Searched refs:proof (Results 1 - 11 of 11) sorted by relevance

/macosx-10.9.5/Chess-310.5/sjeng/
H A Dproof.c19 File: proof.c
68 int proof; member in struct:node
472 while (tnode->children[i]->proof != tnode->proof)
504 int proof; local
516 proof = 0;
521 proof += node->children[i]->proof;
523 if (proof > PN_INF)
524 proof
[all...]
/macosx-10.9.5/Heimdal-323.92.1/lib/ntlm/
H A Dheimscram.h72 const heim_scram_data *proof,
87 heim_scram_data *proof,
H A Dheimscram-protos.h99 const heim_scram_data *proof,
H A Dscram.c600 const heim_scram_data *proof,
609 if (stored_key->length != method->length || client_signature->length != method->length || proof->length != method->length)
613 p = proof->data;
618 for (n = 0 ; n < proof->length; n++)
621 scram_data_copy(clientKey, u, proof->length);
651 heim_scram_data *proof,
660 scram_data_zero(proof);
669 c1, s1, c2noproof, proof, server);
681 * Now client_key XOR proof
683 p = proof
597 heim_scram_validate_client_signature(heim_scram_method method, const heim_scram_data *stored_key, const heim_scram_data *client_signature, const heim_scram_data *proof, heim_scram_data *clientKey) argument
644 client_calculate(void *ctx, heim_scram_method method, unsigned int iterations, heim_scram_data *salt, const heim_scram_data *c1, const heim_scram_data *s1, const heim_scram_data *c2noproof, heim_scram_data *proof, heim_scram_data *server, heim_scram_data *sessionKey) argument
798 heim_scram_data *nonce, *proof, binaryproof, noproof, server; local
[all...]
H A Dtest_scram.c215 const heim_scram_data *proof,
240 proof,
209 calculate(void *ctx, heim_scram_method method, const heim_scram_data *user, const heim_scram_data *c1, const heim_scram_data *s1, const heim_scram_data *c2noproof, const heim_scram_data *proof, heim_scram_data *server, heim_scram_data *sessionKey) argument
/macosx-10.9.5/Heimdal-323.92.1/lib/gssapi/digest/
H A Dinit_sec_context.c44 heim_scram_data *proof,
80 ret = krb5_ret_data(response, proof);
37 calculate(void *ptr, heim_scram_method method, unsigned int iterations, heim_scram_data *salt, const heim_scram_data *c1, const heim_scram_data *s1, const heim_scram_data *c2noproof, heim_scram_data *proof, heim_scram_data *server, heim_scram_data *sessionKey) argument
/macosx-10.9.5/Heimdal-323.92.1/lib/gssapi/
H A Dtest_gssscram.c92 const heim_scram_data *proof,
116 proof,
86 calculate(void *ctx, heim_scram_method method, const heim_scram_data *user, const heim_scram_data *c1, const heim_scram_data *s1, const heim_scram_data *c2noproof, const heim_scram_data *proof, heim_scram_data *server, heim_scram_data *sessionKey) argument
/macosx-10.9.5/vim-53/runtime/syntax/
H A Db.vim2 " Language: B (A Formal Method with refinement and mathematical proof)
H A Dmf.vim115 syn keyword mfMacro pickup pixels_per_inch proof proofoffset proofrule
/macosx-10.9.5/Heimdal-323.92.1/kcm/
H A Dprotocol.c2434 heim_scram_data proof, server, client_key, stored, server_key, session_key; local
2446 memset(&proof, 0, sizeof(proof));
2495 &c1, &s1, &c2noproof, &proof, &server);
2507 * Now client_key XOR proof
2509 p = proof.data;
2515 ret = krb5_store_data(response, proof);
2535 heim_scram_data_free(&proof);
/macosx-10.9.5/Heimdal-323.92.1/lib/hcrypto/libtommath/
H A Dtommath.tex4273 then a x86 multiplier could produce the 62-bit product and use the ``shrd'' instruction to perform a double-precision right shift. The proof
4287 into the equation the original congruence is reproduced, thus concluding the proof. The following algorithm is based on this observation.
5309 using this technique is never too small. For the following proof let $t = \vert \vert y \vert \vert - 1$ and $s = \vert \vert x \vert \vert - 1$
5314 The first obvious case is when $\hat k = \beta - 1$ in which case the proof is concluded since the real quotient cannot be larger. For all other
5341 Which proves that $y - \hat kx \le x$ and by consequence $\hat k \ge k$ which concludes the proof. \textbf{QED}
5985 second to last iteration of the algorithm $b = a$ and clearly $(a, a) = a$ which concludes the proof. \textbf{QED}.
6347 order of the multiplicative subgroup modulo $p$ then $b$ must be the multiplicative inverse of $a$. The proof of which is trivial.

Completed in 218 milliseconds