internal_delete_pointers_items (cur_bi, from, i_from, n);
283}
284
285
286/* copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest
287* last_first == FIRST_TO_LAST means, that we copy first items from src to tail of dest
288 * last_first == LAST_TO_FIRST means, that we copy last items from src to head of dest
289 */
290static void internal_copy_pointers_items (
291					  struct buffer_info * dest_bi,
292					  struct buffer_head * src,
293					  int last_first, int cpy_num
294					  )
295{
296  /* ATTENTION! Number of node pointers in DEST is equal to number of items in DEST *
297   * as delimiting key have already inserted to buffer dest.*/
298  struct buffer_head * dest = dest_bi->bi_bh;
299  int nr_dest, nr_src;
300  int dest_order, src_order;
301  struct block_head * blkh;
302  struct key * key;
303  struct disk_child * dc;
304
305  nr_src = B_NR_ITEMS (src);
306
307  RFALSE( dest == NULL || src == NULL,
308	  "src (%p) or dest (%p) buffer is 0", src, dest);
309  RFALSE( last_first != FIRST_TO_LAST && last_first != LAST_TO_FIRST,
310	  "invalid last_first parameter (%d)", last_first);
311  RFALSE( nr_src < cpy_num - 1,
312	  "no so many items (%d) in src (%d)", cpy_num, nr_src);
313  RFALSE( cpy_num < 0, "cpy_num less than 0 (%d)", cpy_num);
314  RFALSE( cpy_num - 1 + B_NR_ITEMS(dest) > (int)MAX_NR_KEY(dest),
315	  "cpy_num (%d) + item number in dest (%d) can not be > MAX_NR_KEY(%d)",
316	  cpy_num, B_NR_ITEMS(dest), MAX_NR_KEY(dest));
317
318  if ( cpy_num == 0 )
319    return;
320
321	/* coping */
322  blkh = B_BLK_HEAD(dest);
323  nr_dest = blkh_nr_item(blkh);
324
325  /*dest_order = (last_first == LAST_TO_FIRST) ? 0 : nr_dest;*/
326  /*src_order = (last_first == LAST_TO_FIRST) ? (nr_src - cpy_num + 1) : 0;*/
327  (last_first == LAST_TO_FIRST) ?	(dest_order = 0, src_order = nr_src - cpy_num + 1) :
328    (dest_order = nr_dest, src_order = 0);
329
330  /* prepare space for cpy_num pointers */
331  dc = B_N_CHILD (dest, dest_order);
332
333  memmove (dc + cpy_num, dc, (nr_dest - dest_order) * DC_SIZE);
334
335	/* insert pointers */
336  memcpy (dc, B_N_CHILD (src, src_order), DC_SIZE * cpy_num);
337
338
339  /* prepare space for cpy_num - 1 item headers */
340  key = B_N_PDELIM_KEY(dest, dest_order);
341  memmove (key + cpy_num - 1, key,
342	   KEY_SIZE * (nr_dest - dest_order) + DC_SIZE * (nr_dest + cpy_num));
343
344
345  /* insert headers */
346  memcpy (key, B_N_PDELIM_KEY (src, src_order), KEY_SIZE * (cpy_num - 1));
347
348  /* sizes, item number */
349  set_blkh_nr_item( blkh, blkh_nr_item(blkh) + (cpy_num - 1 ) );
350  set_blkh_free_space( blkh,
351      blkh_free_space(blkh) - (KEY_SIZE * (cpy_num - 1) + DC_SIZE * cpy_num ) );
352
353  do_balance_mark_internal_dirty (dest_bi->tb, dest, 0);
354
355  /*&&&&&&&&&&&&&&&&&&&&&&&&*/
356  check_internal (dest);
357  /*&&&&&&&&&&&&&&&&&&&&&&&&*/
358
359  if (dest_bi->bi_parent) {
360    struct disk_child *t_dc;
361    t_dc = B_N_CHILD(dest_bi->bi_parent,dest_bi->bi_position);
362    put_dc_size( t_dc, dc_size(t_dc) + (KEY_SIZE * (cpy_num - 1) + DC_SIZE * cpy_num) );
363
364    do_balance_mark_internal_dirty (dest_bi->tb, dest_bi->bi_parent,0);
365    /*&&&&&&&&&&&&&&&&&&&&&&&&*/
366    check_internal (dest_bi->bi_parent);
367    /*&&&&&&&&&&&&&&&&&&&&&&&&*/
368  }
369
370}
371
372
373/* Copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest.
374 * Delete cpy_num - del_par items and node pointers from buffer src.
375 * last_first == FIRST_TO_LAST means, that we copy/delete first items from src.
376 * last_first == LAST_TO_FIRST means, that we copy/delete last items from src.
377 */
378static void internal_move_pointers_items (struct buffer_info * dest_bi,
379					  struct buffer_info * src_bi,
380					  int last_first, int cpy_num, int del_par)
381{
382    int first_pointer;
383    int first_item;
384
385    internal_copy_pointers_items (dest_bi, src_bi->bi_bh, last_first, cpy_num);
386
387    if (last_first == FIRST_TO_LAST) {	/* shift_left occurs */
388	first_pointer = 0;
389	first_item = 0;
390	/* delete cpy_num - del_par pointers and keys starting for pointers with first_pointer,
391	   for key - with first_item */
392	internal_delete_pointers_items (src_bi, first_pointer, first_item, cpy_num - del_par);
393    } else {			/* shift_right occurs */
394	int i, j;
395
396	i = ( cpy_num - del_par == ( j = B_NR_ITEMS(src_bi->bi_bh)) + 1 ) ? 0 : j - cpy_num + del_par;
397
398	internal_delete_pointers_items (src_bi, j + 1 - cpy_num + del_par, i, cpy_num - del_par);
399    }
400}
401
402/* Insert n_src'th key of buffer src before n_dest'th key of buffer dest. */
403static void internal_insert_key (struct buffer_info * dest_bi,
404				 int dest_position_before,                 /* insert key before key with n_dest number */
405				 struct buffer_head * src,
406				 int src_position)
407{
408    struct buffer_head * dest = dest_bi->bi_bh;
409    int nr;
410    struct block_head * blkh;
411    struct key * key;
412
413    RFALSE( dest == NULL || src == NULL,
414	    "source(%p) or dest(%p) buffer is 0", src, dest);
415    RFALSE( dest_position_before < 0 || src_position < 0,
416	    "source(%d) or dest(%d) key number less than 0",
417	    src_position, dest_position_before);
418    RFALSE( dest_position_before > B_NR_ITEMS (dest) ||
419	    src_position >= B_NR_ITEMS(src),
420	    "invalid position in dest (%d (key number %d)) or in src (%d (key number %d))",
421	    dest_position_before, B_NR_ITEMS (dest),
422	    src_position, B_NR_ITEMS(src));
423    RFALSE( B_FREE_SPACE (dest) < KEY_SIZE,
424	    "no enough free space (%d) in dest buffer", B_FREE_SPACE (dest));
425
426    blkh = B_BLK_HEAD(dest);
427    nr = blkh_nr_item(blkh);
428
429    /* prepare space for inserting key */
430    key = B_N_PDELIM_KEY (dest, dest_position_before);
431    memmove (key + 1, key, (nr - dest_position_before) * KEY_SIZE + (nr + 1) * DC_SIZE);
432
433    /* insert key */
434    memcpy (key, B_N_PDELIM_KEY(src, src_position), KEY_SIZE);
435
436    /* Change dirt, free space, item number fields. */
437
438    set_blkh_nr_item( blkh, blkh_nr_item(blkh) + 1 );
439    set_blkh_free_space( blkh, blkh_free_space(blkh) - KEY_SIZE );
440
441    do_balance_mark_internal_dirty (dest_bi->tb, dest, 0);
442
443    if (dest_bi->bi_parent) {
444	struct disk_child *t_dc;
445	t_dc = B_N_CHILD(dest_bi->bi_parent,dest_bi->bi_position);
446	put_dc_size( t_dc, dc_size(t_dc) + KEY_SIZE );
447
448	do_balance_mark_internal_dirty (dest_bi->tb, dest_bi->bi_parent,0);
449    }
450}
451
452
453
454/* Insert d_key'th (delimiting) key from buffer cfl to tail of dest.
455 * Copy pointer_amount node pointers and pointer_amount - 1 items from buffer src to buffer dest.
456 * Replace  d_key'th key in buffer cfl.
457 * Delete pointer_amount items and node pointers from buffer src.
458 */
459/* this can be invoked both to shift from S to L and from R to S */
460static void	internal_shift_left (
461				     int mode,	/* INTERNAL_FROM_S_TO_L | INTERNAL_FROM_R_TO_S */
462				     struct tree_balance * tb,
463				     int h,
464				     int pointer_amount
465				     )
466{
467  struct buffer_info dest_bi, src_bi;
468  struct buffer_head * cf;
469  int d_key_position;
470
471  internal_define_dest_src_infos (mode, tb, h, &dest_bi, &src_bi, &d_key_position, &cf);
472
473  /*printk("pointer_amount = %d\n",pointer_amount);*/
474
475  if (pointer_amount) {
476    /* insert delimiting key from common father of dest and src to node dest into position B_NR_ITEM(dest) */
477    internal_insert_key (&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf, d_key_position);
478
479    if (B_NR_ITEMS(src_bi.bi_bh) == pointer_amount - 1) {
480      if (src_bi.bi_position/*src->b_item_order*/ == 0)
481	replace_key (tb, cf, d_key_position, src_bi.bi_parent/*src->b_parent*/, 0);
482    } else
483      replace_key (tb, cf, d_key_position, src_bi.bi_bh, pointer_amount - 1);
484  }
485  /* last parameter is del_parameter */
486  internal_move_pointers_items (&dest_bi, &src_bi, FIRST_TO_LAST, pointer_amount, 0);
487
488}
489
490/* Insert delimiting key to L[h].
491 * Copy n node pointers and n - 1 items from buffer S[h] to L[h].
492 * Delete n - 1 items and node pointers from buffer S[h].
493 */
494/* it always shifts from S[h] to L[h] */
495static void	internal_shift1_left (
496				      struct tree_balance * tb,
497				      int h,
498				      int pointer_amount
499				      )
500{
501  struct buffer_info dest_bi, src_bi;
502  struct buffer_head * cf;
503  int d_key_position;
504
505  internal_define_dest_src_infos (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, &dest_bi, &src_bi, &d_key_position, &cf);
506
507  if ( pointer_amount > 0 ) /* insert lkey[h]-th key  from CFL[h] to left neighbor L[h] */
508    internal_insert_key (&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf, d_key_position);
509  /*		internal_insert_key (tb->L[h], B_NR_ITEM(tb->L[h]), tb->CFL[h], tb->lkey[h]);*/
510
511  /* last parameter is del_parameter */
512  internal_move_pointers_items (&dest_bi, &src_bi, FIRST_TO_LAST, pointer_amount, 1);
513  /*	internal_move_pointers_items (tb->L[h], tb->S[h], FIRST_TO_LAST, pointer_amount, 1);*/
514}
515
516
517/* Insert d_key'th (delimiting) key from buffer cfr to head of dest.
518 * Copy n node pointers and n - 1 items from buffer src to buffer dest.
519 * Replace  d_key'th key in buffer cfr.
520 * Delete n items and node pointers from buffer src.
521 */
522static void internal_shift_right (
523				  int mode,	/* INTERNAL_FROM_S_TO_R | INTERNAL_FROM_L_TO_S */
524				  struct tree_balance * tb,
525				  int h,
526				  int pointer_amount
527				  )
528{
529  struct buffer_info dest_bi, src_bi;
530  struct buffer_head * cf;
531  int d_key_position;
532  int nr;
533
534
535  internal_define_dest_src_infos (mode, tb, h, &dest_bi, &src_bi, &d_key_position, &cf);
536
537  nr = B_NR_ITEMS (src_bi.bi_bh);
538
539  if (pointer_amount > 0) {
540    /* insert delimiting key from common father of dest and src to dest node into position 0 */
541    internal_insert_key (&dest_bi, 0, cf, d_key_position);
542    if (nr == pointer_amount - 1) {
543	 RFALSE( src_bi.bi_bh != PATH_H_PBUFFER (tb->tb_path, h)/*tb->S[h]*/ ||
544		 dest_bi.bi_bh != tb->R[h],
545		 "src (%p) must be == tb->S[h](%p) when it disappears",
546		 src_bi.bi_bh, PATH_H_PBUFFER (tb->tb_path, h));
547      /* when S[h] disappers replace left delemiting key as well */
548      if (tb->CFL[h])
549	replace_key (tb, cf, d_key_position, tb->CFL[h], tb->lkey[h]);
550    } else
551      replace_key (tb, cf, d_key_position, src_bi.bi_bh, nr - pointer_amount);
552  }
553
554  /* last parameter is del_parameter */
555  internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, pointer_amount, 0);
556}
557
558/* Insert delimiting key to R[h].
559 * Copy n node pointers and n - 1 items from buffer S[h] to R[h].
560 * Delete n - 1 items and node pointers from buffer S[h].
561 */
562/* it always shift from S[h] to R[h] */
563static void	internal_shift1_right (
564				       struct tree_balance * tb,
565				       int h,
566				       int pointer_amount
567				       )
568{
569  struct buffer_info dest_bi, src_bi;
570  struct buffer_head * cf;
571  int d_key_position;
572
573  internal_define_dest_src_infos (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, &dest_bi, &src_bi, &d_key_position, &cf);
574
575  if (pointer_amount > 0) /* insert rkey from CFR[h] to right neighbor R[h] */
576    internal_insert_key (&dest_bi, 0, cf, d_key_position);
577  /*		internal_insert_key (tb->R[h], 0, tb->CFR[h], tb->rkey[h]);*/
578
579  /* last parameter is del_parameter */
580  internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, pointer_amount, 1);
581  /*	internal_move_pointers_items (tb->R[h], tb->S[h], LAST_TO_FIRST, pointer_amount, 1);*/
582}
583
584
585/* Delete insert_num node pointers together with their left items
586 * and balance current node.*/
587static void balance_internal_when_delete (struct tree_balance * tb,
588					  int h, int child_pos)
589{
590    int insert_num;
591    int n;
592    struct buffer_head * tbSh = PATH_H_PBUFFER (tb->tb_path, h);
593    struct buffer_info bi;
594
595    insert_num = tb->insert_size[h] / ((int)(DC_SIZE + KEY_SIZE));
596
597    /* delete child-node-pointer(s) together with their left item(s) */
598    bi.tb = tb;
599    bi.bi_bh = tbSh;
600    bi.bi_parent = PATH_H_PPARENT (tb->tb_path, h);
601    bi.bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
602
603    internal_delete_childs (&bi, child_pos, -insert_num);
604
605    RFALSE( tb->blknum[h] > 1,
606	    "tb->blknum[%d]=%d when insert_size < 0", h, tb->blknum[h]);
607
608    n = B_NR_ITEMS(tbSh);
609
610    if ( tb->lnum[h] == 0 && tb->rnum[h] == 0 ) {
611	if ( tb->blknum[h] == 0 ) {
612	    /* node S[h] (root of the tree) is empty now */
613	    struct buffer_head *new_root;
614
615	    RFALSE( n || B_FREE_SPACE (tbSh) != MAX_CHILD_SIZE(tbSh) - DC_SIZE,
616		    "buffer must have only 0 keys (%d)", n);
617	    RFALSE( bi.bi_parent, "root has parent (%p)", bi.bi_parent);
618
619	    /* choose a new root */
620	    if ( ! tb->L[h-1] || ! B_NR_ITEMS(tb->L[h-1]) )
621		new_root = tb->R[h-1];
622	    else
623		new_root = tb->L[h-1];
624	    /* switch super block's tree root block number to the new value */
625            PUT_SB_ROOT_BLOCK( tb->tb_sb, new_root->b_blocknr );
626	    //tb->tb_sb->u.reiserfs_sb.s_rs->s_tree_height --;
627            PUT_SB_TREE_HEIGHT( tb->tb_sb, SB_TREE_HEIGHT(tb->tb_sb) - 1 );
628
629	    do_balance_mark_sb_dirty (tb, tb->tb_sb->u.reiserfs_sb.s_sbh, 1);
630	    /*&&&&&&&&&&&&&&&&&&&&&&*/
631	    if (h > 1)
632		/* use check_internal if new root is an internal node */
633		check_internal (new_root);
634	    /*&&&&&&&&&&&&&&&&&&&&&&*/
635	    tb->tb_sb->s_dirt = 1;
636
637	    /* do what is needed for buffer thrown from tree */
638	    reiserfs_invalidate_buffer(tb, tbSh);
639	    return;
640	}
641	return;
642    }
643
644    if ( tb->L[h] && tb->lnum[h] == -B_NR_ITEMS(tb->L[h]) - 1 ) { /* join S[h] with L[h] */
645
646	RFALSE( tb->rnum[h] != 0,
647		"invalid tb->rnum[%d]==%d when joining S[h] with L[h]",
648		h, tb->rnum[h]);
649
650	internal_shift_left (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, n + 1);
651	reiserfs_invalidate_buffer(tb, tbSh);
652
653	return;
654    }
655
656    if ( tb->R[h] &&  tb->rnum[h] == -B_NR_ITEMS(tb->R[h]) - 1 ) { /* join S[h] with R[h] */
657	RFALSE( tb->lnum[h] != 0,
658		"invalid tb->lnum[%d]==%d when joining S[h] with R[h]",
659		h, tb->lnum[h]);
660
661	internal_shift_right (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, n + 1);
662
663	reiserfs_invalidate_buffer(tb,tbSh);
664	return;
665    }
666
667    if ( tb->lnum[h] < 0 ) { /* borrow from left neighbor L[h] */
668	RFALSE( tb->rnum[h] != 0,
669		"wrong tb->rnum[%d]==%d when borrow from L[h]", h, tb->rnum[h]);
670	/*internal_shift_right (tb, h, tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], -tb->lnum[h]);*/
671	internal_shift_right (INTERNAL_SHIFT_FROM_L_TO_S, tb, h, -tb->lnum[h]);
672	return;
673    }
674
675    if ( tb->rnum[h] < 0 ) { /* borrow from right neighbor R[h] */
676	 RFALSE( tb->lnum[h] != 0,
677		 "invalid tb->lnum[%d]==%d when borrow from R[h]",
678		 h, tb->lnum[h]);
679	internal_shift_left (INTERNAL_SHIFT_FROM_R_TO_S, tb, h, -tb->rnum[h]);/*tb->S[h], tb->CFR[h], tb->rkey[h], tb->R[h], -tb->rnum[h]);*/
680	return;
681    }
682
683    if ( tb->lnum[h] > 0 ) { /* split S[h] into two parts and put them into neighbors */
684	RFALSE( tb->rnum[h] == 0 || tb->lnum[h] + tb->rnum[h] != n + 1,
685		"invalid tb->lnum[%d]==%d or tb->rnum[%d]==%d when S[h](item number == %d) is split between them",
686		h, tb->lnum[h], h, tb->rnum[h], n);
687
688	internal_shift_left (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h]);/*tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], tb->lnum[h]);*/
689	internal_shift_right (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, tb->rnum[h]);
690
691	reiserfs_invalidate_buffer (tb, tbSh);
692
693	return;
694    }
695    reiserfs_panic (tb->tb_sb, "balance_internal_when_delete: unexpected tb->lnum[%d]==%d or tb->rnum[%d]==%d",
696		    h, tb->lnum[h], h, tb->rnum[h]);
697}
698
699
700/* Replace delimiting key of buffers L[h] and S[h] by the given key.*/
701void	replace_lkey (
702		      struct tree_balance * tb,
703		      int h,
704		      struct item_head * key
705		      )
706{
707   RFALSE( tb->L[h] == NULL || tb->CFL[h] == NULL,
708	   "L[h](%p) and CFL[h](%p) must exist in replace_lkey",
709	   tb->L[h], tb->CFL[h]);
710
711  if (B_NR_ITEMS(PATH_H_PBUFFER(tb->tb_path, h)) == 0)
712    return;
713
714  memcpy (B_N_PDELIM_KEY(tb->CFL[h],tb->lkey[h]), key, KEY_SIZE);
715
716  do_balance_mark_internal_dirty (tb, tb->CFL[h],0);
717}
718
719
720/* Replace delimiting key of buffers S[h] and R[h] by the given key.*/
721void	replace_rkey (
722		      struct tree_balance * tb,
723		      int h,
724		      struct item_head * key
725		      )
726{
727  RFALSE( tb->R[h] == NULL || tb->CFR[h] == NULL,
728	  "R[h](%p) and CFR[h](%p) must exist in replace_rkey",
729	  tb->R[h], tb->CFR[h]);
730  RFALSE( B_NR_ITEMS(tb->R[h]) == 0,
731	  "R[h] can not be empty if it exists (item number=%d)",
732	  B_NR_ITEMS(tb->R[h]));
733
734  memcpy (B_N_PDELIM_KEY(tb->CFR[h],tb->rkey[h]), key, KEY_SIZE);
735
736  do_balance_mark_internal_dirty (tb, tb->CFR[h], 0);
737}
738
739
740int balance_internal (struct tree_balance * tb,			/* tree_balance structure 		*/
741		      int h,					/* level of the tree 			*/
742		      int child_pos,
743		      struct item_head * insert_key,		/* key for insertion on higher level   	*/
744		      struct buffer_head ** insert_ptr	/* node for insertion on higher level*/
745    )
746    /* if inserting/pasting
747       {
748       child_pos is the position of the node-pointer in S[h] that	 *
749       pointed to S[h-1] before balancing of the h-1 level;		 *
750       this means that new pointers and items must be inserted AFTER *
751       child_pos
752       }
753       else
754       {
755   it is the position of the leftmost pointer that must be deleted (together with
756   its corresponding key to the left of the pointer)
757   as a result of the previous level's balancing.
758   }
759*/
760{
761    struct buffer_head * tbSh = PATH_H_PBUFFER (tb->tb_path, h);
762    struct buffer_info bi;
763    int order;		/* we return this: it is 0 if there is no S[h], else it is tb->S[h]->b_item_order */
764    int insert_num, n, k;
765    struct buffer_head * S_new;
766    struct item_head new_insert_key;
767    struct buffer_head * new_insert_ptr = NULL;
768    struct item_head * new_insert_key_addr = insert_key;
769
770    RFALSE( h < 1, "h (%d) can not be < 1 on internal level", h);
771
772    PROC_INFO_INC( tb -> tb_sb, balance_at[ h ] );
773
774    order = ( tbSh ) ? PATH_H_POSITION (tb->tb_path, h + 1)/*tb->S[h]->b_item_order*/ : 0;
775
776  /* Using insert_size[h] calculate the number insert_num of items
777     that must be inserted to or deleted from S[h]. */
778    insert_num = tb->insert_size[h]/((int)(KEY_SIZE + DC_SIZE));
779
780    /* Check whether insert_num is proper **/
781    RFALSE( insert_num < -2  ||  insert_num > 2,
782	    "incorrect number of items inserted to the internal node (%d)",
783	    insert_num);
784    RFALSE( h > 1  && (insert_num > 1 || insert_num < -1),
785	    "incorrect number of items (%d) inserted to the internal node on a level (h=%d) higher than last internal level",
786	    insert_num, h);
787
788    /* Make balance in case insert_num < 0 */
789    if ( insert_num < 0 ) {
790	balance_internal_when_delete (tb, h, child_pos);
791	return order;
792    }
793
794    k = 0;
795    if ( tb->lnum[h] > 0 ) {
796	/* shift lnum[h] items from S[h] to the left neighbor L[h].
797	   check how many of new items fall into L[h] or CFL[h] after
798	   shifting */
799	n = B_NR_ITEMS (tb->L[h]); /* number of items in L[h] */
800	if ( tb->lnum[h] <= child_pos ) {
801	    /* new items don't fall into L[h] or CFL[h] */
802	    internal_shift_left (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h]);
803	    /*internal_shift_left (tb->L[h],tb->CFL[h],tb->lkey[h],tbSh,tb->lnum[h]);*/
804	    child_pos -= tb->lnum[h];
805	} else if ( tb->lnum[h] > child_pos + insert_num ) {
806	    /* all new items fall into L[h] */
807	    internal_shift_left (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h] - insert_num);
808	    /*			internal_shift_left(tb->L[h],tb->CFL[h],tb->lkey[h],tbSh,
809				tb->lnum[h]-insert_num);
810	    */
811	    /* insert insert_num keys and node-pointers into L[h] */
812	    bi.tb = tb;
813	    bi.bi_bh = tb->L[h];
814	    bi.bi_parent = tb->FL[h];
815	    bi.bi_position = get_left_neighbor_position (tb, h);
816	    internal_insert_childs (&bi,/*tb->L[h], tb->S[h-1]->b_next*/ n + child_pos + 1,
817				    insert_num,insert_key,insert_ptr);
818
819	    insert_num = 0;
820	} else {
821	    struct disk_child * dc;
822
823	    /* some items fall into L[h] or CFL[h], but some don't fall */
824	    internal_shift1_left(tb,h,child_pos+1);
825	    /* calculate number of new items that fall into L[h] */
826	    k = tb->lnum[h] - child_pos - 1;
827	    bi.tb = tb;
828	    bi.bi_bh = tb->L[h];
829	    bi.bi_parent = tb->FL[h];
830	    bi.bi_position = get_left_neighbor_position (tb, h);
831	    internal_insert_childs (&bi,/*tb->L[h], tb->S[h-1]->b_next,*/ n + child_pos + 1,k,
832				    insert_key,insert_ptr);
833
834	    replace_lkey(tb,h,insert_key + k);
835
836	    /* replace the first node-ptr in S[h] by node-ptr to insert_ptr[k] */
837	    dc = B_N_CHILD(tbSh, 0);
838	    put_dc_size( dc, MAX_CHILD_SIZE(insert_ptr[k]) - B_FREE_SPACE (insert_ptr[k]));
839	    put_dc_block_number( dc, insert_ptr[k]->b_blocknr );
840
841	    do_balance_mark_internal_dirty (tb, tbSh, 0);
842
843	    k++;
844	    insert_key += k;
845	    insert_ptr += k;
846	    insert_num -= k;
847	    child_pos = 0;
848	}
849    }	/* tb->lnum[h] > 0 */
850
851    if ( tb->rnum[h] > 0 ) {
852	/*shift rnum[h] items from S[h] to the right neighbor R[h]*/
853	/* check how many of new items fall into R or CFR after shifting */
854	n = B_NR_ITEMS (tbSh); /* number of items in S[h] */
855	if ( n - tb->rnum[h] >= child_pos )
856	    /* new items fall into S[h] */
857	    /*internal_shift_right(tb,h,tbSh,tb->CFR[h],tb->rkey[h],tb->R[h],tb->rnum[h]);*/
858	    internal_shift_right (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, tb->rnum[h]);
859	else
860	    if ( n + insert_num - tb->rnum[h] < child_pos )
861	    {
862		/* all new items fall into R[h] */
863		/*internal_shift_right(tb,h,tbSh,tb->CFR[h],tb->rkey[h],tb->R[h],
864	    tb->rnum[h] - insert_num);*/
865		internal_shift_right (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, tb->rnum[h] - insert_num);
866
867		/* insert insert_num keys and node-pointers into R[h] */
868		bi.tb = tb;
869		bi.bi_bh = tb->R[h];
870		bi.bi_parent = tb->FR[h];
871		bi.bi_position = get_right_neighbor_position (tb, h);
872		internal_insert_childs (&bi, /*tb->R[h],tb->S[h-1]->b_next*/ child_pos - n - insert_num + tb->rnum[h] - 1,
873					insert_num,insert_key,insert_ptr);
874		insert_num = 0;
875	    }
876	    else
877	    {
878		struct disk_child * dc;
879
880		/* one of the items falls into CFR[h] */
881		internal_shift1_right(tb,h,n - child_pos + 1);
882		/* calculate number of new items that fall into R[h] */
883		k = tb->rnum[h] - n + child_pos - 1;
884		bi.tb = tb;
885		bi.bi_bh = tb->R[h];
886		bi.bi_parent = tb->FR[h];
887		bi.bi_position = get_right_neighbor_position (tb, h);
888		internal_insert_childs (&bi, /*tb->R[h], tb->R[h]->b_child,*/ 0, k, insert_key + 1, insert_ptr + 1);
889
890		replace_rkey(tb,h,insert_key + insert_num - k - 1);
891
892		/* replace the first node-ptr in R[h] by node-ptr insert_ptr[insert_num-k-1]*/
893		dc = B_N_CHILD(tb->R[h], 0);
894		put_dc_size( dc, MAX_CHILD_SIZE(insert_ptr[insert_num-k-1]) -
895    				    B_FREE_SPACE (insert_ptr[insert_num-k-1]));
896		put_dc_block_number( dc, insert_ptr[insert_num-k-1]->b_blocknr );
897
898		do_balance_mark_internal_dirty (tb, tb->R[h],0);
899
900		insert_num -= (k + 1);
901	    }
902    }
903
904    /** Fill new node that appears instead of S[h] **/
905    RFALSE( tb->blknum[h] > 2, "blknum can not be > 2 for internal level");
906    RFALSE( tb->blknum[h] < 0, "blknum can not be < 0");
907
908    if ( ! tb->blknum[h] )
909    { /* node S[h] is empty now */
910	RFALSE( ! tbSh, "S[h] is equal NULL");
911
912	/* do what is needed for buffer thrown from tree */
913	reiserfs_invalidate_buffer(tb,tbSh);
914	return order;
915    }
916
917    if ( ! tbSh ) {
918	/* create new root */
919	struct disk_child  * dc;
920	struct buffer_head * tbSh_1 = PATH_H_PBUFFER (tb->tb_path, h - 1);
921        struct block_head *  blkh;
922
923
924	if ( tb->blknum[h] != 1 )
925	    reiserfs_panic(0, "balance_internal: One new node required for creating the new root");
926	/* S[h] = empty buffer from the list FEB. */
927	tbSh = get_FEB (tb);
928        blkh = B_BLK_HEAD(tbSh);
929        set_blkh_level( blkh, h + 1 );
930
931	/* Put the unique node-pointer to S[h] that points to S[h-1]. */
932
933	dc = B_N_CHILD(tbSh, 0);
934	put_dc_block_number( dc, tbSh_1->b_blocknr );
935	put_dc_size( dc, (MAX_CHILD_SIZE (tbSh_1) - B_FREE_SPACE (tbSh_1)));
936
937	tb->insert_size[h] -= DC_SIZE;
938        set_blkh_free_space( blkh, blkh_free_space(blkh) - DC_SIZE );
939
940	do_balance_mark_internal_dirty (tb, tbSh, 0);
941
942	/*&&&&&&&&&&&&&&&&&&&&&&&&*/
943	check_internal (tbSh);
944	/*&&&&&&&&&&&&&&&&&&&&&&&&*/
945
946    /* put new root into path structure */
947	PATH_OFFSET_PBUFFER(tb->tb_path, ILLEGAL_PATH_ELEMENT_OFFSET) = tbSh;
948
949	/* Change root in structure super block. */
950        PUT_SB_ROOT_BLOCK( tb->tb_sb, tbSh->b_blocknr );
951        PUT_SB_TREE_HEIGHT( tb->tb_sb, SB_TREE_HEIGHT(tb->tb_sb) + 1 );
952	do_balance_mark_sb_dirty (tb, tb->tb_sb->u.reiserfs_sb.s_sbh, 1);
953	tb->tb_sb->s_dirt = 1;
954    }
955
956    if ( tb->blknum[h] == 2 ) {
957	int snum;
958	struct buffer_info dest_bi, src_bi;
959
960
961	/* S_new = free buffer from list FEB */
962	S_new = get_FEB(tb);
963
964        set_blkh_level( B_BLK_HEAD(S_new), h + 1 );
965
966	dest_bi.tb = tb;
967	dest_bi.bi_bh = S_new;
968	dest_bi.bi_parent = 0;
969	dest_bi.bi_position = 0;
970	src_bi.tb = tb;
971	src_bi.bi_bh = tbSh;
972	src_bi.bi_parent = PATH_H_PPARENT (tb->tb_path, h);
973	src_bi.bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
974
975	n = B_NR_ITEMS (tbSh); /* number of items in S[h] */
976	snum = (insert_num + n + 1)/2;
977	if ( n - snum >= child_pos ) {
978	    /* new items don't fall into S_new */
979	    /*	store the delimiting key for the next level */
980	    /* new_insert_key = (n - snum)'th key in S[h] */
981	    memcpy (&new_insert_key,B_N_PDELIM_KEY(tbSh,n - snum),
982		    KEY_SIZE);
983	    /* last parameter is del_par */
984	    internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, snum, 0);
985	    /*            internal_move_pointers_items(S_new, tbSh, LAST_TO_FIRST, snum, 0);*/
986	} else if ( n + insert_num - snum < child_pos ) {
987	    /* all new items fall into S_new */
988	    /*	store the delimiting key for the next level */
989	    /* new_insert_key = (n + insert_item - snum)'th key in S[h] */
990	    memcpy(&new_insert_key,B_N_PDELIM_KEY(tbSh,n + insert_num - snum),
991		   KEY_SIZE);
992	    /* last parameter is del_par */
993	    internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, snum - insert_num, 0);
994	    /*			internal_move_pointers_items(S_new,tbSh,1,snum - insert_num,0);*/
995
996	    /* insert insert_num keys and node-pointers into S_new */
997	    internal_insert_childs (&dest_bi, /*S_new,tb->S[h-1]->b_next,*/child_pos - n - insert_num + snum - 1,
998				    insert_num,insert_key,insert_ptr);
999
1000	    insert_num = 0;
1001	} else {
1002	    struct disk_child * dc;
1003
1004	    /* some items fall into S_new, but some don't fall */
1005	    /* last parameter is del_par */
1006	    internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, n - child_pos + 1, 1);
1007	    /*			internal_move_pointers_items(S_new,tbSh,1,n - child_pos + 1,1);*/
1008	    /* calculate number of new items that fall into S_new */
1009	    k = snum - n + child_pos - 1;
1010
1011	    internal_insert_childs (&dest_bi, /*S_new,*/ 0, k, insert_key + 1, insert_ptr+1);
1012
1013	    /* new_insert_key = insert_key[insert_num - k - 1] */
1014	    memcpy(&new_insert_key,insert_key + insert_num - k - 1,
1015		   KEY_SIZE);
1016	    /* replace first node-ptr in S_new by node-ptr to insert_ptr[insert_num-k-1] */
1017
1018	    dc = B_N_CHILD(S_new,0);
1019	    put_dc_size( dc, (MAX_CHILD_SIZE(insert_ptr[insert_num-k-1]) -
1020				B_FREE_SPACE(insert_ptr[insert_num-k-1])) );
1021	    put_dc_block_number( dc, insert_ptr[insert_num-k-1]->b_blocknr );
1022
1023	    do_balance_mark_internal_dirty (tb, S_new,0);
1024
1025	    insert_num -= (k + 1);
1026	}
1027	/* new_insert_ptr = node_pointer to S_new */
1028	new_insert_ptr = S_new;
1029
1030	RFALSE(( buffer_locked(S_new) || atomic_read (&(S_new->b_count)) != 1) &&
1031	       (buffer_locked(S_new) || atomic_read(&(S_new->b_count)) > 2 ||
1032		!(buffer_journaled(S_new) || buffer_journal_dirty(S_new))),
1033	       "cm-00001: bad S_new (%b)", S_new);
1034
1035	// S_new is released in unfix_nodes
1036    }
1037
1038    n = B_NR_ITEMS (tbSh); /*number of items in S[h] */
1039
1040	if ( 0 <= child_pos && child_pos <= n && insert_num > 0 ) {
1041	    bi.tb = tb;
1042	    bi.bi_bh = tbSh;
1043	    bi.bi_parent = PATH_H_PPARENT (tb->tb_path, h);
1044	    bi.bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
1045		internal_insert_childs (
1046		    &bi,/*tbSh,*/
1047		    /*		( tb->S[h-1]->b_parent == tb->S[h] ) ? tb->S[h-1]->b_next :  tb->S[h]->b_child->b_next,*/
1048		    child_pos,insert_num,insert_key,insert_ptr
1049		    );
1050	}
1051
1052
1053	memcpy (new_insert_key_addr,&new_insert_key,KEY_SIZE);
1054	insert_ptr[0] = new_insert_ptr;
1055
1056	return order;
1057    }
1058
1059
1060
1061