1/*
2 * BK Id: SCCS/s.op-4.h 1.5 05/17/01 18:14:23 cort
3 */
4/*
5 * Basic four-word fraction declaration and manipulation.
6 *
7 * When adding quadword support for 32 bit machines, we need
8 * to be a little careful as double multiply uses some of these
9 * macros: (in op-2.h)
10 * _FP_MUL_MEAT_2_wide() uses _FP_FRAC_DECL_4, _FP_FRAC_WORD_4,
11 * _FP_FRAC_ADD_4, _FP_FRAC_SRS_4
12 * _FP_MUL_MEAT_2_gmp() uses _FP_FRAC_SRS_4 (and should use
13 * _FP_FRAC_DECL_4: it appears to be broken and is not used
14 * anywhere anyway. )
15 *
16 * I've now fixed all the macros that were here from the sparc64 code.
17 * [*none* of the shift macros were correct!] -- PMM 02/1998
18 *
19 * The only quadword stuff that remains to be coded is:
20 * 1) the conversion to/from ints, which requires
21 * that we check (in op-common.h) that the following do the right thing
22 * for quadwords: _FP_TO_INT(Q,4,r,X,rsz,rsg), _FP_FROM_INT(Q,4,X,r,rs,rt)
23 * 2) multiply, divide and sqrt, which require:
24 * _FP_MUL_MEAT_4_*(R,X,Y), _FP_DIV_MEAT_4_*(R,X,Y), _FP_SQRT_MEAT_4(R,S,T,X,q),
25 * This also needs _FP_MUL_MEAT_Q and _FP_DIV_MEAT_Q to be defined to
26 * some suitable _FP_MUL_MEAT_4_* macros in sfp-machine.h.
27 * [we're free to choose whatever FP_MUL_MEAT_4_* macros we need for
28 * these; they are used nowhere else. ]
29 */
30
31#define _FP_FRAC_DECL_4(X)	_FP_W_TYPE X##_f[4]
32#define _FP_FRAC_COPY_4(D,S)			\
33  (D##_f[0] = S##_f[0], D##_f[1] = S##_f[1],	\
34   D##_f[2] = S##_f[2], D##_f[3] = S##_f[3])
35/* The _FP_FRAC_SET_n(X,I) macro is intended for use with another
36 * macro such as _FP_ZEROFRAC_n which returns n comma separated values.
37 * The result is that we get an expansion of __FP_FRAC_SET_n(X,I0,I1,I2,I3)
38 * which just assigns the In values to the array X##_f[].
39 * This is why the number of parameters doesn't appear to match
40 * at first glance...      -- PMM
41 */
42#define _FP_FRAC_SET_4(X,I)	__FP_FRAC_SET_4(X, I)
43#define _FP_FRAC_HIGH_4(X)	(X##_f[3])
44#define _FP_FRAC_LOW_4(X)	(X##_f[0])
45#define _FP_FRAC_WORD_4(X,w)	(X##_f[w])
46
47#define _FP_FRAC_SLL_4(X,N)						\
48  do {									\
49    _FP_I_TYPE _up, _down, _skip, _i;					\
50    _skip = (N) / _FP_W_TYPE_SIZE;					\
51    _up = (N) % _FP_W_TYPE_SIZE;					\
52    _down = _FP_W_TYPE_SIZE - _up;					\
53    for (_i = 3; _i > _skip; --_i)					\
54      X##_f[_i] = X##_f[_i-_skip] << _up | X##_f[_i-_skip-1] >> _down;	\
55/* bugfixed: was X##_f[_i] <<= _up;  -- PMM 02/1998 */                  \
56    X##_f[_i] = X##_f[0] << _up; 	                                \
57    for (--_i; _i >= 0; --_i)						\
58      X##_f[_i] = 0;							\
59  } while (0)
60
61/* This one was broken too */
62#define _FP_FRAC_SRL_4(X,N)						\
63  do {									\
64    _FP_I_TYPE _up, _down, _skip, _i;					\
65    _skip = (N) / _FP_W_TYPE_SIZE;					\
66    _down = (N) % _FP_W_TYPE_SIZE;					\
67    _up = _FP_W_TYPE_SIZE - _down;					\
68    for (_i = 0; _i < 3-_skip; ++_i)					\
69      X##_f[_i] = X##_f[_i+_skip] >> _down | X##_f[_i+_skip+1] << _up;	\
70    X##_f[_i] = X##_f[3] >> _down;			         	\
71    for (++_i; _i < 4; ++_i)						\
72      X##_f[_i] = 0;							\
73  } while (0)
74
75
76/* Right shift with sticky-lsb.
77 * What this actually means is that we do a standard right-shift,
78 * but that if any of the bits that fall off the right hand side
79 * were one then we always set the LSbit.
80 */
81#define _FP_FRAC_SRS_4(X,N,size)					\
82  do {									\
83    _FP_I_TYPE _up, _down, _skip, _i;					\
84    _FP_W_TYPE _s;							\
85    _skip = (N) / _FP_W_TYPE_SIZE;					\
86    _down = (N) % _FP_W_TYPE_SIZE;					\
87    _up = _FP_W_TYPE_SIZE - _down;					\
88    for (_s = _i = 0; _i < _skip; ++_i)					\
89      _s |= X##_f[_i];							\
90    _s |= X##_f[_i] << _up;						\
91/* s is now != 0 if we want to set the LSbit */                         \
92    for (_i = 0; _i < 3-_skip; ++_i)					\
93      X##_f[_i] = X##_f[_i+_skip] >> _down | X##_f[_i+_skip+1] << _up;	\
94    X##_f[_i] = X##_f[3] >> _down;					\
95    for (++_i; _i < 4; ++_i)						\
96      X##_f[_i] = 0;							\
97    /* don't fix the LSB until the very end when we're sure f[0] is stable */ \
98    X##_f[0] |= (_s != 0);                                              \
99  } while (0)
100
101#define _FP_FRAC_ADD_4(R,X,Y)						\
102  __FP_FRAC_ADD_4(R##_f[3], R##_f[2], R##_f[1], R##_f[0],		\
103		  X##_f[3], X##_f[2], X##_f[1], X##_f[0],		\
104		  Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0])
105
106#define _FP_FRAC_SUB_4(R,X,Y)                                           \
107  __FP_FRAC_SUB_4(R##_f[3], R##_f[2], R##_f[1], R##_f[0],		\
108		  X##_f[3], X##_f[2], X##_f[1], X##_f[0],		\
109		  Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0])
110
111#define _FP_FRAC_ADDI_4(X,I)                                            \
112  __FP_FRAC_ADDI_4(X##_f[3], X##_f[2], X##_f[1], X##_f[0], I)
113
114#define _FP_ZEROFRAC_4  0,0,0,0
115#define _FP_MINFRAC_4   0,0,0,1
116
117#define _FP_FRAC_ZEROP_4(X)     ((X##_f[0] | X##_f[1] | X##_f[2] | X##_f[3]) == 0)
118#define _FP_FRAC_NEGP_4(X)      ((_FP_WS_TYPE)X##_f[3] < 0)
119#define _FP_FRAC_OVERP_4(fs,X)  (X##_f[0] & _FP_OVERFLOW_##fs)
120
121#define _FP_FRAC_EQ_4(X,Y)                              \
122 (X##_f[0] == Y##_f[0] && X##_f[1] == Y##_f[1]          \
123  && X##_f[2] == Y##_f[2] && X##_f[3] == Y##_f[3])
124
125#define _FP_FRAC_GT_4(X,Y)                              \
126 (X##_f[3] > Y##_f[3] ||                                \
127  (X##_f[3] == Y##_f[3] && (X##_f[2] > Y##_f[2] ||      \
128   (X##_f[2] == Y##_f[2] && (X##_f[1] > Y##_f[1] ||     \
129    (X##_f[1] == Y##_f[1] && X##_f[0] > Y##_f[0])       \
130   ))                                                   \
131  ))                                                    \
132 )
133
134#define _FP_FRAC_GE_4(X,Y)                              \
135 (X##_f[3] > Y##_f[3] ||                                \
136  (X##_f[3] == Y##_f[3] && (X##_f[2] > Y##_f[2] ||      \
137   (X##_f[2] == Y##_f[2] && (X##_f[1] > Y##_f[1] ||     \
138    (X##_f[1] == Y##_f[1] && X##_f[0] >= Y##_f[0])      \
139   ))                                                   \
140  ))                                                    \
141 )
142
143
144#define _FP_FRAC_CLZ_4(R,X)             \
145  do {                                  \
146    if (X##_f[3])                       \
147    {                                   \
148        __FP_CLZ(R,X##_f[3]);           \
149    }                                   \
150    else if (X##_f[2])                  \
151    {                                   \
152        __FP_CLZ(R,X##_f[2]);           \
153        R += _FP_W_TYPE_SIZE;           \
154    }                                   \
155    else if (X##_f[1])                  \
156    {                                   \
157        __FP_CLZ(R,X##_f[2]);           \
158        R += _FP_W_TYPE_SIZE*2;         \
159    }                                   \
160    else                                \
161    {                                   \
162        __FP_CLZ(R,X##_f[0]);           \
163        R += _FP_W_TYPE_SIZE*3;         \
164    }                                   \
165  } while(0)
166
167
168#define _FP_UNPACK_RAW_4(fs, X, val)                            \
169  do {                                                          \
170    union _FP_UNION_##fs _flo; _flo.flt = (val);        	\
171    X##_f[0] = _flo.bits.frac0;                                 \
172    X##_f[1] = _flo.bits.frac1;                                 \
173    X##_f[2] = _flo.bits.frac2;                                 \
174    X##_f[3] = _flo.bits.frac3;                                 \
175    X##_e  = _flo.bits.exp;                                     \
176    X##_s  = _flo.bits.sign;                                    \
177  } while (0)
178
179#define _FP_PACK_RAW_4(fs, val, X)                              \
180  do {                                                          \
181    union _FP_UNION_##fs _flo;					\
182    _flo.bits.frac0 = X##_f[0];                                 \
183    _flo.bits.frac1 = X##_f[1];                                 \
184    _flo.bits.frac2 = X##_f[2];                                 \
185    _flo.bits.frac3 = X##_f[3];                                 \
186    _flo.bits.exp   = X##_e;                                    \
187    _flo.bits.sign  = X##_s;                                    \
188    (val) = _flo.flt;                                   	\
189  } while (0)
190
191
192/*
193 * Internals
194 */
195
196#define __FP_FRAC_SET_4(X,I3,I2,I1,I0)					\
197  (X##_f[3] = I3, X##_f[2] = I2, X##_f[1] = I1, X##_f[0] = I0)
198
199#ifndef __FP_FRAC_ADD_4
200#define __FP_FRAC_ADD_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0)		\
201  (r0 = x0 + y0,							\
202   r1 = x1 + y1 + (r0 < x0),						\
203   r2 = x2 + y2 + (r1 < x1),						\
204   r3 = x3 + y3 + (r2 < x2))
205#endif
206
207#ifndef __FP_FRAC_SUB_4
208#define __FP_FRAC_SUB_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0)		\
209  (r0 = x0 - y0,                                                        \
210   r1 = x1 - y1 - (r0 > x0),                                            \
211   r2 = x2 - y2 - (r1 > x1),                                            \
212   r3 = x3 - y3 - (r2 > x2))
213#endif
214
215#ifndef __FP_FRAC_ADDI_4
216/* I always wanted to be a lisp programmer :-> */
217#define __FP_FRAC_ADDI_4(x3,x2,x1,x0,i)                                 \
218  (x3 += ((x2 += ((x1 += ((x0 += i) < x0)) < x1) < x2)))
219#endif
220
221/* Convert FP values between word sizes. This appears to be more
222 * complicated than I'd have expected it to be, so these might be
223 * wrong... These macros are in any case somewhat bogus because they
224 * use information about what various FRAC_n variables look like
225 * internally [eg, that 2 word vars are X_f0 and x_f1]. But so do
226 * the ones in op-2.h and op-1.h.
227 */
228#define _FP_FRAC_CONV_1_4(dfs, sfs, D, S)                               \
229   do {                                                                 \
230     _FP_FRAC_SRS_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs),     \
231                        _FP_WFRACBITS_##sfs);                           \
232     D##_f = S##_f[0];                                                   \
233  } while (0)
234
235#define _FP_FRAC_CONV_2_4(dfs, sfs, D, S)                               \
236   do {                                                                 \
237     _FP_FRAC_SRS_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs),     \
238                        _FP_WFRACBITS_##sfs);                           \
239     D##_f0 = S##_f[0];                                                  \
240     D##_f1 = S##_f[1];                                                  \
241  } while (0)
242
243/* Assembly/disassembly for converting to/from integral types.
244 * No shifting or overflow handled here.
245 */
246/* Put the FP value X into r, which is an integer of size rsize. */
247#define _FP_FRAC_ASSEMBLE_4(r, X, rsize)                                \
248  do {                                                                  \
249    if (rsize <= _FP_W_TYPE_SIZE)                                       \
250      r = X##_f[0];                                                     \
251    else if (rsize <= 2*_FP_W_TYPE_SIZE)                                \
252    {                                                                   \
253      r = X##_f[1];                                                     \
254      r <<= _FP_W_TYPE_SIZE;                                            \
255      r += X##_f[0];                                                    \
256    }                                                                   \
257    else                                                                \
258    {                                                                   \
259      /* I'm feeling lazy so we deal with int == 3words (implausible)*/ \
260      /* and int == 4words as a single case.                         */ \
261      r = X##_f[3];                                                     \
262      r <<= _FP_W_TYPE_SIZE;                                            \
263      r += X##_f[2];                                                    \
264      r <<= _FP_W_TYPE_SIZE;                                            \
265      r += X##_f[1];                                                    \
266      r <<= _FP_W_TYPE_SIZE;                                            \
267      r += X##_f[0];                                                    \
268    }                                                                   \
269  } while (0)
270
271/* "No disassemble Number Five!" */
272/* move an integer of size rsize into X's fractional part. We rely on
273 * the _f[] array consisting of words of size _FP_W_TYPE_SIZE to avoid
274 * having to mask the values we store into it.
275 */
276#define _FP_FRAC_DISASSEMBLE_4(X, r, rsize)                             \
277  do {                                                                  \
278    X##_f[0] = r;                                                       \
279    X##_f[1] = (rsize <= _FP_W_TYPE_SIZE ? 0 : r >> _FP_W_TYPE_SIZE);   \
280    X##_f[2] = (rsize <= 2*_FP_W_TYPE_SIZE ? 0 : r >> 2*_FP_W_TYPE_SIZE); \
281    X##_f[3] = (rsize <= 3*_FP_W_TYPE_SIZE ? 0 : r >> 3*_FP_W_TYPE_SIZE); \
282  } while (0);
283
284#define _FP_FRAC_CONV_4_1(dfs, sfs, D, S)                               \
285   do {                                                                 \
286     D##_f[0] = S##_f;                                                  \
287     D##_f[1] = D##_f[2] = D##_f[3] = 0;                                \
288     _FP_FRAC_SLL_4(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs));    \
289   } while (0)
290
291#define _FP_FRAC_CONV_4_2(dfs, sfs, D, S)                               \
292   do {                                                                 \
293     D##_f[0] = S##_f0;                                                 \
294     D##_f[1] = S##_f1;                                                 \
295     D##_f[2] = D##_f[3] = 0;                                           \
296     _FP_FRAC_SLL_4(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs));    \
297   } while (0)
298
299#define _FP_SQRT_MEAT_4(R, S, T, X, q)
300