Searched hist:59751 (Results 1 - 5 of 5) sorted by relevance

/freebsd-11-stable/sys/sys/
H A Dlinker.hdiff 59751 Sat Apr 29 11:19:31 MDT 2000 peter First round implementation of a fine grain enhanced module to module
version dependency system. This isn't quite finished, but it is at a
useful stage to do a functional checkpoint.

Highlights:
- version and dependency metadata is gathered via linker sets, so things
are handled the same for static kernels and code built to live in a kld.
- The dependencies are at module level (versus at file level).
- Dependencies determine kld symbol search order - this means that you
cannot link against symbols in another file unless you depend on it. This
is so that you cannot accidently unload the target out from underneath
the ones referencing it.
- It is flexible enough that we can put tags in #include files and macros
so that we can get decent hooks for enforcing recompiles on incompatable
ABI changes. eg: if we change struct proc, we could force a recompile
for all kld's that reference the proc struct.
- Tangled dependency references at boot time are sorted. Files are
relocated once all their dependencies are already relocated.

Caveats:
- Loader support is incomplete, but has been worked on seperately.
- Actual enforcement of the version number tags is not active yet - just
the module dependencies are live. The actual structure of versioning
hasn't been agreed on yet. (eg: major.minor, or whatever)
- There is some backwards compatability for old modules without metadata
but I'm not sure how good it is.

This is based on work originally done by Boris Popov (bp@freebsd.org),
but I'm not sure he'd recognize much of it now. Don't blame him. :-)
Also, ideas have been borrowed from Mike Smith.
/freebsd-11-stable/sys/kern/
H A Dkern_module.cdiff 59751 Sat Apr 29 11:19:31 MDT 2000 peter First round implementation of a fine grain enhanced module to module
version dependency system. This isn't quite finished, but it is at a
useful stage to do a functional checkpoint.

Highlights:
- version and dependency metadata is gathered via linker sets, so things
are handled the same for static kernels and code built to live in a kld.
- The dependencies are at module level (versus at file level).
- Dependencies determine kld symbol search order - this means that you
cannot link against symbols in another file unless you depend on it. This
is so that you cannot accidently unload the target out from underneath
the ones referencing it.
- It is flexible enough that we can put tags in #include files and macros
so that we can get decent hooks for enforcing recompiles on incompatable
ABI changes. eg: if we change struct proc, we could force a recompile
for all kld's that reference the proc struct.
- Tangled dependency references at boot time are sorted. Files are
relocated once all their dependencies are already relocated.

Caveats:
- Loader support is incomplete, but has been worked on seperately.
- Actual enforcement of the version number tags is not active yet - just
the module dependencies are live. The actual structure of versioning
hasn't been agreed on yet. (eg: major.minor, or whatever)
- There is some backwards compatability for old modules without metadata
but I'm not sure how good it is.

This is based on work originally done by Boris Popov (bp@freebsd.org),
but I'm not sure he'd recognize much of it now. Don't blame him. :-)
Also, ideas have been borrowed from Mike Smith.
H A Dlink_elf.cdiff 59751 Sat Apr 29 11:19:31 MDT 2000 peter First round implementation of a fine grain enhanced module to module
version dependency system. This isn't quite finished, but it is at a
useful stage to do a functional checkpoint.

Highlights:
- version and dependency metadata is gathered via linker sets, so things
are handled the same for static kernels and code built to live in a kld.
- The dependencies are at module level (versus at file level).
- Dependencies determine kld symbol search order - this means that you
cannot link against symbols in another file unless you depend on it. This
is so that you cannot accidently unload the target out from underneath
the ones referencing it.
- It is flexible enough that we can put tags in #include files and macros
so that we can get decent hooks for enforcing recompiles on incompatable
ABI changes. eg: if we change struct proc, we could force a recompile
for all kld's that reference the proc struct.
- Tangled dependency references at boot time are sorted. Files are
relocated once all their dependencies are already relocated.

Caveats:
- Loader support is incomplete, but has been worked on seperately.
- Actual enforcement of the version number tags is not active yet - just
the module dependencies are live. The actual structure of versioning
hasn't been agreed on yet. (eg: major.minor, or whatever)
- There is some backwards compatability for old modules without metadata
but I'm not sure how good it is.

This is based on work originally done by Boris Popov (bp@freebsd.org),
but I'm not sure he'd recognize much of it now. Don't blame him. :-)
Also, ideas have been borrowed from Mike Smith.
H A Dlink_elf_obj.cdiff 59751 Sat Apr 29 11:19:31 MDT 2000 peter First round implementation of a fine grain enhanced module to module
version dependency system. This isn't quite finished, but it is at a
useful stage to do a functional checkpoint.

Highlights:
- version and dependency metadata is gathered via linker sets, so things
are handled the same for static kernels and code built to live in a kld.
- The dependencies are at module level (versus at file level).
- Dependencies determine kld symbol search order - this means that you
cannot link against symbols in another file unless you depend on it. This
is so that you cannot accidently unload the target out from underneath
the ones referencing it.
- It is flexible enough that we can put tags in #include files and macros
so that we can get decent hooks for enforcing recompiles on incompatable
ABI changes. eg: if we change struct proc, we could force a recompile
for all kld's that reference the proc struct.
- Tangled dependency references at boot time are sorted. Files are
relocated once all their dependencies are already relocated.

Caveats:
- Loader support is incomplete, but has been worked on seperately.
- Actual enforcement of the version number tags is not active yet - just
the module dependencies are live. The actual structure of versioning
hasn't been agreed on yet. (eg: major.minor, or whatever)
- There is some backwards compatability for old modules without metadata
but I'm not sure how good it is.

This is based on work originally done by Boris Popov (bp@freebsd.org),
but I'm not sure he'd recognize much of it now. Don't blame him. :-)
Also, ideas have been borrowed from Mike Smith.
H A Dkern_linker.cdiff 59751 Sat Apr 29 11:19:31 MDT 2000 peter First round implementation of a fine grain enhanced module to module
version dependency system. This isn't quite finished, but it is at a
useful stage to do a functional checkpoint.

Highlights:
- version and dependency metadata is gathered via linker sets, so things
are handled the same for static kernels and code built to live in a kld.
- The dependencies are at module level (versus at file level).
- Dependencies determine kld symbol search order - this means that you
cannot link against symbols in another file unless you depend on it. This
is so that you cannot accidently unload the target out from underneath
the ones referencing it.
- It is flexible enough that we can put tags in #include files and macros
so that we can get decent hooks for enforcing recompiles on incompatable
ABI changes. eg: if we change struct proc, we could force a recompile
for all kld's that reference the proc struct.
- Tangled dependency references at boot time are sorted. Files are
relocated once all their dependencies are already relocated.

Caveats:
- Loader support is incomplete, but has been worked on seperately.
- Actual enforcement of the version number tags is not active yet - just
the module dependencies are live. The actual structure of versioning
hasn't been agreed on yet. (eg: major.minor, or whatever)
- There is some backwards compatability for old modules without metadata
but I'm not sure how good it is.

This is based on work originally done by Boris Popov (bp@freebsd.org),
but I'm not sure he'd recognize much of it now. Don't blame him. :-)
Also, ideas have been borrowed from Mike Smith.

Completed in 140 milliseconds