Searched refs:proof (Results 1 - 11 of 11) sorted by relevance

/macosx-10.10.1/Chess-310.6/sjeng/
H A Dproof.c19 File: proof.c
68 int proof; member in struct:node
472 while (tnode->children[i]->proof != tnode->proof)
504 int proof; local
516 proof = 0;
521 proof += node->children[i]->proof;
523 if (proof > PN_INF)
524 proof
[all...]
/macosx-10.10.1/Heimdal-398.1.2/lib/ntlm/
H A Dheimscram.h72 const heim_scram_data *proof,
87 heim_scram_data *proof,
H A Dheimscram-protos.h99 const heim_scram_data *proof,
H A Dscram.c603 const heim_scram_data *proof,
612 if (stored_key->length != method->length || client_signature->length != method->length || proof->length != method->length)
616 p = proof->data;
621 for (n = 0 ; n < proof->length; n++)
624 scram_data_copy(clientKey, u, proof->length);
654 heim_scram_data *proof,
663 scram_data_zero(proof);
672 c1, s1, c2noproof, proof, server);
684 * Now client_key XOR proof
686 p = proof
600 heim_scram_validate_client_signature(heim_scram_method method, const heim_scram_data *stored_key, const heim_scram_data *client_signature, const heim_scram_data *proof, heim_scram_data *clientKey) argument
647 client_calculate(void *ctx, heim_scram_method method, unsigned int iterations, heim_scram_data *salt, const heim_scram_data *c1, const heim_scram_data *s1, const heim_scram_data *c2noproof, heim_scram_data *proof, heim_scram_data *server, heim_scram_data *sessionKey) argument
801 heim_scram_data *nonce, *proof, binaryproof, noproof, server; local
[all...]
H A Dtest_scram.c215 const heim_scram_data *proof,
240 proof,
209 calculate(void *ctx, heim_scram_method method, const heim_scram_data *user, const heim_scram_data *c1, const heim_scram_data *s1, const heim_scram_data *c2noproof, const heim_scram_data *proof, heim_scram_data *server, heim_scram_data *sessionKey) argument
/macosx-10.10.1/Heimdal-398.1.2/lib/gssapi/digest/
H A Dinit_sec_context.c44 heim_scram_data *proof,
80 ret = krb5_ret_data(response, proof);
37 calculate(void *ptr, heim_scram_method method, unsigned int iterations, heim_scram_data *salt, const heim_scram_data *c1, const heim_scram_data *s1, const heim_scram_data *c2noproof, heim_scram_data *proof, heim_scram_data *server, heim_scram_data *sessionKey) argument
/macosx-10.10.1/Heimdal-398.1.2/lib/gssapi/
H A Dtest_gssscram.c92 const heim_scram_data *proof,
116 proof,
86 calculate(void *ctx, heim_scram_method method, const heim_scram_data *user, const heim_scram_data *c1, const heim_scram_data *s1, const heim_scram_data *c2noproof, const heim_scram_data *proof, heim_scram_data *server, heim_scram_data *sessionKey) argument
/macosx-10.10.1/vim-55/runtime/syntax/
H A Db.vim2 " Language: B (A Formal Method with refinement and mathematical proof)
H A Dmf.vim115 syn keyword mfMacro pickup pixels_per_inch proof proofoffset proofrule
/macosx-10.10.1/Heimdal-398.1.2/kcm/
H A Dprotocol.c2431 heim_scram_data proof, server, client_key, stored, server_key, session_key; local
2443 memset(&proof, 0, sizeof(proof));
2492 &c1, &s1, &c2noproof, &proof, &server);
2504 * Now client_key XOR proof
2506 p = proof.data;
2512 ret = krb5_store_data(response, proof);
2532 heim_scram_data_free(&proof);
/macosx-10.10.1/Heimdal-398.1.2/lib/hcrypto/libtommath/
H A Dtommath.tex4273 then a x86 multiplier could produce the 62-bit product and use the ``shrd'' instruction to perform a double-precision right shift. The proof
4287 into the equation the original congruence is reproduced, thus concluding the proof. The following algorithm is based on this observation.
5309 using this technique is never too small. For the following proof let $t = \vert \vert y \vert \vert - 1$ and $s = \vert \vert x \vert \vert - 1$
5314 The first obvious case is when $\hat k = \beta - 1$ in which case the proof is concluded since the real quotient cannot be larger. For all other
5341 Which proves that $y - \hat kx \le x$ and by consequence $\hat k \ge k$ which concludes the proof. \textbf{QED}
5985 second to last iteration of the algorithm $b = a$ and clearly $(a, a) = a$ which concludes the proof. \textbf{QED}.
6347 order of the multiplicative subgroup modulo $p$ then $b$ must be the multiplicative inverse of $a$. The proof of which is trivial.

Completed in 301 milliseconds