Searched hist:4 (Results 451 - 475 of 17372) sorted by relevance

<<11121314151617181920>>

/freebsd-10.2-release/share/man/man4/
H A Dtarg.4diff 228481 Tue Dec 13 21:29:24 MST 2011 ed Change targ(4) to use cdevpriv, instead of multiple character devices.

Also update the manpage and the scsi_target example program accordingly.

Discussed on: scsi@
Tested by: Chuck Tuffli <chuck tuffli net>
diff 198125 Thu Oct 15 11:47:35 MDT 2009 brueffer Use our standard section 4 SYNOPSIS.

MFC after: 3 days
diff 109345 Thu Jan 16 00:24:29 MST 2003 njl kernel:
* Fix a bug where devices weren't cleaned up on close(): CAM_REQ_CMP != 0

user:
* Increase timeout in usermode to CAM_TIME_INFINITY. The initiator is in
charge of timeouts and the value was in ms, not seconds.
* Bring two debugging printfs under the debug flag
* Clean up man page to show increased testing on isp(4)

Submitted by: gibbs (bugfixes)
107178 Fri Nov 22 22:55:51 MST 2002 njl New SCSI target emulator code

This code allows a user program to enable target mode on a SIM and
then emulate any number of devices (disks, tape drives, etc.) All
decisions about device behavior (UA, CA, inquiry response) are left
to the usermode program and the kernel driver is merely a conduit
for CCBs. This enables multiple concurrent target emulators, each
using its own backing store and IO model.

Also included is a user program that emulates a disk (RBC) using a
file as a backing store. This provides functionality similar to
md(4) at the CAM layer.

Code has been tested on ahc(4) and should also work on isp(4) (and
other SIMs that gain target mode support). It is a complete rewrite
of /sys/cam/scsi_target* and /usr/share/examples/scsi_target.

Design, comments from: gibbs
Supported by: Cryptography Research
Approved by: re
107178 Fri Nov 22 22:55:51 MST 2002 njl New SCSI target emulator code

This code allows a user program to enable target mode on a SIM and
then emulate any number of devices (disks, tape drives, etc.) All
decisions about device behavior (UA, CA, inquiry response) are left
to the usermode program and the kernel driver is merely a conduit
for CCBs. This enables multiple concurrent target emulators, each
using its own backing store and IO model.

Also included is a user program that emulates a disk (RBC) using a
file as a backing store. This provides functionality similar to
md(4) at the CAM layer.

Code has been tested on ahc(4) and should also work on isp(4) (and
other SIMs that gain target mode support). It is a complete rewrite
of /sys/cam/scsi_target* and /usr/share/examples/scsi_target.

Design, comments from: gibbs
Supported by: Cryptography Research
Approved by: re
107178 Fri Nov 22 22:55:51 MST 2002 njl New SCSI target emulator code

This code allows a user program to enable target mode on a SIM and
then emulate any number of devices (disks, tape drives, etc.) All
decisions about device behavior (UA, CA, inquiry response) are left
to the usermode program and the kernel driver is merely a conduit
for CCBs. This enables multiple concurrent target emulators, each
using its own backing store and IO model.

Also included is a user program that emulates a disk (RBC) using a
file as a backing store. This provides functionality similar to
md(4) at the CAM layer.

Code has been tested on ahc(4) and should also work on isp(4) (and
other SIMs that gain target mode support). It is a complete rewrite
of /sys/cam/scsi_target* and /usr/share/examples/scsi_target.

Design, comments from: gibbs
Supported by: Cryptography Research
Approved by: re
H A Dnve.4diff 261972 Sun Feb 16 11:16:10 MST 2014 brueffer MFC: r261838

Add a deprecation notice to nve.4 and Xref nfe.4.
diff 261972 Sun Feb 16 11:16:10 MST 2014 brueffer MFC: r261838

Add a deprecation notice to nve.4 and Xref nfe.4.
diff 217468 Sun Jan 16 04:17:13 MST 2011 marius Reference rgephy.4 in man pages of additional MAC drivers also known to
come in combination with these PHYs.

Submitted by: yongari
MFC after: 3 days
diff 166346 Tue Jan 30 08:40:04 MST 2007 brueffer Xref altq(4) for drivers that support it according to altq(4).
diff 166346 Tue Jan 30 08:40:04 MST 2007 brueffer Xref altq(4) for drivers that support it according to altq(4).
diff 148145 Tue Jul 19 00:26:30 MDT 2005 trhodes Add a "Load module on start up" comment, similar to mac_*.4 pages[1].
Quote .Cd and .Nd text.
Bump doc date.

Requested by: some user through ru
Supported by: ru, dwmalone, brueffer
H A Dsched_ule.4diff 239185 Fri Aug 10 19:16:45 MDT 2012 mav Some minor tunings/cleanups inspired by bde@ after previous commits:
- remove extra dynamic variable initializations;
- restore (4BSD) and implement (ULE) hogticks variable setting;
- make sched_rr_interval() more tolerant to options;
- restore (4BSD) and implement (ULE) kern.sched.quantum sysctl, a more
user-friendly wrapper for sched_slice;
- tune some sysctl descriptions;
- make some style fixes.
diff 239185 Fri Aug 10 19:16:45 MDT 2012 mav Some minor tunings/cleanups inspired by bde@ after previous commits:
- remove extra dynamic variable initializations;
- restore (4BSD) and implement (ULE) hogticks variable setting;
- make sched_rr_interval() more tolerant to options;
- restore (4BSD) and implement (ULE) kern.sched.quantum sysctl, a more
user-friendly wrapper for sched_slice;
- tune some sysctl descriptions;
- make some style fixes.
diff 175638 Thu Jan 24 13:48:20 MST 2008 ru - sched_4bsd is no longer a default system scheduler on some
architectures, so call it "traditional" instead.

- sched_ule is no longer buggy or experimental (according to
rev. 1.7 of sched_ule(4)), so don't call it experimental
(reported by a user on stable@).

Reviewed by: rwatson
diff 170312 Tue Jun 05 01:10:47 MDT 2007 delphij sched_core(4) removed.
diff 163041 Thu Oct 05 20:31:58 MDT 2006 simon - Remove SCHED_ULE from GENERIC to better avoid foot-shooting by
unsuspecting users.
- Add a comment in NOTES about experimental status of SCHED_ULE.
- Make warning about experimental status in sched_ule(4) a bit
stronger.

Suggested and reviewed by: dougb
Discussed on: developers
MFC after: 3 days
144759 Thu Apr 07 21:57:19 MDT 2005 rwatson Add rudimentary man pages for kernel options sched_4bsd and sched_ule,
which document some of the sysctls available for configuring 4bsd, some
of the bullet features of ule, and that ule is considered experimental
still.

MFC after: 3 days
H A Dusb.4diff 262137 Mon Feb 17 22:40:43 MST 2014 markj MFC r258036:
Add IDs for the ASIX 88179 and 88178A USB to GigE adapters.

MFC r258331:
Import the axge(4) driver for the ASIX AX88178A and AX88179 USB Ethernet
adapters. Both devices support Gigabit Ethernet and USB 2.0, and the AX88179
supports USB 3.0.

MFC r258617 (by lwhsu):
Also note to add xhci(4) to kernel configuration to utilize USB 3.0

MFC r258618 (by lwhsu):
Mention axge(4)
diff 262137 Mon Feb 17 22:40:43 MST 2014 markj MFC r258036:
Add IDs for the ASIX 88179 and 88178A USB to GigE adapters.

MFC r258331:
Import the axge(4) driver for the ASIX AX88178A and AX88179 USB Ethernet
adapters. Both devices support Gigabit Ethernet and USB 2.0, and the AX88179
supports USB 3.0.

MFC r258617 (by lwhsu):
Also note to add xhci(4) to kernel configuration to utilize USB 3.0

MFC r258618 (by lwhsu):
Mention axge(4)
diff 262137 Mon Feb 17 22:40:43 MST 2014 markj MFC r258036:
Add IDs for the ASIX 88179 and 88178A USB to GigE adapters.

MFC r258331:
Import the axge(4) driver for the ASIX AX88178A and AX88179 USB Ethernet
adapters. Both devices support Gigabit Ethernet and USB 2.0, and the AX88179
supports USB 3.0.

MFC r258617 (by lwhsu):
Also note to add xhci(4) to kernel configuration to utilize USB 3.0

MFC r258618 (by lwhsu):
Mention axge(4)
diff 232258 Tue Feb 28 15:51:56 MST 2012 kevlo Mention mos(4)
diff 219004 Thu Feb 24 18:09:51 MST 2011 hselasky - Add missing xhci(4) manual page.
- Minor update in some USB manual pages.

MFC after: 3 days
Approved by: thompsa (mentor)
diff 194860 Wed Jun 24 17:16:17 MDT 2009 thompsa Move programming info from usb(4) to usbdi(9) and update for the usb stack
changeover. Needs much more content still.
diff 192551 Thu May 21 17:33:45 MDT 2009 thompsa Update usb(4) to match reality, remove section on permissions.
Delete usb2_core.4.

Submitted by: Hans Petter Selasky
diff 192551 Thu May 21 17:33:45 MDT 2009 thompsa Update usb(4) to match reality, remove section on permissions.
Delete usb2_core.4.

Submitted by: Hans Petter Selasky
diff 190100 Thu Mar 19 20:33:43 MDT 2009 thompsa Remove the uscanner(4) driver, this follows the removal of the kernel scanner
driver in Linux 2.6. uscanner was just a simple wrapper around a fifo and
contained no logic, the default interface is now libusb (supported by sane).

Reviewed by: HPS
diff 164524 Wed Nov 22 21:30:02 MST 2006 brueffer Use our standard section 4 SYNOPSIS.

MFC after: 3 days
H A Damr.4diff 157271 Wed Mar 29 21:02:35 MST 2006 brueffer Mention that MegaRAID SAS controllers are supported by mfi(4).
diff 146803 Mon May 30 12:26:12 MDT 2005 brueffer Add the Dell PERC 4/IM as supported.

Submitted by: Muthu_T@Dell.com
diff 145126 Fri Apr 15 21:18:31 MDT 2005 simon - Add Dell PERC 4ei to the list of supported devices. It's an
alias used by Dell sometimes for PERC 4e/Si. [1]
- Delete some trailing whitespace.

MFC after: 1 day
Rapported by: Jon Kuster <kwsn@earthlink.net> [1]
diff 145126 Fri Apr 15 21:18:31 MDT 2005 simon - Add Dell PERC 4ei to the list of supported devices. It's an
alias used by Dell sometimes for PERC 4e/Si. [1]
- Delete some trailing whitespace.

MFC after: 1 day
Rapported by: Jon Kuster <kwsn@earthlink.net> [1]
diff 139657 Tue Jan 04 04:18:21 MST 2005 brueffer - list the LSI MegaRAID SATA 150-(2|4|6) controllers as supported (1)
- mention SATA support in a few places
- AMI -> AMI/LSI for controllers now sold my LSI
- bump .Dd

PR: 61878 (1)
Submitted by: Sten Spans <sten@blinkenlights.nl>
Discussed with: simon (sorting)
MFC after: 3 days
diff 138012 Tue Nov 23 10:47:08 MST 2004 simon Add Dell PERC 4e/Di and Dell PERC 4e/Si to the list of supported
devices.

Submitted by: Muthu_T@Dell.com
MFC after: 3 days
diff 138012 Tue Nov 23 10:47:08 MST 2004 simon Add Dell PERC 4e/Di and Dell PERC 4e/Si to the list of supported
devices.

Submitted by: Muthu_T@Dell.com
MFC after: 3 days
diff 123771 Tue Dec 23 16:22:34 MST 2003 trhodes Add the MegaRAID 320-4X cards to the supported device list.

Submitted by: Andre Guibert de Bruet <andy@siliconlandmark.com> (via -doc)
diff 120523 Sat Sep 27 18:03:03 MDT 2003 simon - Add the Dell PERC 4/Di to the list of supported devices; it
has been supported for the last 10 months. [1]
- Make the device list compact, since it is getting rather large.

Reported by: David Magda <dmagda@magda.ca> [1]
MFC after: 2 weeks
diff 112653 Wed Mar 26 01:34:23 MST 2003 keramida Update amr(4) to note that LSILogic MegaRAID 320-[1/2] cards work.

PR: 50139
Submitted by: asmodai
/freebsd-10.2-release/share/man/man8/
H A Dnanobsd.8diff 271095 Thu Sep 04 13:51:25 MDT 2014 se MFC r270647: Add references to vt(4) and the configuration files in /usr/sha
MFC r270653: Update man-pages to correctly refer to changed pathes and namin
MFC r270657: More man pages that need to know about vt in addition to syscon
MFC r270659: (by pluknet@) Missed comma.
MFC r270660: Back-out the references to vt(4) from this man-page. It appears
MFC r270933: Add references to vt(4) to further man-pages.
MFC r270934: Final patches to the tools used to convert syscons keymaps for
MFC r270935: Add vt(4) support to the console initialisation script, specifi

Second batch of MFCs to add support for Unicode keymaps for use with vt(4).

It contains the following changes:

- Add references to vt(4) to relevant man-pages.
- Update comment in defaults/rc.conf to mention vt
- Update rc.d/syscons to warn about syscons keymaps used under vt.
An attempt is made to identify the vt keymap to load instead.
- Minor changes to the conversion tool based on mail comments on keymaps.

Relnotes: yes
diff 271095 Thu Sep 04 13:51:25 MDT 2014 se MFC r270647: Add references to vt(4) and the configuration files in /usr/sha
MFC r270653: Update man-pages to correctly refer to changed pathes and namin
MFC r270657: More man pages that need to know about vt in addition to syscon
MFC r270659: (by pluknet@) Missed comma.
MFC r270660: Back-out the references to vt(4) from this man-page. It appears
MFC r270933: Add references to vt(4) to further man-pages.
MFC r270934: Final patches to the tools used to convert syscons keymaps for
MFC r270935: Add vt(4) support to the console initialisation script, specifi

Second batch of MFCs to add support for Unicode keymaps for use with vt(4).

It contains the following changes:

- Add references to vt(4) to relevant man-pages.
- Update comment in defaults/rc.conf to mention vt
- Update rc.d/syscons to warn about syscons keymaps used under vt.
An attempt is made to identify the vt keymap to load instead.
- Minor changes to the conversion tool based on mail comments on keymaps.

Relnotes: yes
diff 271095 Thu Sep 04 13:51:25 MDT 2014 se MFC r270647: Add references to vt(4) and the configuration files in /usr/sha
MFC r270653: Update man-pages to correctly refer to changed pathes and namin
MFC r270657: More man pages that need to know about vt in addition to syscon
MFC r270659: (by pluknet@) Missed comma.
MFC r270660: Back-out the references to vt(4) from this man-page. It appears
MFC r270933: Add references to vt(4) to further man-pages.
MFC r270934: Final patches to the tools used to convert syscons keymaps for
MFC r270935: Add vt(4) support to the console initialisation script, specifi

Second batch of MFCs to add support for Unicode keymaps for use with vt(4).

It contains the following changes:

- Add references to vt(4) to relevant man-pages.
- Update comment in defaults/rc.conf to mention vt
- Update rc.d/syscons to warn about syscons keymaps used under vt.
An attempt is made to identify the vt keymap to load instead.
- Minor changes to the conversion tool based on mail comments on keymaps.

Relnotes: yes
diff 271095 Thu Sep 04 13:51:25 MDT 2014 se MFC r270647: Add references to vt(4) and the configuration files in /usr/sha
MFC r270653: Update man-pages to correctly refer to changed pathes and namin
MFC r270657: More man pages that need to know about vt in addition to syscon
MFC r270659: (by pluknet@) Missed comma.
MFC r270660: Back-out the references to vt(4) from this man-page. It appears
MFC r270933: Add references to vt(4) to further man-pages.
MFC r270934: Final patches to the tools used to convert syscons keymaps for
MFC r270935: Add vt(4) support to the console initialisation script, specifi

Second batch of MFCs to add support for Unicode keymaps for use with vt(4).

It contains the following changes:

- Add references to vt(4) to relevant man-pages.
- Update comment in defaults/rc.conf to mention vt
- Update rc.d/syscons to warn about syscons keymaps used under vt.
An attempt is made to identify the vt keymap to load instead.
- Minor changes to the conversion tool based on mail comments on keymaps.

Relnotes: yes
diff 271095 Thu Sep 04 13:51:25 MDT 2014 se MFC r270647: Add references to vt(4) and the configuration files in /usr/sha
MFC r270653: Update man-pages to correctly refer to changed pathes and namin
MFC r270657: More man pages that need to know about vt in addition to syscon
MFC r270659: (by pluknet@) Missed comma.
MFC r270660: Back-out the references to vt(4) from this man-page. It appears
MFC r270933: Add references to vt(4) to further man-pages.
MFC r270934: Final patches to the tools used to convert syscons keymaps for
MFC r270935: Add vt(4) support to the console initialisation script, specifi

Second batch of MFCs to add support for Unicode keymaps for use with vt(4).

It contains the following changes:

- Add references to vt(4) to relevant man-pages.
- Update comment in defaults/rc.conf to mention vt
- Update rc.d/syscons to warn about syscons keymaps used under vt.
An attempt is made to identify the vt keymap to load instead.
- Minor changes to the conversion tool based on mail comments on keymaps.

Relnotes: yes
diff 271095 Thu Sep 04 13:51:25 MDT 2014 se MFC r270647: Add references to vt(4) and the configuration files in /usr/sha
MFC r270653: Update man-pages to correctly refer to changed pathes and namin
MFC r270657: More man pages that need to know about vt in addition to syscon
MFC r270659: (by pluknet@) Missed comma.
MFC r270660: Back-out the references to vt(4) from this man-page. It appears
MFC r270933: Add references to vt(4) to further man-pages.
MFC r270934: Final patches to the tools used to convert syscons keymaps for
MFC r270935: Add vt(4) support to the console initialisation script, specifi

Second batch of MFCs to add support for Unicode keymaps for use with vt(4).

It contains the following changes:

- Add references to vt(4) to relevant man-pages.
- Update comment in defaults/rc.conf to mention vt
- Update rc.d/syscons to warn about syscons keymaps used under vt.
An attempt is made to identify the vt keymap to load instead.
- Minor changes to the conversion tool based on mail comments on keymaps.

Relnotes: yes
/freebsd-10.2-release/sys/dev/ppbus/
H A Dvpoio.cdiff 187576 Wed Jan 21 23:14:29 MST 2009 jhb Add locking to ppc and ppbus and mark the whole lot MPSAFE:
- To avoid having a bunch of locks that end up always getting acquired as
a group, give each ppc(4) device a mutex which it shares with all the
child devices including ppbus(4), lpt(4), plip(4), etc. This mutex
is then used for all the locking.
- Rework the interrupt handling stuff yet again. Now ppbus drivers setup
their interrupt handler during attach and tear it down during detach
like most other drivers. ppbus(4) only invokes the interrupt handler
of the device that currently owns the bus (if any) when an interrupt
occurs, however. Also, interrupt handlers in general now accept their
softc pointers as their argument rather than the device_t. Another
feature of the ppbus interrupt handlers is that they are called with
the parent ppc device's lock already held. This minimizes the number
of lock operations during an interrupt.
- Mark plip(4), lpt(4), pcfclock(4), ppi(4), vpo(4) MPSAFE.
- lpbb(4) uses the ppc lock instead of Giant.
- Other plip(4) changes:
- Add a mutex to protect the global tables in plip(4) and free them on
module unload.
- Add a detach routine.
- Split out the init/stop code from the ioctl routine into separate
functions.
- Other lpt(4) changes:
- Use device_printf().
- Use a dedicated callout for the lptout timer.
- Allocate the I/O buffers at attach and detach rather than during
open and close as this simplifies the locking at the cost of
1024+32 bytes when the driver is attached.
- Other ppi(4) changes:
- Use an sx lock to serialize open and close.
- Remove unused HADBUS flag.
- Add a detach routine.
- Use a malloc'd buffer for each read and write to avoid races with
concurrent read/write.
- Other pps(4) changes:
- Use a callout rather than a callout handle with timeout().
- Conform to the new ppbus requirements (regular mutex, non-filter
interrupt handler). pps(4) is probably going to have to become a
standalone driver that doesn't use ppbus(4) to satisfy it's
requirements for low latency as a result.
- Use an sx lock to serialize open and close.
- Other vpo(4) changes:
- Use the parent ppc device's lock to create the CAM sim instead of
Giant.
- Other ppc(4) changes:
- Fix ppc_isa's detach method to detach instead of calling attach.

Tested by: no one :-(
diff 187576 Wed Jan 21 23:14:29 MST 2009 jhb Add locking to ppc and ppbus and mark the whole lot MPSAFE:
- To avoid having a bunch of locks that end up always getting acquired as
a group, give each ppc(4) device a mutex which it shares with all the
child devices including ppbus(4), lpt(4), plip(4), etc. This mutex
is then used for all the locking.
- Rework the interrupt handling stuff yet again. Now ppbus drivers setup
their interrupt handler during attach and tear it down during detach
like most other drivers. ppbus(4) only invokes the interrupt handler
of the device that currently owns the bus (if any) when an interrupt
occurs, however. Also, interrupt handlers in general now accept their
softc pointers as their argument rather than the device_t. Another
feature of the ppbus interrupt handlers is that they are called with
the parent ppc device's lock already held. This minimizes the number
of lock operations during an interrupt.
- Mark plip(4), lpt(4), pcfclock(4), ppi(4), vpo(4) MPSAFE.
- lpbb(4) uses the ppc lock instead of Giant.
- Other plip(4) changes:
- Add a mutex to protect the global tables in plip(4) and free them on
module unload.
- Add a detach routine.
- Split out the init/stop code from the ioctl routine into separate
functions.
- Other lpt(4) changes:
- Use device_printf().
- Use a dedicated callout for the lptout timer.
- Allocate the I/O buffers at attach and detach rather than during
open and close as this simplifies the locking at the cost of
1024+32 bytes when the driver is attached.
- Other ppi(4) changes:
- Use an sx lock to serialize open and close.
- Remove unused HADBUS flag.
- Add a detach routine.
- Use a malloc'd buffer for each read and write to avoid races with
concurrent read/write.
- Other pps(4) changes:
- Use a callout rather than a callout handle with timeout().
- Conform to the new ppbus requirements (regular mutex, non-filter
interrupt handler). pps(4) is probably going to have to become a
standalone driver that doesn't use ppbus(4) to satisfy it's
requirements for low latency as a result.
- Use an sx lock to serialize open and close.
- Other vpo(4) changes:
- Use the parent ppc device's lock to create the CAM sim instead of
Giant.
- Other ppc(4) changes:
- Fix ppc_isa's detach method to detach instead of calling attach.

Tested by: no one :-(
diff 187576 Wed Jan 21 23:14:29 MST 2009 jhb Add locking to ppc and ppbus and mark the whole lot MPSAFE:
- To avoid having a bunch of locks that end up always getting acquired as
a group, give each ppc(4) device a mutex which it shares with all the
child devices including ppbus(4), lpt(4), plip(4), etc. This mutex
is then used for all the locking.
- Rework the interrupt handling stuff yet again. Now ppbus drivers setup
their interrupt handler during attach and tear it down during detach
like most other drivers. ppbus(4) only invokes the interrupt handler
of the device that currently owns the bus (if any) when an interrupt
occurs, however. Also, interrupt handlers in general now accept their
softc pointers as their argument rather than the device_t. Another
feature of the ppbus interrupt handlers is that they are called with
the parent ppc device's lock already held. This minimizes the number
of lock operations during an interrupt.
- Mark plip(4), lpt(4), pcfclock(4), ppi(4), vpo(4) MPSAFE.
- lpbb(4) uses the ppc lock instead of Giant.
- Other plip(4) changes:
- Add a mutex to protect the global tables in plip(4) and free them on
module unload.
- Add a detach routine.
- Split out the init/stop code from the ioctl routine into separate
functions.
- Other lpt(4) changes:
- Use device_printf().
- Use a dedicated callout for the lptout timer.
- Allocate the I/O buffers at attach and detach rather than during
open and close as this simplifies the locking at the cost of
1024+32 bytes when the driver is attached.
- Other ppi(4) changes:
- Use an sx lock to serialize open and close.
- Remove unused HADBUS flag.
- Add a detach routine.
- Use a malloc'd buffer for each read and write to avoid races with
concurrent read/write.
- Other pps(4) changes:
- Use a callout rather than a callout handle with timeout().
- Conform to the new ppbus requirements (regular mutex, non-filter
interrupt handler). pps(4) is probably going to have to become a
standalone driver that doesn't use ppbus(4) to satisfy it's
requirements for low latency as a result.
- Use an sx lock to serialize open and close.
- Other vpo(4) changes:
- Use the parent ppc device's lock to create the CAM sim instead of
Giant.
- Other ppc(4) changes:
- Fix ppc_isa's detach method to detach instead of calling attach.

Tested by: no one :-(
diff 187576 Wed Jan 21 23:14:29 MST 2009 jhb Add locking to ppc and ppbus and mark the whole lot MPSAFE:
- To avoid having a bunch of locks that end up always getting acquired as
a group, give each ppc(4) device a mutex which it shares with all the
child devices including ppbus(4), lpt(4), plip(4), etc. This mutex
is then used for all the locking.
- Rework the interrupt handling stuff yet again. Now ppbus drivers setup
their interrupt handler during attach and tear it down during detach
like most other drivers. ppbus(4) only invokes the interrupt handler
of the device that currently owns the bus (if any) when an interrupt
occurs, however. Also, interrupt handlers in general now accept their
softc pointers as their argument rather than the device_t. Another
feature of the ppbus interrupt handlers is that they are called with
the parent ppc device's lock already held. This minimizes the number
of lock operations during an interrupt.
- Mark plip(4), lpt(4), pcfclock(4), ppi(4), vpo(4) MPSAFE.
- lpbb(4) uses the ppc lock instead of Giant.
- Other plip(4) changes:
- Add a mutex to protect the global tables in plip(4) and free them on
module unload.
- Add a detach routine.
- Split out the init/stop code from the ioctl routine into separate
functions.
- Other lpt(4) changes:
- Use device_printf().
- Use a dedicated callout for the lptout timer.
- Allocate the I/O buffers at attach and detach rather than during
open and close as this simplifies the locking at the cost of
1024+32 bytes when the driver is attached.
- Other ppi(4) changes:
- Use an sx lock to serialize open and close.
- Remove unused HADBUS flag.
- Add a detach routine.
- Use a malloc'd buffer for each read and write to avoid races with
concurrent read/write.
- Other pps(4) changes:
- Use a callout rather than a callout handle with timeout().
- Conform to the new ppbus requirements (regular mutex, non-filter
interrupt handler). pps(4) is probably going to have to become a
standalone driver that doesn't use ppbus(4) to satisfy it's
requirements for low latency as a result.
- Use an sx lock to serialize open and close.
- Other vpo(4) changes:
- Use the parent ppc device's lock to create the CAM sim instead of
Giant.
- Other ppc(4) changes:
- Fix ppc_isa's detach method to detach instead of calling attach.

Tested by: no one :-(
diff 187576 Wed Jan 21 23:14:29 MST 2009 jhb Add locking to ppc and ppbus and mark the whole lot MPSAFE:
- To avoid having a bunch of locks that end up always getting acquired as
a group, give each ppc(4) device a mutex which it shares with all the
child devices including ppbus(4), lpt(4), plip(4), etc. This mutex
is then used for all the locking.
- Rework the interrupt handling stuff yet again. Now ppbus drivers setup
their interrupt handler during attach and tear it down during detach
like most other drivers. ppbus(4) only invokes the interrupt handler
of the device that currently owns the bus (if any) when an interrupt
occurs, however. Also, interrupt handlers in general now accept their
softc pointers as their argument rather than the device_t. Another
feature of the ppbus interrupt handlers is that they are called with
the parent ppc device's lock already held. This minimizes the number
of lock operations during an interrupt.
- Mark plip(4), lpt(4), pcfclock(4), ppi(4), vpo(4) MPSAFE.
- lpbb(4) uses the ppc lock instead of Giant.
- Other plip(4) changes:
- Add a mutex to protect the global tables in plip(4) and free them on
module unload.
- Add a detach routine.
- Split out the init/stop code from the ioctl routine into separate
functions.
- Other lpt(4) changes:
- Use device_printf().
- Use a dedicated callout for the lptout timer.
- Allocate the I/O buffers at attach and detach rather than during
open and close as this simplifies the locking at the cost of
1024+32 bytes when the driver is attached.
- Other ppi(4) changes:
- Use an sx lock to serialize open and close.
- Remove unused HADBUS flag.
- Add a detach routine.
- Use a malloc'd buffer for each read and write to avoid races with
concurrent read/write.
- Other pps(4) changes:
- Use a callout rather than a callout handle with timeout().
- Conform to the new ppbus requirements (regular mutex, non-filter
interrupt handler). pps(4) is probably going to have to become a
standalone driver that doesn't use ppbus(4) to satisfy it's
requirements for low latency as a result.
- Use an sx lock to serialize open and close.
- Other vpo(4) changes:
- Use the parent ppc device's lock to create the CAM sim instead of
Giant.
- Other ppc(4) changes:
- Fix ppc_isa's detach method to detach instead of calling attach.

Tested by: no one :-(
diff 187576 Wed Jan 21 23:14:29 MST 2009 jhb Add locking to ppc and ppbus and mark the whole lot MPSAFE:
- To avoid having a bunch of locks that end up always getting acquired as
a group, give each ppc(4) device a mutex which it shares with all the
child devices including ppbus(4), lpt(4), plip(4), etc. This mutex
is then used for all the locking.
- Rework the interrupt handling stuff yet again. Now ppbus drivers setup
their interrupt handler during attach and tear it down during detach
like most other drivers. ppbus(4) only invokes the interrupt handler
of the device that currently owns the bus (if any) when an interrupt
occurs, however. Also, interrupt handlers in general now accept their
softc pointers as their argument rather than the device_t. Another
feature of the ppbus interrupt handlers is that they are called with
the parent ppc device's lock already held. This minimizes the number
of lock operations during an interrupt.
- Mark plip(4), lpt(4), pcfclock(4), ppi(4), vpo(4) MPSAFE.
- lpbb(4) uses the ppc lock instead of Giant.
- Other plip(4) changes:
- Add a mutex to protect the global tables in plip(4) and free them on
module unload.
- Add a detach routine.
- Split out the init/stop code from the ioctl routine into separate
functions.
- Other lpt(4) changes:
- Use device_printf().
- Use a dedicated callout for the lptout timer.
- Allocate the I/O buffers at attach and detach rather than during
open and close as this simplifies the locking at the cost of
1024+32 bytes when the driver is attached.
- Other ppi(4) changes:
- Use an sx lock to serialize open and close.
- Remove unused HADBUS flag.
- Add a detach routine.
- Use a malloc'd buffer for each read and write to avoid races with
concurrent read/write.
- Other pps(4) changes:
- Use a callout rather than a callout handle with timeout().
- Conform to the new ppbus requirements (regular mutex, non-filter
interrupt handler). pps(4) is probably going to have to become a
standalone driver that doesn't use ppbus(4) to satisfy it's
requirements for low latency as a result.
- Use an sx lock to serialize open and close.
- Other vpo(4) changes:
- Use the parent ppc device's lock to create the CAM sim instead of
Giant.
- Other ppc(4) changes:
- Fix ppc_isa's detach method to detach instead of calling attach.

Tested by: no one :-(
diff 187576 Wed Jan 21 23:14:29 MST 2009 jhb Add locking to ppc and ppbus and mark the whole lot MPSAFE:
- To avoid having a bunch of locks that end up always getting acquired as
a group, give each ppc(4) device a mutex which it shares with all the
child devices including ppbus(4), lpt(4), plip(4), etc. This mutex
is then used for all the locking.
- Rework the interrupt handling stuff yet again. Now ppbus drivers setup
their interrupt handler during attach and tear it down during detach
like most other drivers. ppbus(4) only invokes the interrupt handler
of the device that currently owns the bus (if any) when an interrupt
occurs, however. Also, interrupt handlers in general now accept their
softc pointers as their argument rather than the device_t. Another
feature of the ppbus interrupt handlers is that they are called with
the parent ppc device's lock already held. This minimizes the number
of lock operations during an interrupt.
- Mark plip(4), lpt(4), pcfclock(4), ppi(4), vpo(4) MPSAFE.
- lpbb(4) uses the ppc lock instead of Giant.
- Other plip(4) changes:
- Add a mutex to protect the global tables in plip(4) and free them on
module unload.
- Add a detach routine.
- Split out the init/stop code from the ioctl routine into separate
functions.
- Other lpt(4) changes:
- Use device_printf().
- Use a dedicated callout for the lptout timer.
- Allocate the I/O buffers at attach and detach rather than during
open and close as this simplifies the locking at the cost of
1024+32 bytes when the driver is attached.
- Other ppi(4) changes:
- Use an sx lock to serialize open and close.
- Remove unused HADBUS flag.
- Add a detach routine.
- Use a malloc'd buffer for each read and write to avoid races with
concurrent read/write.
- Other pps(4) changes:
- Use a callout rather than a callout handle with timeout().
- Conform to the new ppbus requirements (regular mutex, non-filter
interrupt handler). pps(4) is probably going to have to become a
standalone driver that doesn't use ppbus(4) to satisfy it's
requirements for low latency as a result.
- Use an sx lock to serialize open and close.
- Other vpo(4) changes:
- Use the parent ppc device's lock to create the CAM sim instead of
Giant.
- Other ppc(4) changes:
- Fix ppc_isa's detach method to detach instead of calling attach.

Tested by: no one :-(
diff 187576 Wed Jan 21 23:14:29 MST 2009 jhb Add locking to ppc and ppbus and mark the whole lot MPSAFE:
- To avoid having a bunch of locks that end up always getting acquired as
a group, give each ppc(4) device a mutex which it shares with all the
child devices including ppbus(4), lpt(4), plip(4), etc. This mutex
is then used for all the locking.
- Rework the interrupt handling stuff yet again. Now ppbus drivers setup
their interrupt handler during attach and tear it down during detach
like most other drivers. ppbus(4) only invokes the interrupt handler
of the device that currently owns the bus (if any) when an interrupt
occurs, however. Also, interrupt handlers in general now accept their
softc pointers as their argument rather than the device_t. Another
feature of the ppbus interrupt handlers is that they are called with
the parent ppc device's lock already held. This minimizes the number
of lock operations during an interrupt.
- Mark plip(4), lpt(4), pcfclock(4), ppi(4), vpo(4) MPSAFE.
- lpbb(4) uses the ppc lock instead of Giant.
- Other plip(4) changes:
- Add a mutex to protect the global tables in plip(4) and free them on
module unload.
- Add a detach routine.
- Split out the init/stop code from the ioctl routine into separate
functions.
- Other lpt(4) changes:
- Use device_printf().
- Use a dedicated callout for the lptout timer.
- Allocate the I/O buffers at attach and detach rather than during
open and close as this simplifies the locking at the cost of
1024+32 bytes when the driver is attached.
- Other ppi(4) changes:
- Use an sx lock to serialize open and close.
- Remove unused HADBUS flag.
- Add a detach routine.
- Use a malloc'd buffer for each read and write to avoid races with
concurrent read/write.
- Other pps(4) changes:
- Use a callout rather than a callout handle with timeout().
- Conform to the new ppbus requirements (regular mutex, non-filter
interrupt handler). pps(4) is probably going to have to become a
standalone driver that doesn't use ppbus(4) to satisfy it's
requirements for low latency as a result.
- Use an sx lock to serialize open and close.
- Other vpo(4) changes:
- Use the parent ppc device's lock to create the CAM sim instead of
Giant.
- Other ppc(4) changes:
- Fix ppc_isa's detach method to detach instead of calling attach.

Tested by: no one :-(
diff 187576 Wed Jan 21 23:14:29 MST 2009 jhb Add locking to ppc and ppbus and mark the whole lot MPSAFE:
- To avoid having a bunch of locks that end up always getting acquired as
a group, give each ppc(4) device a mutex which it shares with all the
child devices including ppbus(4), lpt(4), plip(4), etc. This mutex
is then used for all the locking.
- Rework the interrupt handling stuff yet again. Now ppbus drivers setup
their interrupt handler during attach and tear it down during detach
like most other drivers. ppbus(4) only invokes the interrupt handler
of the device that currently owns the bus (if any) when an interrupt
occurs, however. Also, interrupt handlers in general now accept their
softc pointers as their argument rather than the device_t. Another
feature of the ppbus interrupt handlers is that they are called with
the parent ppc device's lock already held. This minimizes the number
of lock operations during an interrupt.
- Mark plip(4), lpt(4), pcfclock(4), ppi(4), vpo(4) MPSAFE.
- lpbb(4) uses the ppc lock instead of Giant.
- Other plip(4) changes:
- Add a mutex to protect the global tables in plip(4) and free them on
module unload.
- Add a detach routine.
- Split out the init/stop code from the ioctl routine into separate
functions.
- Other lpt(4) changes:
- Use device_printf().
- Use a dedicated callout for the lptout timer.
- Allocate the I/O buffers at attach and detach rather than during
open and close as this simplifies the locking at the cost of
1024+32 bytes when the driver is attached.
- Other ppi(4) changes:
- Use an sx lock to serialize open and close.
- Remove unused HADBUS flag.
- Add a detach routine.
- Use a malloc'd buffer for each read and write to avoid races with
concurrent read/write.
- Other pps(4) changes:
- Use a callout rather than a callout handle with timeout().
- Conform to the new ppbus requirements (regular mutex, non-filter
interrupt handler). pps(4) is probably going to have to become a
standalone driver that doesn't use ppbus(4) to satisfy it's
requirements for low latency as a result.
- Use an sx lock to serialize open and close.
- Other vpo(4) changes:
- Use the parent ppc device's lock to create the CAM sim instead of
Giant.
- Other ppc(4) changes:
- Fix ppc_isa's detach method to detach instead of calling attach.

Tested by: no one :-(
diff 187576 Wed Jan 21 23:14:29 MST 2009 jhb Add locking to ppc and ppbus and mark the whole lot MPSAFE:
- To avoid having a bunch of locks that end up always getting acquired as
a group, give each ppc(4) device a mutex which it shares with all the
child devices including ppbus(4), lpt(4), plip(4), etc. This mutex
is then used for all the locking.
- Rework the interrupt handling stuff yet again. Now ppbus drivers setup
their interrupt handler during attach and tear it down during detach
like most other drivers. ppbus(4) only invokes the interrupt handler
of the device that currently owns the bus (if any) when an interrupt
occurs, however. Also, interrupt handlers in general now accept their
softc pointers as their argument rather than the device_t. Another
feature of the ppbus interrupt handlers is that they are called with
the parent ppc device's lock already held. This minimizes the number
of lock operations during an interrupt.
- Mark plip(4), lpt(4), pcfclock(4), ppi(4), vpo(4) MPSAFE.
- lpbb(4) uses the ppc lock instead of Giant.
- Other plip(4) changes:
- Add a mutex to protect the global tables in plip(4) and free them on
module unload.
- Add a detach routine.
- Split out the init/stop code from the ioctl routine into separate
functions.
- Other lpt(4) changes:
- Use device_printf().
- Use a dedicated callout for the lptout timer.
- Allocate the I/O buffers at attach and detach rather than during
open and close as this simplifies the locking at the cost of
1024+32 bytes when the driver is attached.
- Other ppi(4) changes:
- Use an sx lock to serialize open and close.
- Remove unused HADBUS flag.
- Add a detach routine.
- Use a malloc'd buffer for each read and write to avoid races with
concurrent read/write.
- Other pps(4) changes:
- Use a callout rather than a callout handle with timeout().
- Conform to the new ppbus requirements (regular mutex, non-filter
interrupt handler). pps(4) is probably going to have to become a
standalone driver that doesn't use ppbus(4) to satisfy it's
requirements for low latency as a result.
- Use an sx lock to serialize open and close.
- Other vpo(4) changes:
- Use the parent ppc device's lock to create the CAM sim instead of
Giant.
- Other ppc(4) changes:
- Fix ppc_isa's detach method to detach instead of calling attach.

Tested by: no one :-(
diff 187576 Wed Jan 21 23:14:29 MST 2009 jhb Add locking to ppc and ppbus and mark the whole lot MPSAFE:
- To avoid having a bunch of locks that end up always getting acquired as
a group, give each ppc(4) device a mutex which it shares with all the
child devices including ppbus(4), lpt(4), plip(4), etc. This mutex
is then used for all the locking.
- Rework the interrupt handling stuff yet again. Now ppbus drivers setup
their interrupt handler during attach and tear it down during detach
like most other drivers. ppbus(4) only invokes the interrupt handler
of the device that currently owns the bus (if any) when an interrupt
occurs, however. Also, interrupt handlers in general now accept their
softc pointers as their argument rather than the device_t. Another
feature of the ppbus interrupt handlers is that they are called with
the parent ppc device's lock already held. This minimizes the number
of lock operations during an interrupt.
- Mark plip(4), lpt(4), pcfclock(4), ppi(4), vpo(4) MPSAFE.
- lpbb(4) uses the ppc lock instead of Giant.
- Other plip(4) changes:
- Add a mutex to protect the global tables in plip(4) and free them on
module unload.
- Add a detach routine.
- Split out the init/stop code from the ioctl routine into separate
functions.
- Other lpt(4) changes:
- Use device_printf().
- Use a dedicated callout for the lptout timer.
- Allocate the I/O buffers at attach and detach rather than during
open and close as this simplifies the locking at the cost of
1024+32 bytes when the driver is attached.
- Other ppi(4) changes:
- Use an sx lock to serialize open and close.
- Remove unused HADBUS flag.
- Add a detach routine.
- Use a malloc'd buffer for each read and write to avoid races with
concurrent read/write.
- Other pps(4) changes:
- Use a callout rather than a callout handle with timeout().
- Conform to the new ppbus requirements (regular mutex, non-filter
interrupt handler). pps(4) is probably going to have to become a
standalone driver that doesn't use ppbus(4) to satisfy it's
requirements for low latency as a result.
- Use an sx lock to serialize open and close.
- Other vpo(4) changes:
- Use the parent ppc device's lock to create the CAM sim instead of
Giant.
- Other ppc(4) changes:
- Fix ppc_isa's detach method to detach instead of calling attach.

Tested by: no one :-(
diff 187576 Wed Jan 21 23:14:29 MST 2009 jhb Add locking to ppc and ppbus and mark the whole lot MPSAFE:
- To avoid having a bunch of locks that end up always getting acquired as
a group, give each ppc(4) device a mutex which it shares with all the
child devices including ppbus(4), lpt(4), plip(4), etc. This mutex
is then used for all the locking.
- Rework the interrupt handling stuff yet again. Now ppbus drivers setup
their interrupt handler during attach and tear it down during detach
like most other drivers. ppbus(4) only invokes the interrupt handler
of the device that currently owns the bus (if any) when an interrupt
occurs, however. Also, interrupt handlers in general now accept their
softc pointers as their argument rather than the device_t. Another
feature of the ppbus interrupt handlers is that they are called with
the parent ppc device's lock already held. This minimizes the number
of lock operations during an interrupt.
- Mark plip(4), lpt(4), pcfclock(4), ppi(4), vpo(4) MPSAFE.
- lpbb(4) uses the ppc lock instead of Giant.
- Other plip(4) changes:
- Add a mutex to protect the global tables in plip(4) and free them on
module unload.
- Add a detach routine.
- Split out the init/stop code from the ioctl routine into separate
functions.
- Other lpt(4) changes:
- Use device_printf().
- Use a dedicated callout for the lptout timer.
- Allocate the I/O buffers at attach and detach rather than during
open and close as this simplifies the locking at the cost of
1024+32 bytes when the driver is attached.
- Other ppi(4) changes:
- Use an sx lock to serialize open and close.
- Remove unused HADBUS flag.
- Add a detach routine.
- Use a malloc'd buffer for each read and write to avoid races with
concurrent read/write.
- Other pps(4) changes:
- Use a callout rather than a callout handle with timeout().
- Conform to the new ppbus requirements (regular mutex, non-filter
interrupt handler). pps(4) is probably going to have to become a
standalone driver that doesn't use ppbus(4) to satisfy it's
requirements for low latency as a result.
- Use an sx lock to serialize open and close.
- Other vpo(4) changes:
- Use the parent ppc device's lock to create the CAM sim instead of
Giant.
- Other ppc(4) changes:
- Fix ppc_isa's detach method to detach instead of calling attach.

Tested by: no one :-(
diff 187576 Wed Jan 21 23:14:29 MST 2009 jhb Add locking to ppc and ppbus and mark the whole lot MPSAFE:
- To avoid having a bunch of locks that end up always getting acquired as
a group, give each ppc(4) device a mutex which it shares with all the
child devices including ppbus(4), lpt(4), plip(4), etc. This mutex
is then used for all the locking.
- Rework the interrupt handling stuff yet again. Now ppbus drivers setup
their interrupt handler during attach and tear it down during detach
like most other drivers. ppbus(4) only invokes the interrupt handler
of the device that currently owns the bus (if any) when an interrupt
occurs, however. Also, interrupt handlers in general now accept their
softc pointers as their argument rather than the device_t. Another
feature of the ppbus interrupt handlers is that they are called with
the parent ppc device's lock already held. This minimizes the number
of lock operations during an interrupt.
- Mark plip(4), lpt(4), pcfclock(4), ppi(4), vpo(4) MPSAFE.
- lpbb(4) uses the ppc lock instead of Giant.
- Other plip(4) changes:
- Add a mutex to protect the global tables in plip(4) and free them on
module unload.
- Add a detach routine.
- Split out the init/stop code from the ioctl routine into separate
functions.
- Other lpt(4) changes:
- Use device_printf().
- Use a dedicated callout for the lptout timer.
- Allocate the I/O buffers at attach and detach rather than during
open and close as this simplifies the locking at the cost of
1024+32 bytes when the driver is attached.
- Other ppi(4) changes:
- Use an sx lock to serialize open and close.
- Remove unused HADBUS flag.
- Add a detach routine.
- Use a malloc'd buffer for each read and write to avoid races with
concurrent read/write.
- Other pps(4) changes:
- Use a callout rather than a callout handle with timeout().
- Conform to the new ppbus requirements (regular mutex, non-filter
interrupt handler). pps(4) is probably going to have to become a
standalone driver that doesn't use ppbus(4) to satisfy it's
requirements for low latency as a result.
- Use an sx lock to serialize open and close.
- Other vpo(4) changes:
- Use the parent ppc device's lock to create the CAM sim instead of
Giant.
- Other ppc(4) changes:
- Fix ppc_isa's detach method to detach instead of calling attach.

Tested by: no one :-(
diff 187576 Wed Jan 21 23:14:29 MST 2009 jhb Add locking to ppc and ppbus and mark the whole lot MPSAFE:
- To avoid having a bunch of locks that end up always getting acquired as
a group, give each ppc(4) device a mutex which it shares with all the
child devices including ppbus(4), lpt(4), plip(4), etc. This mutex
is then used for all the locking.
- Rework the interrupt handling stuff yet again. Now ppbus drivers setup
their interrupt handler during attach and tear it down during detach
like most other drivers. ppbus(4) only invokes the interrupt handler
of the device that currently owns the bus (if any) when an interrupt
occurs, however. Also, interrupt handlers in general now accept their
softc pointers as their argument rather than the device_t. Another
feature of the ppbus interrupt handlers is that they are called with
the parent ppc device's lock already held. This minimizes the number
of lock operations during an interrupt.
- Mark plip(4), lpt(4), pcfclock(4), ppi(4), vpo(4) MPSAFE.
- lpbb(4) uses the ppc lock instead of Giant.
- Other plip(4) changes:
- Add a mutex to protect the global tables in plip(4) and free them on
module unload.
- Add a detach routine.
- Split out the init/stop code from the ioctl routine into separate
functions.
- Other lpt(4) changes:
- Use device_printf().
- Use a dedicated callout for the lptout timer.
- Allocate the I/O buffers at attach and detach rather than during
open and close as this simplifies the locking at the cost of
1024+32 bytes when the driver is attached.
- Other ppi(4) changes:
- Use an sx lock to serialize open and close.
- Remove unused HADBUS flag.
- Add a detach routine.
- Use a malloc'd buffer for each read and write to avoid races with
concurrent read/write.
- Other pps(4) changes:
- Use a callout rather than a callout handle with timeout().
- Conform to the new ppbus requirements (regular mutex, non-filter
interrupt handler). pps(4) is probably going to have to become a
standalone driver that doesn't use ppbus(4) to satisfy it's
requirements for low latency as a result.
- Use an sx lock to serialize open and close.
- Other vpo(4) changes:
- Use the parent ppc device's lock to create the CAM sim instead of
Giant.
- Other ppc(4) changes:
- Fix ppc_isa's detach method to detach instead of calling attach.

Tested by: no one :-(
diff 187576 Wed Jan 21 23:14:29 MST 2009 jhb Add locking to ppc and ppbus and mark the whole lot MPSAFE:
- To avoid having a bunch of locks that end up always getting acquired as
a group, give each ppc(4) device a mutex which it shares with all the
child devices including ppbus(4), lpt(4), plip(4), etc. This mutex
is then used for all the locking.
- Rework the interrupt handling stuff yet again. Now ppbus drivers setup
their interrupt handler during attach and tear it down during detach
like most other drivers. ppbus(4) only invokes the interrupt handler
of the device that currently owns the bus (if any) when an interrupt
occurs, however. Also, interrupt handlers in general now accept their
softc pointers as their argument rather than the device_t. Another
feature of the ppbus interrupt handlers is that they are called with
the parent ppc device's lock already held. This minimizes the number
of lock operations during an interrupt.
- Mark plip(4), lpt(4), pcfclock(4), ppi(4), vpo(4) MPSAFE.
- lpbb(4) uses the ppc lock instead of Giant.
- Other plip(4) changes:
- Add a mutex to protect the global tables in plip(4) and free them on
module unload.
- Add a detach routine.
- Split out the init/stop code from the ioctl routine into separate
functions.
- Other lpt(4) changes:
- Use device_printf().
- Use a dedicated callout for the lptout timer.
- Allocate the I/O buffers at attach and detach rather than during
open and close as this simplifies the locking at the cost of
1024+32 bytes when the driver is attached.
- Other ppi(4) changes:
- Use an sx lock to serialize open and close.
- Remove unused HADBUS flag.
- Add a detach routine.
- Use a malloc'd buffer for each read and write to avoid races with
concurrent read/write.
- Other pps(4) changes:
- Use a callout rather than a callout handle with timeout().
- Conform to the new ppbus requirements (regular mutex, non-filter
interrupt handler). pps(4) is probably going to have to become a
standalone driver that doesn't use ppbus(4) to satisfy it's
requirements for low latency as a result.
- Use an sx lock to serialize open and close.
- Other vpo(4) changes:
- Use the parent ppc device's lock to create the CAM sim instead of
Giant.
- Other ppc(4) changes:
- Fix ppc_isa's detach method to detach instead of calling attach.

Tested by: no one :-(
diff 187576 Wed Jan 21 23:14:29 MST 2009 jhb Add locking to ppc and ppbus and mark the whole lot MPSAFE:
- To avoid having a bunch of locks that end up always getting acquired as
a group, give each ppc(4) device a mutex which it shares with all the
child devices including ppbus(4), lpt(4), plip(4), etc. This mutex
is then used for all the locking.
- Rework the interrupt handling stuff yet again. Now ppbus drivers setup
their interrupt handler during attach and tear it down during detach
like most other drivers. ppbus(4) only invokes the interrupt handler
of the device that currently owns the bus (if any) when an interrupt
occurs, however. Also, interrupt handlers in general now accept their
softc pointers as their argument rather than the device_t. Another
feature of the ppbus interrupt handlers is that they are called with
the parent ppc device's lock already held. This minimizes the number
of lock operations during an interrupt.
- Mark plip(4), lpt(4), pcfclock(4), ppi(4), vpo(4) MPSAFE.
- lpbb(4) uses the ppc lock instead of Giant.
- Other plip(4) changes:
- Add a mutex to protect the global tables in plip(4) and free them on
module unload.
- Add a detach routine.
- Split out the init/stop code from the ioctl routine into separate
functions.
- Other lpt(4) changes:
- Use device_printf().
- Use a dedicated callout for the lptout timer.
- Allocate the I/O buffers at attach and detach rather than during
open and close as this simplifies the locking at the cost of
1024+32 bytes when the driver is attached.
- Other ppi(4) changes:
- Use an sx lock to serialize open and close.
- Remove unused HADBUS flag.
- Add a detach routine.
- Use a malloc'd buffer for each read and write to avoid races with
concurrent read/write.
- Other pps(4) changes:
- Use a callout rather than a callout handle with timeout().
- Conform to the new ppbus requirements (regular mutex, non-filter
interrupt handler). pps(4) is probably going to have to become a
standalone driver that doesn't use ppbus(4) to satisfy it's
requirements for low latency as a result.
- Use an sx lock to serialize open and close.
- Other vpo(4) changes:
- Use the parent ppc device's lock to create the CAM sim instead of
Giant.
- Other ppc(4) changes:
- Fix ppc_isa's detach method to detach instead of calling attach.

Tested by: no one :-(
diff 187576 Wed Jan 21 23:14:29 MST 2009 jhb Add locking to ppc and ppbus and mark the whole lot MPSAFE:
- To avoid having a bunch of locks that end up always getting acquired as
a group, give each ppc(4) device a mutex which it shares with all the
child devices including ppbus(4), lpt(4), plip(4), etc. This mutex
is then used for all the locking.
- Rework the interrupt handling stuff yet again. Now ppbus drivers setup
their interrupt handler during attach and tear it down during detach
like most other drivers. ppbus(4) only invokes the interrupt handler
of the device that currently owns the bus (if any) when an interrupt
occurs, however. Also, interrupt handlers in general now accept their
softc pointers as their argument rather than the device_t. Another
feature of the ppbus interrupt handlers is that they are called with
the parent ppc device's lock already held. This minimizes the number
of lock operations during an interrupt.
- Mark plip(4), lpt(4), pcfclock(4), ppi(4), vpo(4) MPSAFE.
- lpbb(4) uses the ppc lock instead of Giant.
- Other plip(4) changes:
- Add a mutex to protect the global tables in plip(4) and free them on
module unload.
- Add a detach routine.
- Split out the init/stop code from the ioctl routine into separate
functions.
- Other lpt(4) changes:
- Use device_printf().
- Use a dedicated callout for the lptout timer.
- Allocate the I/O buffers at attach and detach rather than during
open and close as this simplifies the locking at the cost of
1024+32 bytes when the driver is attached.
- Other ppi(4) changes:
- Use an sx lock to serialize open and close.
- Remove unused HADBUS flag.
- Add a detach routine.
- Use a malloc'd buffer for each read and write to avoid races with
concurrent read/write.
- Other pps(4) changes:
- Use a callout rather than a callout handle with timeout().
- Conform to the new ppbus requirements (regular mutex, non-filter
interrupt handler). pps(4) is probably going to have to become a
standalone driver that doesn't use ppbus(4) to satisfy it's
requirements for low latency as a result.
- Use an sx lock to serialize open and close.
- Other vpo(4) changes:
- Use the parent ppc device's lock to create the CAM sim instead of
Giant.
- Other ppc(4) changes:
- Fix ppc_isa's detach method to detach instead of calling attach.

Tested by: no one :-(
diff 187576 Wed Jan 21 23:14:29 MST 2009 jhb Add locking to ppc and ppbus and mark the whole lot MPSAFE:
- To avoid having a bunch of locks that end up always getting acquired as
a group, give each ppc(4) device a mutex which it shares with all the
child devices including ppbus(4), lpt(4), plip(4), etc. This mutex
is then used for all the locking.
- Rework the interrupt handling stuff yet again. Now ppbus drivers setup
their interrupt handler during attach and tear it down during detach
like most other drivers. ppbus(4) only invokes the interrupt handler
of the device that currently owns the bus (if any) when an interrupt
occurs, however. Also, interrupt handlers in general now accept their
softc pointers as their argument rather than the device_t. Another
feature of the ppbus interrupt handlers is that they are called with
the parent ppc device's lock already held. This minimizes the number
of lock operations during an interrupt.
- Mark plip(4), lpt(4), pcfclock(4), ppi(4), vpo(4) MPSAFE.
- lpbb(4) uses the ppc lock instead of Giant.
- Other plip(4) changes:
- Add a mutex to protect the global tables in plip(4) and free them on
module unload.
- Add a detach routine.
- Split out the init/stop code from the ioctl routine into separate
functions.
- Other lpt(4) changes:
- Use device_printf().
- Use a dedicated callout for the lptout timer.
- Allocate the I/O buffers at attach and detach rather than during
open and close as this simplifies the locking at the cost of
1024+32 bytes when the driver is attached.
- Other ppi(4) changes:
- Use an sx lock to serialize open and close.
- Remove unused HADBUS flag.
- Add a detach routine.
- Use a malloc'd buffer for each read and write to avoid races with
concurrent read/write.
- Other pps(4) changes:
- Use a callout rather than a callout handle with timeout().
- Conform to the new ppbus requirements (regular mutex, non-filter
interrupt handler). pps(4) is probably going to have to become a
standalone driver that doesn't use ppbus(4) to satisfy it's
requirements for low latency as a result.
- Use an sx lock to serialize open and close.
- Other vpo(4) changes:
- Use the parent ppc device's lock to create the CAM sim instead of
Giant.
- Other ppc(4) changes:
- Fix ppc_isa's detach method to detach instead of calling attach.

Tested by: no one :-(
diff 187576 Wed Jan 21 23:14:29 MST 2009 jhb Add locking to ppc and ppbus and mark the whole lot MPSAFE:
- To avoid having a bunch of locks that end up always getting acquired as
a group, give each ppc(4) device a mutex which it shares with all the
child devices including ppbus(4), lpt(4), plip(4), etc. This mutex
is then used for all the locking.
- Rework the interrupt handling stuff yet again. Now ppbus drivers setup
their interrupt handler during attach and tear it down during detach
like most other drivers. ppbus(4) only invokes the interrupt handler
of the device that currently owns the bus (if any) when an interrupt
occurs, however. Also, interrupt handlers in general now accept their
softc pointers as their argument rather than the device_t. Another
feature of the ppbus interrupt handlers is that they are called with
the parent ppc device's lock already held. This minimizes the number
of lock operations during an interrupt.
- Mark plip(4), lpt(4), pcfclock(4), ppi(4), vpo(4) MPSAFE.
- lpbb(4) uses the ppc lock instead of Giant.
- Other plip(4) changes:
- Add a mutex to protect the global tables in plip(4) and free them on
module unload.
- Add a detach routine.
- Split out the init/stop code from the ioctl routine into separate
functions.
- Other lpt(4) changes:
- Use device_printf().
- Use a dedicated callout for the lptout timer.
- Allocate the I/O buffers at attach and detach rather than during
open and close as this simplifies the locking at the cost of
1024+32 bytes when the driver is attached.
- Other ppi(4) changes:
- Use an sx lock to serialize open and close.
- Remove unused HADBUS flag.
- Add a detach routine.
- Use a malloc'd buffer for each read and write to avoid races with
concurrent read/write.
- Other pps(4) changes:
- Use a callout rather than a callout handle with timeout().
- Conform to the new ppbus requirements (regular mutex, non-filter
interrupt handler). pps(4) is probably going to have to become a
standalone driver that doesn't use ppbus(4) to satisfy it's
requirements for low latency as a result.
- Use an sx lock to serialize open and close.
- Other vpo(4) changes:
- Use the parent ppc device's lock to create the CAM sim instead of
Giant.
- Other ppc(4) changes:
- Fix ppc_isa's detach method to detach instead of calling attach.

Tested by: no one :-(
diff 187576 Wed Jan 21 23:14:29 MST 2009 jhb Add locking to ppc and ppbus and mark the whole lot MPSAFE:
- To avoid having a bunch of locks that end up always getting acquired as
a group, give each ppc(4) device a mutex which it shares with all the
child devices including ppbus(4), lpt(4), plip(4), etc. This mutex
is then used for all the locking.
- Rework the interrupt handling stuff yet again. Now ppbus drivers setup
their interrupt handler during attach and tear it down during detach
like most other drivers. ppbus(4) only invokes the interrupt handler
of the device that currently owns the bus (if any) when an interrupt
occurs, however. Also, interrupt handlers in general now accept their
softc pointers as their argument rather than the device_t. Another
feature of the ppbus interrupt handlers is that they are called with
the parent ppc device's lock already held. This minimizes the number
of lock operations during an interrupt.
- Mark plip(4), lpt(4), pcfclock(4), ppi(4), vpo(4) MPSAFE.
- lpbb(4) uses the ppc lock instead of Giant.
- Other plip(4) changes:
- Add a mutex to protect the global tables in plip(4) and free them on
module unload.
- Add a detach routine.
- Split out the init/stop code from the ioctl routine into separate
functions.
- Other lpt(4) changes:
- Use device_printf().
- Use a dedicated callout for the lptout timer.
- Allocate the I/O buffers at attach and detach rather than during
open and close as this simplifies the locking at the cost of
1024+32 bytes when the driver is attached.
- Other ppi(4) changes:
- Use an sx lock to serialize open and close.
- Remove unused HADBUS flag.
- Add a detach routine.
- Use a malloc'd buffer for each read and write to avoid races with
concurrent read/write.
- Other pps(4) changes:
- Use a callout rather than a callout handle with timeout().
- Conform to the new ppbus requirements (regular mutex, non-filter
interrupt handler). pps(4) is probably going to have to become a
standalone driver that doesn't use ppbus(4) to satisfy it's
requirements for low latency as a result.
- Use an sx lock to serialize open and close.
- Other vpo(4) changes:
- Use the parent ppc device's lock to create the CAM sim instead of
Giant.
- Other ppc(4) changes:
- Fix ppc_isa's detach method to detach instead of calling attach.

Tested by: no one :-(
/freebsd-10.2-release/sys/dev/age/
H A Dif_agereg.hdiff 190499 Sat Mar 28 07:54:31 MDT 2009 yongari o Don't access VPD even if hardware advertised the capability.
It seems that some revision of controller hang while accessing
the VPD. Because VPD access routine are unused, nuke it.
o Let TWSI reload EEPROM if VPD capability is detected. Reloading
EEPROM will also set ethernet address so age(4) now reads AGE_PAR0
and AGE_PAR1 register to get ethernet address. This removes a lot
of hack and enhance readability a lot.
o Double PHY reset timeout as it takes more time to take PHY out of
power-saving state.
o Explicitly check power-saving state by checking undocumented PHY
registers. If link is not up, poke undocumented registers to take
PHY out of power-saving state. This is the same way what Linux
does. On resume, make sure to wake up PHY.
o Don't rely on auto-clearing feature of master reset bit, just wait
1ms and check idle status of MAC.
o Add PCI device revision information in bootverbose mode.
This should fix occasional controller hang in device attach phase.

Reported by: barbara < barbara.xxx1975 at libero DOT it >
Tested by: barbara < barbara.xxx1975 at libero DOT it >
179100 Mon May 19 01:39:59 MDT 2008 yongari Add age(4), a driver for Attansic/Atheros L1 gigabit ethernet
controller. L1 has several threshold/timer registers and they
seem to require careful tuned parameters to get best
performance. Datasheet for L1 is not available to open source
driver writers so age(4) focus on stability and correctness of
basic Tx/Rx operation. ATM the performance of age(4) is far from
optimal which in turn means there are mis-programmed registers or
incorrectly configured registers.
Currently age(4) supports all known hardware assistance including
- MSI support.
- TCP Segmentation Offload.
- Hardware VLAN tag insertion/stripping.
- TCP/UDP checksum offload.
- Interrupt moderation.
- Hardware statistics counter support.
- Jumbo frame support.
- WOL support.

L1 gigabit ethernet controller is mainly found on ASUS
motherboards. Note, it seems that there are other variants of
hardware as known as L2(Fast ethernet) and newer gigabit ethernet
(AR81xx) from Atheros. These are not supported by age(4) and
requires a seperate driver. Big thanks to all people who reported
feedback or tested patches.

Tested by: kevlo, bsam, Francois Ranchin < fyr AT fyrou DOT net >
Thomas Nystroem < thn AT saeab DOT se >
Roman Pogosyan < asternetadmin AT gmail DOT com >
Derek Tattersal < dlt AT mebtel DOT net >
Oliver Seitz < karlkiste AT yahoo DOT com >
179100 Mon May 19 01:39:59 MDT 2008 yongari Add age(4), a driver for Attansic/Atheros L1 gigabit ethernet
controller. L1 has several threshold/timer registers and they
seem to require careful tuned parameters to get best
performance. Datasheet for L1 is not available to open source
driver writers so age(4) focus on stability and correctness of
basic Tx/Rx operation. ATM the performance of age(4) is far from
optimal which in turn means there are mis-programmed registers or
incorrectly configured registers.
Currently age(4) supports all known hardware assistance including
- MSI support.
- TCP Segmentation Offload.
- Hardware VLAN tag insertion/stripping.
- TCP/UDP checksum offload.
- Interrupt moderation.
- Hardware statistics counter support.
- Jumbo frame support.
- WOL support.

L1 gigabit ethernet controller is mainly found on ASUS
motherboards. Note, it seems that there are other variants of
hardware as known as L2(Fast ethernet) and newer gigabit ethernet
(AR81xx) from Atheros. These are not supported by age(4) and
requires a seperate driver. Big thanks to all people who reported
feedback or tested patches.

Tested by: kevlo, bsam, Francois Ranchin < fyr AT fyrou DOT net >
Thomas Nystroem < thn AT saeab DOT se >
Roman Pogosyan < asternetadmin AT gmail DOT com >
Derek Tattersal < dlt AT mebtel DOT net >
Oliver Seitz < karlkiste AT yahoo DOT com >
179100 Mon May 19 01:39:59 MDT 2008 yongari Add age(4), a driver for Attansic/Atheros L1 gigabit ethernet
controller. L1 has several threshold/timer registers and they
seem to require careful tuned parameters to get best
performance. Datasheet for L1 is not available to open source
driver writers so age(4) focus on stability and correctness of
basic Tx/Rx operation. ATM the performance of age(4) is far from
optimal which in turn means there are mis-programmed registers or
incorrectly configured registers.
Currently age(4) supports all known hardware assistance including
- MSI support.
- TCP Segmentation Offload.
- Hardware VLAN tag insertion/stripping.
- TCP/UDP checksum offload.
- Interrupt moderation.
- Hardware statistics counter support.
- Jumbo frame support.
- WOL support.

L1 gigabit ethernet controller is mainly found on ASUS
motherboards. Note, it seems that there are other variants of
hardware as known as L2(Fast ethernet) and newer gigabit ethernet
(AR81xx) from Atheros. These are not supported by age(4) and
requires a seperate driver. Big thanks to all people who reported
feedback or tested patches.

Tested by: kevlo, bsam, Francois Ranchin < fyr AT fyrou DOT net >
Thomas Nystroem < thn AT saeab DOT se >
Roman Pogosyan < asternetadmin AT gmail DOT com >
Derek Tattersal < dlt AT mebtel DOT net >
Oliver Seitz < karlkiste AT yahoo DOT com >
179100 Mon May 19 01:39:59 MDT 2008 yongari Add age(4), a driver for Attansic/Atheros L1 gigabit ethernet
controller. L1 has several threshold/timer registers and they
seem to require careful tuned parameters to get best
performance. Datasheet for L1 is not available to open source
driver writers so age(4) focus on stability and correctness of
basic Tx/Rx operation. ATM the performance of age(4) is far from
optimal which in turn means there are mis-programmed registers or
incorrectly configured registers.
Currently age(4) supports all known hardware assistance including
- MSI support.
- TCP Segmentation Offload.
- Hardware VLAN tag insertion/stripping.
- TCP/UDP checksum offload.
- Interrupt moderation.
- Hardware statistics counter support.
- Jumbo frame support.
- WOL support.

L1 gigabit ethernet controller is mainly found on ASUS
motherboards. Note, it seems that there are other variants of
hardware as known as L2(Fast ethernet) and newer gigabit ethernet
(AR81xx) from Atheros. These are not supported by age(4) and
requires a seperate driver. Big thanks to all people who reported
feedback or tested patches.

Tested by: kevlo, bsam, Francois Ranchin < fyr AT fyrou DOT net >
Thomas Nystroem < thn AT saeab DOT se >
Roman Pogosyan < asternetadmin AT gmail DOT com >
Derek Tattersal < dlt AT mebtel DOT net >
Oliver Seitz < karlkiste AT yahoo DOT com >
179100 Mon May 19 01:39:59 MDT 2008 yongari Add age(4), a driver for Attansic/Atheros L1 gigabit ethernet
controller. L1 has several threshold/timer registers and they
seem to require careful tuned parameters to get best
performance. Datasheet for L1 is not available to open source
driver writers so age(4) focus on stability and correctness of
basic Tx/Rx operation. ATM the performance of age(4) is far from
optimal which in turn means there are mis-programmed registers or
incorrectly configured registers.
Currently age(4) supports all known hardware assistance including
- MSI support.
- TCP Segmentation Offload.
- Hardware VLAN tag insertion/stripping.
- TCP/UDP checksum offload.
- Interrupt moderation.
- Hardware statistics counter support.
- Jumbo frame support.
- WOL support.

L1 gigabit ethernet controller is mainly found on ASUS
motherboards. Note, it seems that there are other variants of
hardware as known as L2(Fast ethernet) and newer gigabit ethernet
(AR81xx) from Atheros. These are not supported by age(4) and
requires a seperate driver. Big thanks to all people who reported
feedback or tested patches.

Tested by: kevlo, bsam, Francois Ranchin < fyr AT fyrou DOT net >
Thomas Nystroem < thn AT saeab DOT se >
Roman Pogosyan < asternetadmin AT gmail DOT com >
Derek Tattersal < dlt AT mebtel DOT net >
Oliver Seitz < karlkiste AT yahoo DOT com >
/freebsd-10.2-release/sys/dev/ahci/
H A Dahciem.cdiff 281140 Mon Apr 06 08:26:36 MDT 2015 mav MFC r280393: Reduce priority of ATA/SATA drivers.

Legacy ata(4) -> BUS_PROBE_LOW_PRIORITY; more functional ahci(4), siis(4),
mvs(4) -> BUS_PROBE_DEFAULT; BUS_PROBE_VENDOR leave for vendor drivers.
diff 281140 Mon Apr 06 08:26:36 MDT 2015 mav MFC r280393: Reduce priority of ATA/SATA drivers.

Legacy ata(4) -> BUS_PROBE_LOW_PRIORITY; more functional ahci(4), siis(4),
mvs(4) -> BUS_PROBE_DEFAULT; BUS_PROBE_VENDOR leave for vendor drivers.
diff 281140 Mon Apr 06 08:26:36 MDT 2015 mav MFC r280393: Reduce priority of ATA/SATA drivers.

Legacy ata(4) -> BUS_PROBE_LOW_PRIORITY; more functional ahci(4), siis(4),
mvs(4) -> BUS_PROBE_DEFAULT; BUS_PROBE_VENDOR leave for vendor drivers.
diff 281140 Mon Apr 06 08:26:36 MDT 2015 mav MFC r280393: Reduce priority of ATA/SATA drivers.

Legacy ata(4) -> BUS_PROBE_LOW_PRIORITY; more functional ahci(4), siis(4),
mvs(4) -> BUS_PROBE_DEFAULT; BUS_PROBE_VENDOR leave for vendor drivers.
238805 Thu Jul 26 14:01:25 MDT 2012 mav Refactor enclosure manegement support in ahci(4). Move it out into separate
subdevice ahciem. Emulate SEMB SES device from AHCI LED interface to expose
it to users in form of ses(4) CAM device. If we ever see AHCI controllers
supporting SES of SAF-TE over I2C as described by specification, they should
fit well into this new picture.

Sponsored by: iXsystems, Inc.
238805 Thu Jul 26 14:01:25 MDT 2012 mav Refactor enclosure manegement support in ahci(4). Move it out into separate
subdevice ahciem. Emulate SEMB SES device from AHCI LED interface to expose
it to users in form of ses(4) CAM device. If we ever see AHCI controllers
supporting SES of SAF-TE over I2C as described by specification, they should
fit well into this new picture.

Sponsored by: iXsystems, Inc.
/freebsd-10.2-release/usr.sbin/cpucontrol/
H A DMakefilediff 228436 Mon Dec 12 12:38:45 MST 2011 fabient Add VIA microde update support to cpuctl(4) and cpucontrol(8).

Support have been tested with X2 CPU and QuadCore CPU.

MFC after: 1 month
181430 Fri Aug 08 16:35:20 MDT 2008 stas - Add cpuctl(4) pseudo-device driver to provide access to some low-level
features of CPUs like reading/writing machine-specific registers,
retrieving cpuid data, and updating microcode.
- Add cpucontrol(8) utility, that provides userland access to
the features of cpuctl(4).
- Add subsequent manpages.

The cpuctl(4) device operates as follows. The pseudo-device node cpuctlX
is created for each cpu present in the systems. The pseudo-device minor
number corresponds to the cpu number in the system. The cpuctl(4) pseudo-
device allows a number of ioctl to be preformed, namely RDMSR/WRMSR/CPUID
and UPDATE. The first pair alows the caller to read/write machine-specific
registers from the correspondent CPU. cpuid data could be retrieved using
the CPUID call, and microcode updates are applied via UPDATE.

The permissions are inforced based on the pseudo-device file permissions.
RDMSR/CPUID will be allowed when the caller has read access to the device
node, while WRMSR/UPDATE will be granted only when the node is opened
for writing. There're also a number of priv(9) checks.

The cpucontrol(8) utility is intened to provide userland access to
the cpuctl(4) device features. The utility also allows one to apply
cpu microcode updates.

Currently only Intel and AMD cpus are supported and were tested.

Approved by: kib
Reviewed by: rpaulo, cokane, Peter Jeremy
MFC after: 1 month
181430 Fri Aug 08 16:35:20 MDT 2008 stas - Add cpuctl(4) pseudo-device driver to provide access to some low-level
features of CPUs like reading/writing machine-specific registers,
retrieving cpuid data, and updating microcode.
- Add cpucontrol(8) utility, that provides userland access to
the features of cpuctl(4).
- Add subsequent manpages.

The cpuctl(4) device operates as follows. The pseudo-device node cpuctlX
is created for each cpu present in the systems. The pseudo-device minor
number corresponds to the cpu number in the system. The cpuctl(4) pseudo-
device allows a number of ioctl to be preformed, namely RDMSR/WRMSR/CPUID
and UPDATE. The first pair alows the caller to read/write machine-specific
registers from the correspondent CPU. cpuid data could be retrieved using
the CPUID call, and microcode updates are applied via UPDATE.

The permissions are inforced based on the pseudo-device file permissions.
RDMSR/CPUID will be allowed when the caller has read access to the device
node, while WRMSR/UPDATE will be granted only when the node is opened
for writing. There're also a number of priv(9) checks.

The cpucontrol(8) utility is intened to provide userland access to
the cpuctl(4) device features. The utility also allows one to apply
cpu microcode updates.

Currently only Intel and AMD cpus are supported and were tested.

Approved by: kib
Reviewed by: rpaulo, cokane, Peter Jeremy
MFC after: 1 month
181430 Fri Aug 08 16:35:20 MDT 2008 stas - Add cpuctl(4) pseudo-device driver to provide access to some low-level
features of CPUs like reading/writing machine-specific registers,
retrieving cpuid data, and updating microcode.
- Add cpucontrol(8) utility, that provides userland access to
the features of cpuctl(4).
- Add subsequent manpages.

The cpuctl(4) device operates as follows. The pseudo-device node cpuctlX
is created for each cpu present in the systems. The pseudo-device minor
number corresponds to the cpu number in the system. The cpuctl(4) pseudo-
device allows a number of ioctl to be preformed, namely RDMSR/WRMSR/CPUID
and UPDATE. The first pair alows the caller to read/write machine-specific
registers from the correspondent CPU. cpuid data could be retrieved using
the CPUID call, and microcode updates are applied via UPDATE.

The permissions are inforced based on the pseudo-device file permissions.
RDMSR/CPUID will be allowed when the caller has read access to the device
node, while WRMSR/UPDATE will be granted only when the node is opened
for writing. There're also a number of priv(9) checks.

The cpucontrol(8) utility is intened to provide userland access to
the cpuctl(4) device features. The utility also allows one to apply
cpu microcode updates.

Currently only Intel and AMD cpus are supported and were tested.

Approved by: kib
Reviewed by: rpaulo, cokane, Peter Jeremy
MFC after: 1 month
181430 Fri Aug 08 16:35:20 MDT 2008 stas - Add cpuctl(4) pseudo-device driver to provide access to some low-level
features of CPUs like reading/writing machine-specific registers,
retrieving cpuid data, and updating microcode.
- Add cpucontrol(8) utility, that provides userland access to
the features of cpuctl(4).
- Add subsequent manpages.

The cpuctl(4) device operates as follows. The pseudo-device node cpuctlX
is created for each cpu present in the systems. The pseudo-device minor
number corresponds to the cpu number in the system. The cpuctl(4) pseudo-
device allows a number of ioctl to be preformed, namely RDMSR/WRMSR/CPUID
and UPDATE. The first pair alows the caller to read/write machine-specific
registers from the correspondent CPU. cpuid data could be retrieved using
the CPUID call, and microcode updates are applied via UPDATE.

The permissions are inforced based on the pseudo-device file permissions.
RDMSR/CPUID will be allowed when the caller has read access to the device
node, while WRMSR/UPDATE will be granted only when the node is opened
for writing. There're also a number of priv(9) checks.

The cpucontrol(8) utility is intened to provide userland access to
the cpuctl(4) device features. The utility also allows one to apply
cpu microcode updates.

Currently only Intel and AMD cpus are supported and were tested.

Approved by: kib
Reviewed by: rpaulo, cokane, Peter Jeremy
MFC after: 1 month
181430 Fri Aug 08 16:35:20 MDT 2008 stas - Add cpuctl(4) pseudo-device driver to provide access to some low-level
features of CPUs like reading/writing machine-specific registers,
retrieving cpuid data, and updating microcode.
- Add cpucontrol(8) utility, that provides userland access to
the features of cpuctl(4).
- Add subsequent manpages.

The cpuctl(4) device operates as follows. The pseudo-device node cpuctlX
is created for each cpu present in the systems. The pseudo-device minor
number corresponds to the cpu number in the system. The cpuctl(4) pseudo-
device allows a number of ioctl to be preformed, namely RDMSR/WRMSR/CPUID
and UPDATE. The first pair alows the caller to read/write machine-specific
registers from the correspondent CPU. cpuid data could be retrieved using
the CPUID call, and microcode updates are applied via UPDATE.

The permissions are inforced based on the pseudo-device file permissions.
RDMSR/CPUID will be allowed when the caller has read access to the device
node, while WRMSR/UPDATE will be granted only when the node is opened
for writing. There're also a number of priv(9) checks.

The cpucontrol(8) utility is intened to provide userland access to
the cpuctl(4) device features. The utility also allows one to apply
cpu microcode updates.

Currently only Intel and AMD cpus are supported and were tested.

Approved by: kib
Reviewed by: rpaulo, cokane, Peter Jeremy
MFC after: 1 month
/freebsd-10.2-release/usr.sbin/kbdcontrol/
H A Dkbdmap.5diff 271095 Thu Sep 04 13:51:25 MDT 2014 se MFC r270647: Add references to vt(4) and the configuration files in /usr/sha
MFC r270653: Update man-pages to correctly refer to changed pathes and namin
MFC r270657: More man pages that need to know about vt in addition to syscon
MFC r270659: (by pluknet@) Missed comma.
MFC r270660: Back-out the references to vt(4) from this man-page. It appears
MFC r270933: Add references to vt(4) to further man-pages.
MFC r270934: Final patches to the tools used to convert syscons keymaps for
MFC r270935: Add vt(4) support to the console initialisation script, specifi

Second batch of MFCs to add support for Unicode keymaps for use with vt(4).

It contains the following changes:

- Add references to vt(4) to relevant man-pages.
- Update comment in defaults/rc.conf to mention vt
- Update rc.d/syscons to warn about syscons keymaps used under vt.
An attempt is made to identify the vt keymap to load instead.
- Minor changes to the conversion tool based on mail comments on keymaps.

Relnotes: yes
diff 271095 Thu Sep 04 13:51:25 MDT 2014 se MFC r270647: Add references to vt(4) and the configuration files in /usr/sha
MFC r270653: Update man-pages to correctly refer to changed pathes and namin
MFC r270657: More man pages that need to know about vt in addition to syscon
MFC r270659: (by pluknet@) Missed comma.
MFC r270660: Back-out the references to vt(4) from this man-page. It appears
MFC r270933: Add references to vt(4) to further man-pages.
MFC r270934: Final patches to the tools used to convert syscons keymaps for
MFC r270935: Add vt(4) support to the console initialisation script, specifi

Second batch of MFCs to add support for Unicode keymaps for use with vt(4).

It contains the following changes:

- Add references to vt(4) to relevant man-pages.
- Update comment in defaults/rc.conf to mention vt
- Update rc.d/syscons to warn about syscons keymaps used under vt.
An attempt is made to identify the vt keymap to load instead.
- Minor changes to the conversion tool based on mail comments on keymaps.

Relnotes: yes
diff 271095 Thu Sep 04 13:51:25 MDT 2014 se MFC r270647: Add references to vt(4) and the configuration files in /usr/sha
MFC r270653: Update man-pages to correctly refer to changed pathes and namin
MFC r270657: More man pages that need to know about vt in addition to syscon
MFC r270659: (by pluknet@) Missed comma.
MFC r270660: Back-out the references to vt(4) from this man-page. It appears
MFC r270933: Add references to vt(4) to further man-pages.
MFC r270934: Final patches to the tools used to convert syscons keymaps for
MFC r270935: Add vt(4) support to the console initialisation script, specifi

Second batch of MFCs to add support for Unicode keymaps for use with vt(4).

It contains the following changes:

- Add references to vt(4) to relevant man-pages.
- Update comment in defaults/rc.conf to mention vt
- Update rc.d/syscons to warn about syscons keymaps used under vt.
An attempt is made to identify the vt keymap to load instead.
- Minor changes to the conversion tool based on mail comments on keymaps.

Relnotes: yes
diff 271095 Thu Sep 04 13:51:25 MDT 2014 se MFC r270647: Add references to vt(4) and the configuration files in /usr/sha
MFC r270653: Update man-pages to correctly refer to changed pathes and namin
MFC r270657: More man pages that need to know about vt in addition to syscon
MFC r270659: (by pluknet@) Missed comma.
MFC r270660: Back-out the references to vt(4) from this man-page. It appears
MFC r270933: Add references to vt(4) to further man-pages.
MFC r270934: Final patches to the tools used to convert syscons keymaps for
MFC r270935: Add vt(4) support to the console initialisation script, specifi

Second batch of MFCs to add support for Unicode keymaps for use with vt(4).

It contains the following changes:

- Add references to vt(4) to relevant man-pages.
- Update comment in defaults/rc.conf to mention vt
- Update rc.d/syscons to warn about syscons keymaps used under vt.
An attempt is made to identify the vt keymap to load instead.
- Minor changes to the conversion tool based on mail comments on keymaps.

Relnotes: yes
diff 271095 Thu Sep 04 13:51:25 MDT 2014 se MFC r270647: Add references to vt(4) and the configuration files in /usr/sha
MFC r270653: Update man-pages to correctly refer to changed pathes and namin
MFC r270657: More man pages that need to know about vt in addition to syscon
MFC r270659: (by pluknet@) Missed comma.
MFC r270660: Back-out the references to vt(4) from this man-page. It appears
MFC r270933: Add references to vt(4) to further man-pages.
MFC r270934: Final patches to the tools used to convert syscons keymaps for
MFC r270935: Add vt(4) support to the console initialisation script, specifi

Second batch of MFCs to add support for Unicode keymaps for use with vt(4).

It contains the following changes:

- Add references to vt(4) to relevant man-pages.
- Update comment in defaults/rc.conf to mention vt
- Update rc.d/syscons to warn about syscons keymaps used under vt.
An attempt is made to identify the vt keymap to load instead.
- Minor changes to the conversion tool based on mail comments on keymaps.

Relnotes: yes
diff 271095 Thu Sep 04 13:51:25 MDT 2014 se MFC r270647: Add references to vt(4) and the configuration files in /usr/sha
MFC r270653: Update man-pages to correctly refer to changed pathes and namin
MFC r270657: More man pages that need to know about vt in addition to syscon
MFC r270659: (by pluknet@) Missed comma.
MFC r270660: Back-out the references to vt(4) from this man-page. It appears
MFC r270933: Add references to vt(4) to further man-pages.
MFC r270934: Final patches to the tools used to convert syscons keymaps for
MFC r270935: Add vt(4) support to the console initialisation script, specifi

Second batch of MFCs to add support for Unicode keymaps for use with vt(4).

It contains the following changes:

- Add references to vt(4) to relevant man-pages.
- Update comment in defaults/rc.conf to mention vt
- Update rc.d/syscons to warn about syscons keymaps used under vt.
An attempt is made to identify the vt keymap to load instead.
- Minor changes to the conversion tool based on mail comments on keymaps.

Relnotes: yes
/freebsd-10.2-release/tools/tools/vt/keymaps/
H A DKBDFILES.mapdiff 271095 Thu Sep 04 13:51:25 MDT 2014 se MFC r270647: Add references to vt(4) and the configuration files in /usr/sha
MFC r270653: Update man-pages to correctly refer to changed pathes and namin
MFC r270657: More man pages that need to know about vt in addition to syscon
MFC r270659: (by pluknet@) Missed comma.
MFC r270660: Back-out the references to vt(4) from this man-page. It appears
MFC r270933: Add references to vt(4) to further man-pages.
MFC r270934: Final patches to the tools used to convert syscons keymaps for
MFC r270935: Add vt(4) support to the console initialisation script, specifi

Second batch of MFCs to add support for Unicode keymaps for use with vt(4).

It contains the following changes:

- Add references to vt(4) to relevant man-pages.
- Update comment in defaults/rc.conf to mention vt
- Update rc.d/syscons to warn about syscons keymaps used under vt.
An attempt is made to identify the vt keymap to load instead.
- Minor changes to the conversion tool based on mail comments on keymaps.

Relnotes: yes
diff 271095 Thu Sep 04 13:51:25 MDT 2014 se MFC r270647: Add references to vt(4) and the configuration files in /usr/sha
MFC r270653: Update man-pages to correctly refer to changed pathes and namin
MFC r270657: More man pages that need to know about vt in addition to syscon
MFC r270659: (by pluknet@) Missed comma.
MFC r270660: Back-out the references to vt(4) from this man-page. It appears
MFC r270933: Add references to vt(4) to further man-pages.
MFC r270934: Final patches to the tools used to convert syscons keymaps for
MFC r270935: Add vt(4) support to the console initialisation script, specifi

Second batch of MFCs to add support for Unicode keymaps for use with vt(4).

It contains the following changes:

- Add references to vt(4) to relevant man-pages.
- Update comment in defaults/rc.conf to mention vt
- Update rc.d/syscons to warn about syscons keymaps used under vt.
An attempt is made to identify the vt keymap to load instead.
- Minor changes to the conversion tool based on mail comments on keymaps.

Relnotes: yes
diff 271095 Thu Sep 04 13:51:25 MDT 2014 se MFC r270647: Add references to vt(4) and the configuration files in /usr/sha
MFC r270653: Update man-pages to correctly refer to changed pathes and namin
MFC r270657: More man pages that need to know about vt in addition to syscon
MFC r270659: (by pluknet@) Missed comma.
MFC r270660: Back-out the references to vt(4) from this man-page. It appears
MFC r270933: Add references to vt(4) to further man-pages.
MFC r270934: Final patches to the tools used to convert syscons keymaps for
MFC r270935: Add vt(4) support to the console initialisation script, specifi

Second batch of MFCs to add support for Unicode keymaps for use with vt(4).

It contains the following changes:

- Add references to vt(4) to relevant man-pages.
- Update comment in defaults/rc.conf to mention vt
- Update rc.d/syscons to warn about syscons keymaps used under vt.
An attempt is made to identify the vt keymap to load instead.
- Minor changes to the conversion tool based on mail comments on keymaps.

Relnotes: yes
diff 271095 Thu Sep 04 13:51:25 MDT 2014 se MFC r270647: Add references to vt(4) and the configuration files in /usr/sha
MFC r270653: Update man-pages to correctly refer to changed pathes and namin
MFC r270657: More man pages that need to know about vt in addition to syscon
MFC r270659: (by pluknet@) Missed comma.
MFC r270660: Back-out the references to vt(4) from this man-page. It appears
MFC r270933: Add references to vt(4) to further man-pages.
MFC r270934: Final patches to the tools used to convert syscons keymaps for
MFC r270935: Add vt(4) support to the console initialisation script, specifi

Second batch of MFCs to add support for Unicode keymaps for use with vt(4).

It contains the following changes:

- Add references to vt(4) to relevant man-pages.
- Update comment in defaults/rc.conf to mention vt
- Update rc.d/syscons to warn about syscons keymaps used under vt.
An attempt is made to identify the vt keymap to load instead.
- Minor changes to the conversion tool based on mail comments on keymaps.

Relnotes: yes
diff 271095 Thu Sep 04 13:51:25 MDT 2014 se MFC r270647: Add references to vt(4) and the configuration files in /usr/sha
MFC r270653: Update man-pages to correctly refer to changed pathes and namin
MFC r270657: More man pages that need to know about vt in addition to syscon
MFC r270659: (by pluknet@) Missed comma.
MFC r270660: Back-out the references to vt(4) from this man-page. It appears
MFC r270933: Add references to vt(4) to further man-pages.
MFC r270934: Final patches to the tools used to convert syscons keymaps for
MFC r270935: Add vt(4) support to the console initialisation script, specifi

Second batch of MFCs to add support for Unicode keymaps for use with vt(4).

It contains the following changes:

- Add references to vt(4) to relevant man-pages.
- Update comment in defaults/rc.conf to mention vt
- Update rc.d/syscons to warn about syscons keymaps used under vt.
An attempt is made to identify the vt keymap to load instead.
- Minor changes to the conversion tool based on mail comments on keymaps.

Relnotes: yes
diff 271095 Thu Sep 04 13:51:25 MDT 2014 se MFC r270647: Add references to vt(4) and the configuration files in /usr/sha
MFC r270653: Update man-pages to correctly refer to changed pathes and namin
MFC r270657: More man pages that need to know about vt in addition to syscon
MFC r270659: (by pluknet@) Missed comma.
MFC r270660: Back-out the references to vt(4) from this man-page. It appears
MFC r270933: Add references to vt(4) to further man-pages.
MFC r270934: Final patches to the tools used to convert syscons keymaps for
MFC r270935: Add vt(4) support to the console initialisation script, specifi

Second batch of MFCs to add support for Unicode keymaps for use with vt(4).

It contains the following changes:

- Add references to vt(4) to relevant man-pages.
- Update comment in defaults/rc.conf to mention vt
- Update rc.d/syscons to warn about syscons keymaps used under vt.
An attempt is made to identify the vt keymap to load instead.
- Minor changes to the conversion tool based on mail comments on keymaps.

Relnotes: yes
H A Dconvert-keymap.pldiff 271095 Thu Sep 04 13:51:25 MDT 2014 se MFC r270647: Add references to vt(4) and the configuration files in /usr/sha
MFC r270653: Update man-pages to correctly refer to changed pathes and namin
MFC r270657: More man pages that need to know about vt in addition to syscon
MFC r270659: (by pluknet@) Missed comma.
MFC r270660: Back-out the references to vt(4) from this man-page. It appears
MFC r270933: Add references to vt(4) to further man-pages.
MFC r270934: Final patches to the tools used to convert syscons keymaps for
MFC r270935: Add vt(4) support to the console initialisation script, specifi

Second batch of MFCs to add support for Unicode keymaps for use with vt(4).

It contains the following changes:

- Add references to vt(4) to relevant man-pages.
- Update comment in defaults/rc.conf to mention vt
- Update rc.d/syscons to warn about syscons keymaps used under vt.
An attempt is made to identify the vt keymap to load instead.
- Minor changes to the conversion tool based on mail comments on keymaps.

Relnotes: yes
diff 271095 Thu Sep 04 13:51:25 MDT 2014 se MFC r270647: Add references to vt(4) and the configuration files in /usr/sha
MFC r270653: Update man-pages to correctly refer to changed pathes and namin
MFC r270657: More man pages that need to know about vt in addition to syscon
MFC r270659: (by pluknet@) Missed comma.
MFC r270660: Back-out the references to vt(4) from this man-page. It appears
MFC r270933: Add references to vt(4) to further man-pages.
MFC r270934: Final patches to the tools used to convert syscons keymaps for
MFC r270935: Add vt(4) support to the console initialisation script, specifi

Second batch of MFCs to add support for Unicode keymaps for use with vt(4).

It contains the following changes:

- Add references to vt(4) to relevant man-pages.
- Update comment in defaults/rc.conf to mention vt
- Update rc.d/syscons to warn about syscons keymaps used under vt.
An attempt is made to identify the vt keymap to load instead.
- Minor changes to the conversion tool based on mail comments on keymaps.

Relnotes: yes
diff 271095 Thu Sep 04 13:51:25 MDT 2014 se MFC r270647: Add references to vt(4) and the configuration files in /usr/sha
MFC r270653: Update man-pages to correctly refer to changed pathes and namin
MFC r270657: More man pages that need to know about vt in addition to syscon
MFC r270659: (by pluknet@) Missed comma.
MFC r270660: Back-out the references to vt(4) from this man-page. It appears
MFC r270933: Add references to vt(4) to further man-pages.
MFC r270934: Final patches to the tools used to convert syscons keymaps for
MFC r270935: Add vt(4) support to the console initialisation script, specifi

Second batch of MFCs to add support for Unicode keymaps for use with vt(4).

It contains the following changes:

- Add references to vt(4) to relevant man-pages.
- Update comment in defaults/rc.conf to mention vt
- Update rc.d/syscons to warn about syscons keymaps used under vt.
An attempt is made to identify the vt keymap to load instead.
- Minor changes to the conversion tool based on mail comments on keymaps.

Relnotes: yes
diff 271095 Thu Sep 04 13:51:25 MDT 2014 se MFC r270647: Add references to vt(4) and the configuration files in /usr/sha
MFC r270653: Update man-pages to correctly refer to changed pathes and namin
MFC r270657: More man pages that need to know about vt in addition to syscon
MFC r270659: (by pluknet@) Missed comma.
MFC r270660: Back-out the references to vt(4) from this man-page. It appears
MFC r270933: Add references to vt(4) to further man-pages.
MFC r270934: Final patches to the tools used to convert syscons keymaps for
MFC r270935: Add vt(4) support to the console initialisation script, specifi

Second batch of MFCs to add support for Unicode keymaps for use with vt(4).

It contains the following changes:

- Add references to vt(4) to relevant man-pages.
- Update comment in defaults/rc.conf to mention vt
- Update rc.d/syscons to warn about syscons keymaps used under vt.
An attempt is made to identify the vt keymap to load instead.
- Minor changes to the conversion tool based on mail comments on keymaps.

Relnotes: yes
diff 271095 Thu Sep 04 13:51:25 MDT 2014 se MFC r270647: Add references to vt(4) and the configuration files in /usr/sha
MFC r270653: Update man-pages to correctly refer to changed pathes and namin
MFC r270657: More man pages that need to know about vt in addition to syscon
MFC r270659: (by pluknet@) Missed comma.
MFC r270660: Back-out the references to vt(4) from this man-page. It appears
MFC r270933: Add references to vt(4) to further man-pages.
MFC r270934: Final patches to the tools used to convert syscons keymaps for
MFC r270935: Add vt(4) support to the console initialisation script, specifi

Second batch of MFCs to add support for Unicode keymaps for use with vt(4).

It contains the following changes:

- Add references to vt(4) to relevant man-pages.
- Update comment in defaults/rc.conf to mention vt
- Update rc.d/syscons to warn about syscons keymaps used under vt.
An attempt is made to identify the vt keymap to load instead.
- Minor changes to the conversion tool based on mail comments on keymaps.

Relnotes: yes
diff 271095 Thu Sep 04 13:51:25 MDT 2014 se MFC r270647: Add references to vt(4) and the configuration files in /usr/sha
MFC r270653: Update man-pages to correctly refer to changed pathes and namin
MFC r270657: More man pages that need to know about vt in addition to syscon
MFC r270659: (by pluknet@) Missed comma.
MFC r270660: Back-out the references to vt(4) from this man-page. It appears
MFC r270933: Add references to vt(4) to further man-pages.
MFC r270934: Final patches to the tools used to convert syscons keymaps for
MFC r270935: Add vt(4) support to the console initialisation script, specifi

Second batch of MFCs to add support for Unicode keymaps for use with vt(4).

It contains the following changes:

- Add references to vt(4) to relevant man-pages.
- Update comment in defaults/rc.conf to mention vt
- Update rc.d/syscons to warn about syscons keymaps used under vt.
An attempt is made to identify the vt keymap to load instead.
- Minor changes to the conversion tool based on mail comments on keymaps.

Relnotes: yes
/freebsd-10.2-release/sys/dev/cxgbe/
H A Dadapter.hdiff 284089 Sat Jun 06 18:03:46 MDT 2015 np MFC r278239 and r278374.

r278239:
cxgbe(4): reserve id for iSCSI upper layer driver.

r278374:
cxgbe(4): tidy up some of the interaction between the Upper Layer
Drivers (ULDs) and the base if_cxgbe driver.

Track the per-adapter activation of ULDs in a new "active_ulds" field.
This was done pretty arbitrarily before this change -- via TOM_INIT_DONE
in adapter->flags for TOM, and the (1 << MAX_NPORTS) bit in
adapter->offload_map for iWARP.

iWARP and hw-accelerated iSCSI rely on the TOE (supported by the TOM
ULD). The rules are:
a) If the iWARP and/or iSCSI ULDs are available when TOE is enabled then
iWARP and/or iSCSI are enabled too.
b) When the iWARP and iSCSI modules are loaded they go looking for
adapters with TOE enabled and enable themselves on that adapter.
c) You cannot deactivate or unload the TOM module from underneath iWARP
or iSCSI. Any such attempt will fail with EBUSY.
diff 284089 Sat Jun 06 18:03:46 MDT 2015 np MFC r278239 and r278374.

r278239:
cxgbe(4): reserve id for iSCSI upper layer driver.

r278374:
cxgbe(4): tidy up some of the interaction between the Upper Layer
Drivers (ULDs) and the base if_cxgbe driver.

Track the per-adapter activation of ULDs in a new "active_ulds" field.
This was done pretty arbitrarily before this change -- via TOM_INIT_DONE
in adapter->flags for TOM, and the (1 << MAX_NPORTS) bit in
adapter->offload_map for iWARP.

iWARP and hw-accelerated iSCSI rely on the TOE (supported by the TOM
ULD). The rules are:
a) If the iWARP and/or iSCSI ULDs are available when TOE is enabled then
iWARP and/or iSCSI are enabled too.
b) When the iWARP and iSCSI modules are loaded they go looking for
adapters with TOE enabled and enable themselves on that adapter.
c) You cannot deactivate or unload the TOM module from underneath iWARP
or iSCSI. Any such attempt will fail with EBUSY.
diff 284052 Sat Jun 06 09:35:14 MDT 2015 np MFC r276480, r276485, r276498, r277225, r277226, r277227, r277230,
r277637, and r283149 (by emaste@).

r276485 is the real change here, the rest deal with the fallout of
mp_ring's reliance on 64b atomics.

Use the incorrectly spelled 'eigth' from struct pkthdr in this branch
instead of MFC'ing r261733, which would have renamed the field of a
public structure in a -STABLE branch.
---

r276480:
Temporarily unplug cxgbe(4) from !amd64 builds.

r276485:
cxgbe(4): major tx rework.

a) Front load as much work as possible in if_transmit, before any driver
lock or software queue has to get involved.

b) Replace buf_ring with a brand new mp_ring (multiproducer ring). This
is specifically for the tx multiqueue model where one of the if_transmit
producer threads becomes the consumer and other producers carry on as
usual. mp_ring is implemented as standalone code and it should be
possible to use it in any driver with tx multiqueue. It also has:
- the ability to enqueue/dequeue multiple items. This might become
significant if packet batching is ever implemented.
- an abdication mechanism to allow a thread to give up writing tx
descriptors and have another if_transmit thread take over. A thread
that's writing tx descriptors can end up doing so for an unbounded
time period if a) there are other if_transmit threads continuously
feeding the sofware queue, and b) the chip keeps up with whatever the
thread is throwing at it.
- accurate statistics about interesting events even when the stats come
at the expense of additional branches/conditional code.

The NIC txq lock is uncontested on the fast path at this point. I've
left it there for synchronization with the control events (interface
up/down, modload/unload).

c) Add support for "type 1" coalescing work request in the normal NIC tx
path. This work request is optimized for frames with a single item in
the DMA gather list. These are very common when forwarding packets.
Note that netmap tx in cxgbe already uses these "type 1" work requests.

d) Do not request automatic cidx updates every 32 descriptors. Instead,
request updates via bits in individual work requests (still every 32
descriptors approximately). Also, request an automatic final update
when the queue idles after activity. This means NIC tx reclaim is still
performed lazily but it will catch up quickly as soon as the queue
idles. This seems to be the best middle ground and I'll probably do
something similar for netmap tx as well.

e) Implement a faster tx path for WRQs (used by TOE tx and control
queues, _not_ by the normal NIC tx). Allow work requests to be written
directly to the hardware descriptor ring if room is available. I will
convert t4_tom and iw_cxgbe modules to this faster style gradually.

r276498:
cxgbe(4): remove buf_ring specific restriction on the txq size.

r277225:
Make cxgbe(4) buildable with the gcc in base.

r277226:
Allow cxgbe(4) to be built on i386. Driver attach will succeed only on
a subset of i386 systems.

r277227:
Plug cxgbe(4) back into !powerpc && !arm builds, instead of building it
on amd64 only.

r277230:
Build cxgbe(4) on powerpc64 too.

r277637:
Make sure the compiler flag to get cxgbe(4) to compile with gcc is used
only when gcc is being used. This is what r277225 should have been.
diff 284052 Sat Jun 06 09:35:14 MDT 2015 np MFC r276480, r276485, r276498, r277225, r277226, r277227, r277230,
r277637, and r283149 (by emaste@).

r276485 is the real change here, the rest deal with the fallout of
mp_ring's reliance on 64b atomics.

Use the incorrectly spelled 'eigth' from struct pkthdr in this branch
instead of MFC'ing r261733, which would have renamed the field of a
public structure in a -STABLE branch.
---

r276480:
Temporarily unplug cxgbe(4) from !amd64 builds.

r276485:
cxgbe(4): major tx rework.

a) Front load as much work as possible in if_transmit, before any driver
lock or software queue has to get involved.

b) Replace buf_ring with a brand new mp_ring (multiproducer ring). This
is specifically for the tx multiqueue model where one of the if_transmit
producer threads becomes the consumer and other producers carry on as
usual. mp_ring is implemented as standalone code and it should be
possible to use it in any driver with tx multiqueue. It also has:
- the ability to enqueue/dequeue multiple items. This might become
significant if packet batching is ever implemented.
- an abdication mechanism to allow a thread to give up writing tx
descriptors and have another if_transmit thread take over. A thread
that's writing tx descriptors can end up doing so for an unbounded
time period if a) there are other if_transmit threads continuously
feeding the sofware queue, and b) the chip keeps up with whatever the
thread is throwing at it.
- accurate statistics about interesting events even when the stats come
at the expense of additional branches/conditional code.

The NIC txq lock is uncontested on the fast path at this point. I've
left it there for synchronization with the control events (interface
up/down, modload/unload).

c) Add support for "type 1" coalescing work request in the normal NIC tx
path. This work request is optimized for frames with a single item in
the DMA gather list. These are very common when forwarding packets.
Note that netmap tx in cxgbe already uses these "type 1" work requests.

d) Do not request automatic cidx updates every 32 descriptors. Instead,
request updates via bits in individual work requests (still every 32
descriptors approximately). Also, request an automatic final update
when the queue idles after activity. This means NIC tx reclaim is still
performed lazily but it will catch up quickly as soon as the queue
idles. This seems to be the best middle ground and I'll probably do
something similar for netmap tx as well.

e) Implement a faster tx path for WRQs (used by TOE tx and control
queues, _not_ by the normal NIC tx). Allow work requests to be written
directly to the hardware descriptor ring if room is available. I will
convert t4_tom and iw_cxgbe modules to this faster style gradually.

r276498:
cxgbe(4): remove buf_ring specific restriction on the txq size.

r277225:
Make cxgbe(4) buildable with the gcc in base.

r277226:
Allow cxgbe(4) to be built on i386. Driver attach will succeed only on
a subset of i386 systems.

r277227:
Plug cxgbe(4) back into !powerpc && !arm builds, instead of building it
on amd64 only.

r277230:
Build cxgbe(4) on powerpc64 too.

r277637:
Make sure the compiler flag to get cxgbe(4) to compile with gcc is used
only when gcc is being used. This is what r277225 should have been.
diff 284052 Sat Jun 06 09:35:14 MDT 2015 np MFC r276480, r276485, r276498, r277225, r277226, r277227, r277230,
r277637, and r283149 (by emaste@).

r276485 is the real change here, the rest deal with the fallout of
mp_ring's reliance on 64b atomics.

Use the incorrectly spelled 'eigth' from struct pkthdr in this branch
instead of MFC'ing r261733, which would have renamed the field of a
public structure in a -STABLE branch.
---

r276480:
Temporarily unplug cxgbe(4) from !amd64 builds.

r276485:
cxgbe(4): major tx rework.

a) Front load as much work as possible in if_transmit, before any driver
lock or software queue has to get involved.

b) Replace buf_ring with a brand new mp_ring (multiproducer ring). This
is specifically for the tx multiqueue model where one of the if_transmit
producer threads becomes the consumer and other producers carry on as
usual. mp_ring is implemented as standalone code and it should be
possible to use it in any driver with tx multiqueue. It also has:
- the ability to enqueue/dequeue multiple items. This might become
significant if packet batching is ever implemented.
- an abdication mechanism to allow a thread to give up writing tx
descriptors and have another if_transmit thread take over. A thread
that's writing tx descriptors can end up doing so for an unbounded
time period if a) there are other if_transmit threads continuously
feeding the sofware queue, and b) the chip keeps up with whatever the
thread is throwing at it.
- accurate statistics about interesting events even when the stats come
at the expense of additional branches/conditional code.

The NIC txq lock is uncontested on the fast path at this point. I've
left it there for synchronization with the control events (interface
up/down, modload/unload).

c) Add support for "type 1" coalescing work request in the normal NIC tx
path. This work request is optimized for frames with a single item in
the DMA gather list. These are very common when forwarding packets.
Note that netmap tx in cxgbe already uses these "type 1" work requests.

d) Do not request automatic cidx updates every 32 descriptors. Instead,
request updates via bits in individual work requests (still every 32
descriptors approximately). Also, request an automatic final update
when the queue idles after activity. This means NIC tx reclaim is still
performed lazily but it will catch up quickly as soon as the queue
idles. This seems to be the best middle ground and I'll probably do
something similar for netmap tx as well.

e) Implement a faster tx path for WRQs (used by TOE tx and control
queues, _not_ by the normal NIC tx). Allow work requests to be written
directly to the hardware descriptor ring if room is available. I will
convert t4_tom and iw_cxgbe modules to this faster style gradually.

r276498:
cxgbe(4): remove buf_ring specific restriction on the txq size.

r277225:
Make cxgbe(4) buildable with the gcc in base.

r277226:
Allow cxgbe(4) to be built on i386. Driver attach will succeed only on
a subset of i386 systems.

r277227:
Plug cxgbe(4) back into !powerpc && !arm builds, instead of building it
on amd64 only.

r277230:
Build cxgbe(4) on powerpc64 too.

r277637:
Make sure the compiler flag to get cxgbe(4) to compile with gcc is used
only when gcc is being used. This is what r277225 should have been.
diff 284052 Sat Jun 06 09:35:14 MDT 2015 np MFC r276480, r276485, r276498, r277225, r277226, r277227, r277230,
r277637, and r283149 (by emaste@).

r276485 is the real change here, the rest deal with the fallout of
mp_ring's reliance on 64b atomics.

Use the incorrectly spelled 'eigth' from struct pkthdr in this branch
instead of MFC'ing r261733, which would have renamed the field of a
public structure in a -STABLE branch.
---

r276480:
Temporarily unplug cxgbe(4) from !amd64 builds.

r276485:
cxgbe(4): major tx rework.

a) Front load as much work as possible in if_transmit, before any driver
lock or software queue has to get involved.

b) Replace buf_ring with a brand new mp_ring (multiproducer ring). This
is specifically for the tx multiqueue model where one of the if_transmit
producer threads becomes the consumer and other producers carry on as
usual. mp_ring is implemented as standalone code and it should be
possible to use it in any driver with tx multiqueue. It also has:
- the ability to enqueue/dequeue multiple items. This might become
significant if packet batching is ever implemented.
- an abdication mechanism to allow a thread to give up writing tx
descriptors and have another if_transmit thread take over. A thread
that's writing tx descriptors can end up doing so for an unbounded
time period if a) there are other if_transmit threads continuously
feeding the sofware queue, and b) the chip keeps up with whatever the
thread is throwing at it.
- accurate statistics about interesting events even when the stats come
at the expense of additional branches/conditional code.

The NIC txq lock is uncontested on the fast path at this point. I've
left it there for synchronization with the control events (interface
up/down, modload/unload).

c) Add support for "type 1" coalescing work request in the normal NIC tx
path. This work request is optimized for frames with a single item in
the DMA gather list. These are very common when forwarding packets.
Note that netmap tx in cxgbe already uses these "type 1" work requests.

d) Do not request automatic cidx updates every 32 descriptors. Instead,
request updates via bits in individual work requests (still every 32
descriptors approximately). Also, request an automatic final update
when the queue idles after activity. This means NIC tx reclaim is still
performed lazily but it will catch up quickly as soon as the queue
idles. This seems to be the best middle ground and I'll probably do
something similar for netmap tx as well.

e) Implement a faster tx path for WRQs (used by TOE tx and control
queues, _not_ by the normal NIC tx). Allow work requests to be written
directly to the hardware descriptor ring if room is available. I will
convert t4_tom and iw_cxgbe modules to this faster style gradually.

r276498:
cxgbe(4): remove buf_ring specific restriction on the txq size.

r277225:
Make cxgbe(4) buildable with the gcc in base.

r277226:
Allow cxgbe(4) to be built on i386. Driver attach will succeed only on
a subset of i386 systems.

r277227:
Plug cxgbe(4) back into !powerpc && !arm builds, instead of building it
on amd64 only.

r277230:
Build cxgbe(4) on powerpc64 too.

r277637:
Make sure the compiler flag to get cxgbe(4) to compile with gcc is used
only when gcc is being used. This is what r277225 should have been.
diff 284052 Sat Jun 06 09:35:14 MDT 2015 np MFC r276480, r276485, r276498, r277225, r277226, r277227, r277230,
r277637, and r283149 (by emaste@).

r276485 is the real change here, the rest deal with the fallout of
mp_ring's reliance on 64b atomics.

Use the incorrectly spelled 'eigth' from struct pkthdr in this branch
instead of MFC'ing r261733, which would have renamed the field of a
public structure in a -STABLE branch.
---

r276480:
Temporarily unplug cxgbe(4) from !amd64 builds.

r276485:
cxgbe(4): major tx rework.

a) Front load as much work as possible in if_transmit, before any driver
lock or software queue has to get involved.

b) Replace buf_ring with a brand new mp_ring (multiproducer ring). This
is specifically for the tx multiqueue model where one of the if_transmit
producer threads becomes the consumer and other producers carry on as
usual. mp_ring is implemented as standalone code and it should be
possible to use it in any driver with tx multiqueue. It also has:
- the ability to enqueue/dequeue multiple items. This might become
significant if packet batching is ever implemented.
- an abdication mechanism to allow a thread to give up writing tx
descriptors and have another if_transmit thread take over. A thread
that's writing tx descriptors can end up doing so for an unbounded
time period if a) there are other if_transmit threads continuously
feeding the sofware queue, and b) the chip keeps up with whatever the
thread is throwing at it.
- accurate statistics about interesting events even when the stats come
at the expense of additional branches/conditional code.

The NIC txq lock is uncontested on the fast path at this point. I've
left it there for synchronization with the control events (interface
up/down, modload/unload).

c) Add support for "type 1" coalescing work request in the normal NIC tx
path. This work request is optimized for frames with a single item in
the DMA gather list. These are very common when forwarding packets.
Note that netmap tx in cxgbe already uses these "type 1" work requests.

d) Do not request automatic cidx updates every 32 descriptors. Instead,
request updates via bits in individual work requests (still every 32
descriptors approximately). Also, request an automatic final update
when the queue idles after activity. This means NIC tx reclaim is still
performed lazily but it will catch up quickly as soon as the queue
idles. This seems to be the best middle ground and I'll probably do
something similar for netmap tx as well.

e) Implement a faster tx path for WRQs (used by TOE tx and control
queues, _not_ by the normal NIC tx). Allow work requests to be written
directly to the hardware descriptor ring if room is available. I will
convert t4_tom and iw_cxgbe modules to this faster style gradually.

r276498:
cxgbe(4): remove buf_ring specific restriction on the txq size.

r277225:
Make cxgbe(4) buildable with the gcc in base.

r277226:
Allow cxgbe(4) to be built on i386. Driver attach will succeed only on
a subset of i386 systems.

r277227:
Plug cxgbe(4) back into !powerpc && !arm builds, instead of building it
on amd64 only.

r277230:
Build cxgbe(4) on powerpc64 too.

r277637:
Make sure the compiler flag to get cxgbe(4) to compile with gcc is used
only when gcc is being used. This is what r277225 should have been.
diff 284052 Sat Jun 06 09:35:14 MDT 2015 np MFC r276480, r276485, r276498, r277225, r277226, r277227, r277230,
r277637, and r283149 (by emaste@).

r276485 is the real change here, the rest deal with the fallout of
mp_ring's reliance on 64b atomics.

Use the incorrectly spelled 'eigth' from struct pkthdr in this branch
instead of MFC'ing r261733, which would have renamed the field of a
public structure in a -STABLE branch.
---

r276480:
Temporarily unplug cxgbe(4) from !amd64 builds.

r276485:
cxgbe(4): major tx rework.

a) Front load as much work as possible in if_transmit, before any driver
lock or software queue has to get involved.

b) Replace buf_ring with a brand new mp_ring (multiproducer ring). This
is specifically for the tx multiqueue model where one of the if_transmit
producer threads becomes the consumer and other producers carry on as
usual. mp_ring is implemented as standalone code and it should be
possible to use it in any driver with tx multiqueue. It also has:
- the ability to enqueue/dequeue multiple items. This might become
significant if packet batching is ever implemented.
- an abdication mechanism to allow a thread to give up writing tx
descriptors and have another if_transmit thread take over. A thread
that's writing tx descriptors can end up doing so for an unbounded
time period if a) there are other if_transmit threads continuously
feeding the sofware queue, and b) the chip keeps up with whatever the
thread is throwing at it.
- accurate statistics about interesting events even when the stats come
at the expense of additional branches/conditional code.

The NIC txq lock is uncontested on the fast path at this point. I've
left it there for synchronization with the control events (interface
up/down, modload/unload).

c) Add support for "type 1" coalescing work request in the normal NIC tx
path. This work request is optimized for frames with a single item in
the DMA gather list. These are very common when forwarding packets.
Note that netmap tx in cxgbe already uses these "type 1" work requests.

d) Do not request automatic cidx updates every 32 descriptors. Instead,
request updates via bits in individual work requests (still every 32
descriptors approximately). Also, request an automatic final update
when the queue idles after activity. This means NIC tx reclaim is still
performed lazily but it will catch up quickly as soon as the queue
idles. This seems to be the best middle ground and I'll probably do
something similar for netmap tx as well.

e) Implement a faster tx path for WRQs (used by TOE tx and control
queues, _not_ by the normal NIC tx). Allow work requests to be written
directly to the hardware descriptor ring if room is available. I will
convert t4_tom and iw_cxgbe modules to this faster style gradually.

r276498:
cxgbe(4): remove buf_ring specific restriction on the txq size.

r277225:
Make cxgbe(4) buildable with the gcc in base.

r277226:
Allow cxgbe(4) to be built on i386. Driver attach will succeed only on
a subset of i386 systems.

r277227:
Plug cxgbe(4) back into !powerpc && !arm builds, instead of building it
on amd64 only.

r277230:
Build cxgbe(4) on powerpc64 too.

r277637:
Make sure the compiler flag to get cxgbe(4) to compile with gcc is used
only when gcc is being used. This is what r277225 should have been.
diff 284052 Sat Jun 06 09:35:14 MDT 2015 np MFC r276480, r276485, r276498, r277225, r277226, r277227, r277230,
r277637, and r283149 (by emaste@).

r276485 is the real change here, the rest deal with the fallout of
mp_ring's reliance on 64b atomics.

Use the incorrectly spelled 'eigth' from struct pkthdr in this branch
instead of MFC'ing r261733, which would have renamed the field of a
public structure in a -STABLE branch.
---

r276480:
Temporarily unplug cxgbe(4) from !amd64 builds.

r276485:
cxgbe(4): major tx rework.

a) Front load as much work as possible in if_transmit, before any driver
lock or software queue has to get involved.

b) Replace buf_ring with a brand new mp_ring (multiproducer ring). This
is specifically for the tx multiqueue model where one of the if_transmit
producer threads becomes the consumer and other producers carry on as
usual. mp_ring is implemented as standalone code and it should be
possible to use it in any driver with tx multiqueue. It also has:
- the ability to enqueue/dequeue multiple items. This might become
significant if packet batching is ever implemented.
- an abdication mechanism to allow a thread to give up writing tx
descriptors and have another if_transmit thread take over. A thread
that's writing tx descriptors can end up doing so for an unbounded
time period if a) there are other if_transmit threads continuously
feeding the sofware queue, and b) the chip keeps up with whatever the
thread is throwing at it.
- accurate statistics about interesting events even when the stats come
at the expense of additional branches/conditional code.

The NIC txq lock is uncontested on the fast path at this point. I've
left it there for synchronization with the control events (interface
up/down, modload/unload).

c) Add support for "type 1" coalescing work request in the normal NIC tx
path. This work request is optimized for frames with a single item in
the DMA gather list. These are very common when forwarding packets.
Note that netmap tx in cxgbe already uses these "type 1" work requests.

d) Do not request automatic cidx updates every 32 descriptors. Instead,
request updates via bits in individual work requests (still every 32
descriptors approximately). Also, request an automatic final update
when the queue idles after activity. This means NIC tx reclaim is still
performed lazily but it will catch up quickly as soon as the queue
idles. This seems to be the best middle ground and I'll probably do
something similar for netmap tx as well.

e) Implement a faster tx path for WRQs (used by TOE tx and control
queues, _not_ by the normal NIC tx). Allow work requests to be written
directly to the hardware descriptor ring if room is available. I will
convert t4_tom and iw_cxgbe modules to this faster style gradually.

r276498:
cxgbe(4): remove buf_ring specific restriction on the txq size.

r277225:
Make cxgbe(4) buildable with the gcc in base.

r277226:
Allow cxgbe(4) to be built on i386. Driver attach will succeed only on
a subset of i386 systems.

r277227:
Plug cxgbe(4) back into !powerpc && !arm builds, instead of building it
on amd64 only.

r277230:
Build cxgbe(4) on powerpc64 too.

r277637:
Make sure the compiler flag to get cxgbe(4) to compile with gcc is used
only when gcc is being used. This is what r277225 should have been.
diff 284052 Sat Jun 06 09:35:14 MDT 2015 np MFC r276480, r276485, r276498, r277225, r277226, r277227, r277230,
r277637, and r283149 (by emaste@).

r276485 is the real change here, the rest deal with the fallout of
mp_ring's reliance on 64b atomics.

Use the incorrectly spelled 'eigth' from struct pkthdr in this branch
instead of MFC'ing r261733, which would have renamed the field of a
public structure in a -STABLE branch.
---

r276480:
Temporarily unplug cxgbe(4) from !amd64 builds.

r276485:
cxgbe(4): major tx rework.

a) Front load as much work as possible in if_transmit, before any driver
lock or software queue has to get involved.

b) Replace buf_ring with a brand new mp_ring (multiproducer ring). This
is specifically for the tx multiqueue model where one of the if_transmit
producer threads becomes the consumer and other producers carry on as
usual. mp_ring is implemented as standalone code and it should be
possible to use it in any driver with tx multiqueue. It also has:
- the ability to enqueue/dequeue multiple items. This might become
significant if packet batching is ever implemented.
- an abdication mechanism to allow a thread to give up writing tx
descriptors and have another if_transmit thread take over. A thread
that's writing tx descriptors can end up doing so for an unbounded
time period if a) there are other if_transmit threads continuously
feeding the sofware queue, and b) the chip keeps up with whatever the
thread is throwing at it.
- accurate statistics about interesting events even when the stats come
at the expense of additional branches/conditional code.

The NIC txq lock is uncontested on the fast path at this point. I've
left it there for synchronization with the control events (interface
up/down, modload/unload).

c) Add support for "type 1" coalescing work request in the normal NIC tx
path. This work request is optimized for frames with a single item in
the DMA gather list. These are very common when forwarding packets.
Note that netmap tx in cxgbe already uses these "type 1" work requests.

d) Do not request automatic cidx updates every 32 descriptors. Instead,
request updates via bits in individual work requests (still every 32
descriptors approximately). Also, request an automatic final update
when the queue idles after activity. This means NIC tx reclaim is still
performed lazily but it will catch up quickly as soon as the queue
idles. This seems to be the best middle ground and I'll probably do
something similar for netmap tx as well.

e) Implement a faster tx path for WRQs (used by TOE tx and control
queues, _not_ by the normal NIC tx). Allow work requests to be written
directly to the hardware descriptor ring if room is available. I will
convert t4_tom and iw_cxgbe modules to this faster style gradually.

r276498:
cxgbe(4): remove buf_ring specific restriction on the txq size.

r277225:
Make cxgbe(4) buildable with the gcc in base.

r277226:
Allow cxgbe(4) to be built on i386. Driver attach will succeed only on
a subset of i386 systems.

r277227:
Plug cxgbe(4) back into !powerpc && !arm builds, instead of building it
on amd64 only.

r277230:
Build cxgbe(4) on powerpc64 too.

r277637:
Make sure the compiler flag to get cxgbe(4) to compile with gcc is used
only when gcc is being used. This is what r277225 should have been.
H A Dt4_l2t.cdiff 284052 Sat Jun 06 09:35:14 MDT 2015 np MFC r276480, r276485, r276498, r277225, r277226, r277227, r277230,
r277637, and r283149 (by emaste@).

r276485 is the real change here, the rest deal with the fallout of
mp_ring's reliance on 64b atomics.

Use the incorrectly spelled 'eigth' from struct pkthdr in this branch
instead of MFC'ing r261733, which would have renamed the field of a
public structure in a -STABLE branch.
---

r276480:
Temporarily unplug cxgbe(4) from !amd64 builds.

r276485:
cxgbe(4): major tx rework.

a) Front load as much work as possible in if_transmit, before any driver
lock or software queue has to get involved.

b) Replace buf_ring with a brand new mp_ring (multiproducer ring). This
is specifically for the tx multiqueue model where one of the if_transmit
producer threads becomes the consumer and other producers carry on as
usual. mp_ring is implemented as standalone code and it should be
possible to use it in any driver with tx multiqueue. It also has:
- the ability to enqueue/dequeue multiple items. This might become
significant if packet batching is ever implemented.
- an abdication mechanism to allow a thread to give up writing tx
descriptors and have another if_transmit thread take over. A thread
that's writing tx descriptors can end up doing so for an unbounded
time period if a) there are other if_transmit threads continuously
feeding the sofware queue, and b) the chip keeps up with whatever the
thread is throwing at it.
- accurate statistics about interesting events even when the stats come
at the expense of additional branches/conditional code.

The NIC txq lock is uncontested on the fast path at this point. I've
left it there for synchronization with the control events (interface
up/down, modload/unload).

c) Add support for "type 1" coalescing work request in the normal NIC tx
path. This work request is optimized for frames with a single item in
the DMA gather list. These are very common when forwarding packets.
Note that netmap tx in cxgbe already uses these "type 1" work requests.

d) Do not request automatic cidx updates every 32 descriptors. Instead,
request updates via bits in individual work requests (still every 32
descriptors approximately). Also, request an automatic final update
when the queue idles after activity. This means NIC tx reclaim is still
performed lazily but it will catch up quickly as soon as the queue
idles. This seems to be the best middle ground and I'll probably do
something similar for netmap tx as well.

e) Implement a faster tx path for WRQs (used by TOE tx and control
queues, _not_ by the normal NIC tx). Allow work requests to be written
directly to the hardware descriptor ring if room is available. I will
convert t4_tom and iw_cxgbe modules to this faster style gradually.

r276498:
cxgbe(4): remove buf_ring specific restriction on the txq size.

r277225:
Make cxgbe(4) buildable with the gcc in base.

r277226:
Allow cxgbe(4) to be built on i386. Driver attach will succeed only on
a subset of i386 systems.

r277227:
Plug cxgbe(4) back into !powerpc && !arm builds, instead of building it
on amd64 only.

r277230:
Build cxgbe(4) on powerpc64 too.

r277637:
Make sure the compiler flag to get cxgbe(4) to compile with gcc is used
only when gcc is being used. This is what r277225 should have been.
diff 284052 Sat Jun 06 09:35:14 MDT 2015 np MFC r276480, r276485, r276498, r277225, r277226, r277227, r277230,
r277637, and r283149 (by emaste@).

r276485 is the real change here, the rest deal with the fallout of
mp_ring's reliance on 64b atomics.

Use the incorrectly spelled 'eigth' from struct pkthdr in this branch
instead of MFC'ing r261733, which would have renamed the field of a
public structure in a -STABLE branch.
---

r276480:
Temporarily unplug cxgbe(4) from !amd64 builds.

r276485:
cxgbe(4): major tx rework.

a) Front load as much work as possible in if_transmit, before any driver
lock or software queue has to get involved.

b) Replace buf_ring with a brand new mp_ring (multiproducer ring). This
is specifically for the tx multiqueue model where one of the if_transmit
producer threads becomes the consumer and other producers carry on as
usual. mp_ring is implemented as standalone code and it should be
possible to use it in any driver with tx multiqueue. It also has:
- the ability to enqueue/dequeue multiple items. This might become
significant if packet batching is ever implemented.
- an abdication mechanism to allow a thread to give up writing tx
descriptors and have another if_transmit thread take over. A thread
that's writing tx descriptors can end up doing so for an unbounded
time period if a) there are other if_transmit threads continuously
feeding the sofware queue, and b) the chip keeps up with whatever the
thread is throwing at it.
- accurate statistics about interesting events even when the stats come
at the expense of additional branches/conditional code.

The NIC txq lock is uncontested on the fast path at this point. I've
left it there for synchronization with the control events (interface
up/down, modload/unload).

c) Add support for "type 1" coalescing work request in the normal NIC tx
path. This work request is optimized for frames with a single item in
the DMA gather list. These are very common when forwarding packets.
Note that netmap tx in cxgbe already uses these "type 1" work requests.

d) Do not request automatic cidx updates every 32 descriptors. Instead,
request updates via bits in individual work requests (still every 32
descriptors approximately). Also, request an automatic final update
when the queue idles after activity. This means NIC tx reclaim is still
performed lazily but it will catch up quickly as soon as the queue
idles. This seems to be the best middle ground and I'll probably do
something similar for netmap tx as well.

e) Implement a faster tx path for WRQs (used by TOE tx and control
queues, _not_ by the normal NIC tx). Allow work requests to be written
directly to the hardware descriptor ring if room is available. I will
convert t4_tom and iw_cxgbe modules to this faster style gradually.

r276498:
cxgbe(4): remove buf_ring specific restriction on the txq size.

r277225:
Make cxgbe(4) buildable with the gcc in base.

r277226:
Allow cxgbe(4) to be built on i386. Driver attach will succeed only on
a subset of i386 systems.

r277227:
Plug cxgbe(4) back into !powerpc && !arm builds, instead of building it
on amd64 only.

r277230:
Build cxgbe(4) on powerpc64 too.

r277637:
Make sure the compiler flag to get cxgbe(4) to compile with gcc is used
only when gcc is being used. This is what r277225 should have been.
diff 284052 Sat Jun 06 09:35:14 MDT 2015 np MFC r276480, r276485, r276498, r277225, r277226, r277227, r277230,
r277637, and r283149 (by emaste@).

r276485 is the real change here, the rest deal with the fallout of
mp_ring's reliance on 64b atomics.

Use the incorrectly spelled 'eigth' from struct pkthdr in this branch
instead of MFC'ing r261733, which would have renamed the field of a
public structure in a -STABLE branch.
---

r276480:
Temporarily unplug cxgbe(4) from !amd64 builds.

r276485:
cxgbe(4): major tx rework.

a) Front load as much work as possible in if_transmit, before any driver
lock or software queue has to get involved.

b) Replace buf_ring with a brand new mp_ring (multiproducer ring). This
is specifically for the tx multiqueue model where one of the if_transmit
producer threads becomes the consumer and other producers carry on as
usual. mp_ring is implemented as standalone code and it should be
possible to use it in any driver with tx multiqueue. It also has:
- the ability to enqueue/dequeue multiple items. This might become
significant if packet batching is ever implemented.
- an abdication mechanism to allow a thread to give up writing tx
descriptors and have another if_transmit thread take over. A thread
that's writing tx descriptors can end up doing so for an unbounded
time period if a) there are other if_transmit threads continuously
feeding the sofware queue, and b) the chip keeps up with whatever the
thread is throwing at it.
- accurate statistics about interesting events even when the stats come
at the expense of additional branches/conditional code.

The NIC txq lock is uncontested on the fast path at this point. I've
left it there for synchronization with the control events (interface
up/down, modload/unload).

c) Add support for "type 1" coalescing work request in the normal NIC tx
path. This work request is optimized for frames with a single item in
the DMA gather list. These are very common when forwarding packets.
Note that netmap tx in cxgbe already uses these "type 1" work requests.

d) Do not request automatic cidx updates every 32 descriptors. Instead,
request updates via bits in individual work requests (still every 32
descriptors approximately). Also, request an automatic final update
when the queue idles after activity. This means NIC tx reclaim is still
performed lazily but it will catch up quickly as soon as the queue
idles. This seems to be the best middle ground and I'll probably do
something similar for netmap tx as well.

e) Implement a faster tx path for WRQs (used by TOE tx and control
queues, _not_ by the normal NIC tx). Allow work requests to be written
directly to the hardware descriptor ring if room is available. I will
convert t4_tom and iw_cxgbe modules to this faster style gradually.

r276498:
cxgbe(4): remove buf_ring specific restriction on the txq size.

r277225:
Make cxgbe(4) buildable with the gcc in base.

r277226:
Allow cxgbe(4) to be built on i386. Driver attach will succeed only on
a subset of i386 systems.

r277227:
Plug cxgbe(4) back into !powerpc && !arm builds, instead of building it
on amd64 only.

r277230:
Build cxgbe(4) on powerpc64 too.

r277637:
Make sure the compiler flag to get cxgbe(4) to compile with gcc is used
only when gcc is being used. This is what r277225 should have been.
diff 284052 Sat Jun 06 09:35:14 MDT 2015 np MFC r276480, r276485, r276498, r277225, r277226, r277227, r277230,
r277637, and r283149 (by emaste@).

r276485 is the real change here, the rest deal with the fallout of
mp_ring's reliance on 64b atomics.

Use the incorrectly spelled 'eigth' from struct pkthdr in this branch
instead of MFC'ing r261733, which would have renamed the field of a
public structure in a -STABLE branch.
---

r276480:
Temporarily unplug cxgbe(4) from !amd64 builds.

r276485:
cxgbe(4): major tx rework.

a) Front load as much work as possible in if_transmit, before any driver
lock or software queue has to get involved.

b) Replace buf_ring with a brand new mp_ring (multiproducer ring). This
is specifically for the tx multiqueue model where one of the if_transmit
producer threads becomes the consumer and other producers carry on as
usual. mp_ring is implemented as standalone code and it should be
possible to use it in any driver with tx multiqueue. It also has:
- the ability to enqueue/dequeue multiple items. This might become
significant if packet batching is ever implemented.
- an abdication mechanism to allow a thread to give up writing tx
descriptors and have another if_transmit thread take over. A thread
that's writing tx descriptors can end up doing so for an unbounded
time period if a) there are other if_transmit threads continuously
feeding the sofware queue, and b) the chip keeps up with whatever the
thread is throwing at it.
- accurate statistics about interesting events even when the stats come
at the expense of additional branches/conditional code.

The NIC txq lock is uncontested on the fast path at this point. I've
left it there for synchronization with the control events (interface
up/down, modload/unload).

c) Add support for "type 1" coalescing work request in the normal NIC tx
path. This work request is optimized for frames with a single item in
the DMA gather list. These are very common when forwarding packets.
Note that netmap tx in cxgbe already uses these "type 1" work requests.

d) Do not request automatic cidx updates every 32 descriptors. Instead,
request updates via bits in individual work requests (still every 32
descriptors approximately). Also, request an automatic final update
when the queue idles after activity. This means NIC tx reclaim is still
performed lazily but it will catch up quickly as soon as the queue
idles. This seems to be the best middle ground and I'll probably do
something similar for netmap tx as well.

e) Implement a faster tx path for WRQs (used by TOE tx and control
queues, _not_ by the normal NIC tx). Allow work requests to be written
directly to the hardware descriptor ring if room is available. I will
convert t4_tom and iw_cxgbe modules to this faster style gradually.

r276498:
cxgbe(4): remove buf_ring specific restriction on the txq size.

r277225:
Make cxgbe(4) buildable with the gcc in base.

r277226:
Allow cxgbe(4) to be built on i386. Driver attach will succeed only on
a subset of i386 systems.

r277227:
Plug cxgbe(4) back into !powerpc && !arm builds, instead of building it
on amd64 only.

r277230:
Build cxgbe(4) on powerpc64 too.

r277637:
Make sure the compiler flag to get cxgbe(4) to compile with gcc is used
only when gcc is being used. This is what r277225 should have been.
diff 284052 Sat Jun 06 09:35:14 MDT 2015 np MFC r276480, r276485, r276498, r277225, r277226, r277227, r277230,
r277637, and r283149 (by emaste@).

r276485 is the real change here, the rest deal with the fallout of
mp_ring's reliance on 64b atomics.

Use the incorrectly spelled 'eigth' from struct pkthdr in this branch
instead of MFC'ing r261733, which would have renamed the field of a
public structure in a -STABLE branch.
---

r276480:
Temporarily unplug cxgbe(4) from !amd64 builds.

r276485:
cxgbe(4): major tx rework.

a) Front load as much work as possible in if_transmit, before any driver
lock or software queue has to get involved.

b) Replace buf_ring with a brand new mp_ring (multiproducer ring). This
is specifically for the tx multiqueue model where one of the if_transmit
producer threads becomes the consumer and other producers carry on as
usual. mp_ring is implemented as standalone code and it should be
possible to use it in any driver with tx multiqueue. It also has:
- the ability to enqueue/dequeue multiple items. This might become
significant if packet batching is ever implemented.
- an abdication mechanism to allow a thread to give up writing tx
descriptors and have another if_transmit thread take over. A thread
that's writing tx descriptors can end up doing so for an unbounded
time period if a) there are other if_transmit threads continuously
feeding the sofware queue, and b) the chip keeps up with whatever the
thread is throwing at it.
- accurate statistics about interesting events even when the stats come
at the expense of additional branches/conditional code.

The NIC txq lock is uncontested on the fast path at this point. I've
left it there for synchronization with the control events (interface
up/down, modload/unload).

c) Add support for "type 1" coalescing work request in the normal NIC tx
path. This work request is optimized for frames with a single item in
the DMA gather list. These are very common when forwarding packets.
Note that netmap tx in cxgbe already uses these "type 1" work requests.

d) Do not request automatic cidx updates every 32 descriptors. Instead,
request updates via bits in individual work requests (still every 32
descriptors approximately). Also, request an automatic final update
when the queue idles after activity. This means NIC tx reclaim is still
performed lazily but it will catch up quickly as soon as the queue
idles. This seems to be the best middle ground and I'll probably do
something similar for netmap tx as well.

e) Implement a faster tx path for WRQs (used by TOE tx and control
queues, _not_ by the normal NIC tx). Allow work requests to be written
directly to the hardware descriptor ring if room is available. I will
convert t4_tom and iw_cxgbe modules to this faster style gradually.

r276498:
cxgbe(4): remove buf_ring specific restriction on the txq size.

r277225:
Make cxgbe(4) buildable with the gcc in base.

r277226:
Allow cxgbe(4) to be built on i386. Driver attach will succeed only on
a subset of i386 systems.

r277227:
Plug cxgbe(4) back into !powerpc && !arm builds, instead of building it
on amd64 only.

r277230:
Build cxgbe(4) on powerpc64 too.

r277637:
Make sure the compiler flag to get cxgbe(4) to compile with gcc is used
only when gcc is being used. This is what r277225 should have been.
diff 284052 Sat Jun 06 09:35:14 MDT 2015 np MFC r276480, r276485, r276498, r277225, r277226, r277227, r277230,
r277637, and r283149 (by emaste@).

r276485 is the real change here, the rest deal with the fallout of
mp_ring's reliance on 64b atomics.

Use the incorrectly spelled 'eigth' from struct pkthdr in this branch
instead of MFC'ing r261733, which would have renamed the field of a
public structure in a -STABLE branch.
---

r276480:
Temporarily unplug cxgbe(4) from !amd64 builds.

r276485:
cxgbe(4): major tx rework.

a) Front load as much work as possible in if_transmit, before any driver
lock or software queue has to get involved.

b) Replace buf_ring with a brand new mp_ring (multiproducer ring). This
is specifically for the tx multiqueue model where one of the if_transmit
producer threads becomes the consumer and other producers carry on as
usual. mp_ring is implemented as standalone code and it should be
possible to use it in any driver with tx multiqueue. It also has:
- the ability to enqueue/dequeue multiple items. This might become
significant if packet batching is ever implemented.
- an abdication mechanism to allow a thread to give up writing tx
descriptors and have another if_transmit thread take over. A thread
that's writing tx descriptors can end up doing so for an unbounded
time period if a) there are other if_transmit threads continuously
feeding the sofware queue, and b) the chip keeps up with whatever the
thread is throwing at it.
- accurate statistics about interesting events even when the stats come
at the expense of additional branches/conditional code.

The NIC txq lock is uncontested on the fast path at this point. I've
left it there for synchronization with the control events (interface
up/down, modload/unload).

c) Add support for "type 1" coalescing work request in the normal NIC tx
path. This work request is optimized for frames with a single item in
the DMA gather list. These are very common when forwarding packets.
Note that netmap tx in cxgbe already uses these "type 1" work requests.

d) Do not request automatic cidx updates every 32 descriptors. Instead,
request updates via bits in individual work requests (still every 32
descriptors approximately). Also, request an automatic final update
when the queue idles after activity. This means NIC tx reclaim is still
performed lazily but it will catch up quickly as soon as the queue
idles. This seems to be the best middle ground and I'll probably do
something similar for netmap tx as well.

e) Implement a faster tx path for WRQs (used by TOE tx and control
queues, _not_ by the normal NIC tx). Allow work requests to be written
directly to the hardware descriptor ring if room is available. I will
convert t4_tom and iw_cxgbe modules to this faster style gradually.

r276498:
cxgbe(4): remove buf_ring specific restriction on the txq size.

r277225:
Make cxgbe(4) buildable with the gcc in base.

r277226:
Allow cxgbe(4) to be built on i386. Driver attach will succeed only on
a subset of i386 systems.

r277227:
Plug cxgbe(4) back into !powerpc && !arm builds, instead of building it
on amd64 only.

r277230:
Build cxgbe(4) on powerpc64 too.

r277637:
Make sure the compiler flag to get cxgbe(4) to compile with gcc is used
only when gcc is being used. This is what r277225 should have been.
diff 284052 Sat Jun 06 09:35:14 MDT 2015 np MFC r276480, r276485, r276498, r277225, r277226, r277227, r277230,
r277637, and r283149 (by emaste@).

r276485 is the real change here, the rest deal with the fallout of
mp_ring's reliance on 64b atomics.

Use the incorrectly spelled 'eigth' from struct pkthdr in this branch
instead of MFC'ing r261733, which would have renamed the field of a
public structure in a -STABLE branch.
---

r276480:
Temporarily unplug cxgbe(4) from !amd64 builds.

r276485:
cxgbe(4): major tx rework.

a) Front load as much work as possible in if_transmit, before any driver
lock or software queue has to get involved.

b) Replace buf_ring with a brand new mp_ring (multiproducer ring). This
is specifically for the tx multiqueue model where one of the if_transmit
producer threads becomes the consumer and other producers carry on as
usual. mp_ring is implemented as standalone code and it should be
possible to use it in any driver with tx multiqueue. It also has:
- the ability to enqueue/dequeue multiple items. This might become
significant if packet batching is ever implemented.
- an abdication mechanism to allow a thread to give up writing tx
descriptors and have another if_transmit thread take over. A thread
that's writing tx descriptors can end up doing so for an unbounded
time period if a) there are other if_transmit threads continuously
feeding the sofware queue, and b) the chip keeps up with whatever the
thread is throwing at it.
- accurate statistics about interesting events even when the stats come
at the expense of additional branches/conditional code.

The NIC txq lock is uncontested on the fast path at this point. I've
left it there for synchronization with the control events (interface
up/down, modload/unload).

c) Add support for "type 1" coalescing work request in the normal NIC tx
path. This work request is optimized for frames with a single item in
the DMA gather list. These are very common when forwarding packets.
Note that netmap tx in cxgbe already uses these "type 1" work requests.

d) Do not request automatic cidx updates every 32 descriptors. Instead,
request updates via bits in individual work requests (still every 32
descriptors approximately). Also, request an automatic final update
when the queue idles after activity. This means NIC tx reclaim is still
performed lazily but it will catch up quickly as soon as the queue
idles. This seems to be the best middle ground and I'll probably do
something similar for netmap tx as well.

e) Implement a faster tx path for WRQs (used by TOE tx and control
queues, _not_ by the normal NIC tx). Allow work requests to be written
directly to the hardware descriptor ring if room is available. I will
convert t4_tom and iw_cxgbe modules to this faster style gradually.

r276498:
cxgbe(4): remove buf_ring specific restriction on the txq size.

r277225:
Make cxgbe(4) buildable with the gcc in base.

r277226:
Allow cxgbe(4) to be built on i386. Driver attach will succeed only on
a subset of i386 systems.

r277227:
Plug cxgbe(4) back into !powerpc && !arm builds, instead of building it
on amd64 only.

r277230:
Build cxgbe(4) on powerpc64 too.

r277637:
Make sure the compiler flag to get cxgbe(4) to compile with gcc is used
only when gcc is being used. This is what r277225 should have been.
diff 284052 Sat Jun 06 09:35:14 MDT 2015 np MFC r276480, r276485, r276498, r277225, r277226, r277227, r277230,
r277637, and r283149 (by emaste@).

r276485 is the real change here, the rest deal with the fallout of
mp_ring's reliance on 64b atomics.

Use the incorrectly spelled 'eigth' from struct pkthdr in this branch
instead of MFC'ing r261733, which would have renamed the field of a
public structure in a -STABLE branch.
---

r276480:
Temporarily unplug cxgbe(4) from !amd64 builds.

r276485:
cxgbe(4): major tx rework.

a) Front load as much work as possible in if_transmit, before any driver
lock or software queue has to get involved.

b) Replace buf_ring with a brand new mp_ring (multiproducer ring). This
is specifically for the tx multiqueue model where one of the if_transmit
producer threads becomes the consumer and other producers carry on as
usual. mp_ring is implemented as standalone code and it should be
possible to use it in any driver with tx multiqueue. It also has:
- the ability to enqueue/dequeue multiple items. This might become
significant if packet batching is ever implemented.
- an abdication mechanism to allow a thread to give up writing tx
descriptors and have another if_transmit thread take over. A thread
that's writing tx descriptors can end up doing so for an unbounded
time period if a) there are other if_transmit threads continuously
feeding the sofware queue, and b) the chip keeps up with whatever the
thread is throwing at it.
- accurate statistics about interesting events even when the stats come
at the expense of additional branches/conditional code.

The NIC txq lock is uncontested on the fast path at this point. I've
left it there for synchronization with the control events (interface
up/down, modload/unload).

c) Add support for "type 1" coalescing work request in the normal NIC tx
path. This work request is optimized for frames with a single item in
the DMA gather list. These are very common when forwarding packets.
Note that netmap tx in cxgbe already uses these "type 1" work requests.

d) Do not request automatic cidx updates every 32 descriptors. Instead,
request updates via bits in individual work requests (still every 32
descriptors approximately). Also, request an automatic final update
when the queue idles after activity. This means NIC tx reclaim is still
performed lazily but it will catch up quickly as soon as the queue
idles. This seems to be the best middle ground and I'll probably do
something similar for netmap tx as well.

e) Implement a faster tx path for WRQs (used by TOE tx and control
queues, _not_ by the normal NIC tx). Allow work requests to be written
directly to the hardware descriptor ring if room is available. I will
convert t4_tom and iw_cxgbe modules to this faster style gradually.

r276498:
cxgbe(4): remove buf_ring specific restriction on the txq size.

r277225:
Make cxgbe(4) buildable with the gcc in base.

r277226:
Allow cxgbe(4) to be built on i386. Driver attach will succeed only on
a subset of i386 systems.

r277227:
Plug cxgbe(4) back into !powerpc && !arm builds, instead of building it
on amd64 only.

r277230:
Build cxgbe(4) on powerpc64 too.

r277637:
Make sure the compiler flag to get cxgbe(4) to compile with gcc is used
only when gcc is being used. This is what r277225 should have been.
diff 245434 Mon Jan 14 20:46:44 MST 2013 np cxgbe(4): Updates to the hardware L2 table management code.

- Add full support for IPv6 addresses.

- Read the size of the L2 table during attach. Do not assume that PCIe
physical function 4 of the card has all of the table to itself.

- Use FNV instead of Jenkins to hash L3 addresses and drop the private
copy of jhash.h from the driver.

MFC after: 1 week
diff 245434 Mon Jan 14 20:46:44 MST 2013 np cxgbe(4): Updates to the hardware L2 table management code.

- Add full support for IPv6 addresses.

- Read the size of the L2 table during attach. Do not assume that PCIe
physical function 4 of the card has all of the table to itself.

- Use FNV instead of Jenkins to hash L3 addresses and drop the private
copy of jhash.h from the driver.

MFC after: 1 week
/freebsd-10.2-release/sys/dev/puc/
H A Dpuc.cdiff 158124 Fri Apr 28 21:21:53 MDT 2006 marcel Rewrite of puc(4). Significant changes are:
o Properly use rman(9) to manage resources. This eliminates the
need to puc-specific hacks to rman. It also allows devinfo(8)
to be used to find out the specific assignment of resources to
serial/parallel ports.
o Compress the PCI device "database" by optimizing for the common
case and to use a procedural interface to handle the exceptions.
The procedural interface also generalizes the need to setup the
hardware (program chipsets, program clock frequencies).
o Eliminate the need for PUC_FASTINTR. Serdev devices are fast by
default and non-serdev devices are handled by the bus.
o Use the serdev I/F to collect interrupt status and to handle
interrupts across ports in priority order.
o Sync the PCI device configuration to include devices found in
NetBSD and not yet merged to FreeBSD.
o Add support for Quatech 2, 4 and 8 port UARTs.
o Add support for a couple dozen Timedia serial cards as found
in Linux.
diff 158124 Fri Apr 28 21:21:53 MDT 2006 marcel Rewrite of puc(4). Significant changes are:
o Properly use rman(9) to manage resources. This eliminates the
need to puc-specific hacks to rman. It also allows devinfo(8)
to be used to find out the specific assignment of resources to
serial/parallel ports.
o Compress the PCI device "database" by optimizing for the common
case and to use a procedural interface to handle the exceptions.
The procedural interface also generalizes the need to setup the
hardware (program chipsets, program clock frequencies).
o Eliminate the need for PUC_FASTINTR. Serdev devices are fast by
default and non-serdev devices are handled by the bus.
o Use the serdev I/F to collect interrupt status and to handle
interrupts across ports in priority order.
o Sync the PCI device configuration to include devices found in
NetBSD and not yet merged to FreeBSD.
o Add support for Quatech 2, 4 and 8 port UARTs.
o Add support for a couple dozen Timedia serial cards as found
in Linux.
diff 152662 Mon Nov 21 20:22:35 MST 2005 jhb Don't enable PUC_FASTINTR by default in the source. Instead, enable it
via the DEFAULTS kernel configs. This allows folks to turn it that option
off in the kernel configs if desired without having to hack the source.
This is especially useful since PUC_FASTINTR hangs the kernel boot on my
ultra60 which has two uart(4) devices hung off of a puc(4) device.

I did not enable PUC_FASTINTR by default on powerpc since powerpc does not
currently allow sharing of INTR_FAST with non-INTR_FAST like the other
archs.
diff 152662 Mon Nov 21 20:22:35 MST 2005 jhb Don't enable PUC_FASTINTR by default in the source. Instead, enable it
via the DEFAULTS kernel configs. This allows folks to turn it that option
off in the kernel configs if desired without having to hack the source.
This is especially useful since PUC_FASTINTR hangs the kernel boot on my
ultra60 which has two uart(4) devices hung off of a puc(4) device.

I did not enable PUC_FASTINTR by default on powerpc since powerpc does not
currently allow sharing of INTR_FAST with non-INTR_FAST like the other
archs.
diff 150698 Wed Sep 28 18:06:25 MDT 2005 phk puc(4) does strange things to resources in order to fool the
subdrivers to hook up.

It should probably be rewritten to implement a simple bus to which
the sub drivers attach using some kind of hint.

Until then, provide a couple of crutch functions with big warning
signs so it can survive the recent changes to struct resource.
diff 143142 Fri Mar 04 22:23:21 MST 2005 marius - sparc64/fhc/fhc.c:
Change fhc(4) to use IRQ numbers instead of RIDs for allocating the
IRQs of children. This works similar to e.g. sbus(4), i.e. add the
IRQ resources as fully specified to the resource lists of the children,
allocate them like normal. When establishing the interrupt search the
interrupt maps of the children for a matching INO to determine which
map we need to write the fully specified interrupt number to and to
enable the mapping (before the RID was used to indicate which interrupt
map to use).

- dev/puc/puc.c:
Revert rev. 1.38, with the above change fhc(4) no longer needs special
treatment for allocating IRQs.

Thanks to: joerg for providing access to an E3500
diff 143142 Fri Mar 04 22:23:21 MST 2005 marius - sparc64/fhc/fhc.c:
Change fhc(4) to use IRQ numbers instead of RIDs for allocating the
IRQs of children. This works similar to e.g. sbus(4), i.e. add the
IRQ resources as fully specified to the resource lists of the children,
allocate them like normal. When establishing the interrupt search the
interrupt maps of the children for a matching INO to determine which
map we need to write the fully specified interrupt number to and to
enable the mapping (before the RID was used to indicate which interrupt
map to use).

- dev/puc/puc.c:
Revert rev. 1.38, with the above change fhc(4) no longer needs special
treatment for allocating IRQs.

Thanks to: joerg for providing access to an E3500
diff 143142 Fri Mar 04 22:23:21 MST 2005 marius - sparc64/fhc/fhc.c:
Change fhc(4) to use IRQ numbers instead of RIDs for allocating the
IRQs of children. This works similar to e.g. sbus(4), i.e. add the
IRQ resources as fully specified to the resource lists of the children,
allocate them like normal. When establishing the interrupt search the
interrupt maps of the children for a matching INO to determine which
map we need to write the fully specified interrupt number to and to
enable the mapping (before the RID was used to indicate which interrupt
map to use).

- dev/puc/puc.c:
Revert rev. 1.38, with the above change fhc(4) no longer needs special
treatment for allocating IRQs.

Thanks to: joerg for providing access to an E3500
diff 142531 Sat Feb 26 00:22:52 MST 2005 marius Add a stopgap allowing puc(4) to allocate IRQs on fhc(4). Given that
both a scc(4) is under way and fhc(4) will be change to use INOs this
shouldn't stay in HEAD for too long but we need a MFC-able solution
for FreeBSD 5.4.

Discussed with: marcel
Tested by: hrs, kris
MFC after: 3 days
diff 142531 Sat Feb 26 00:22:52 MST 2005 marius Add a stopgap allowing puc(4) to allocate IRQs on fhc(4). Given that
both a scc(4) is under way and fhc(4) will be change to use INOs this
shouldn't stay in HEAD for too long but we need a MFC-able solution
for FreeBSD 5.4.

Discussed with: marcel
Tested by: hrs, kris
MFC after: 3 days
diff 142531 Sat Feb 26 00:22:52 MST 2005 marius Add a stopgap allowing puc(4) to allocate IRQs on fhc(4). Given that
both a scc(4) is under way and fhc(4) will be change to use INOs this
shouldn't stay in HEAD for too long but we need a MFC-able solution
for FreeBSD 5.4.

Discussed with: marcel
Tested by: hrs, kris
MFC after: 3 days
diff 142531 Sat Feb 26 00:22:52 MST 2005 marius Add a stopgap allowing puc(4) to allocate IRQs on fhc(4). Given that
both a scc(4) is under way and fhc(4) will be change to use INOs this
shouldn't stay in HEAD for too long but we need a MFC-able solution
for FreeBSD 5.4.

Discussed with: marcel
Tested by: hrs, kris
MFC after: 3 days
/freebsd-10.2-release/sys/sparc64/pci/
H A Dpsychovar.hdiff 225931 Sun Oct 02 23:27:20 MDT 2011 marius Make sparc64 compatible with NEW_PCIB and enable it:
- Implement bus_adjust_resource() methods as far as necessary and in non-PCI
bridge drivers as far as feasible without rototilling them.
- As NEW_PCIB does a layering violation by activating resources at layers
above pci(4) without previously bubbling up their allocation there, move
the assignment of bus tags and handles from the bus_alloc_resource() to
the bus_activate_resource() methods like at least the other NEW_PCIB
enabled architectures do. This is somewhat unfortunate as previously
sparc64 (ab)used resource activation to indicate whether SYS_RES_MEMORY
resources should be mapped into KVA, which is only necessary if their
going to be accessed via the pointer returned from rman_get_virtual() but
not for bus_space(9) as the later always uses physical access on sparc64.
Besides wasting KVA if we always map in SYS_RES_MEMORY resources, a driver
also may deliberately not map them in if the firmware already has done so,
possibly in a special way. So in order to still allow a driver to decide
whether a SYS_RES_MEMORY resource should be mapped into KVA we let it
indicate that by calling bus_space_map(9) with BUS_SPACE_MAP_LINEAR as
actually documented in the bus_space(9) page. This is implemented by
allocating a separate bus tag per SYS_RES_MEMORY resource and passing the
resource via the previously unused bus tag cookie so we later on can call
rman_set_virtual() in sparc64_bus_mem_map(). As a side effect this now
also allows to actually indicate that a SYS_RES_MEMORY resource should be
mapped in as cacheable and/or read-only via BUS_SPACE_MAP_CACHEABLE and
BUS_SPACE_MAP_READONLY respectively.
- Do some minor cleanup like taking advantage of rman_init_from_resource(),
factor out the common part of bus tag allocation into a newly added
sparc64_alloc_bus_tag(), hook up some missing newbus methods and replace
some homegrown versions with the generic counterparts etc.
- While at it, let apb_attach() (which can't use the generic NEW_PCIB code
as APB bridges just don't have the base and limit registers implemented)
regarding the config space registers cached in pcib_softc and the SYSCTL
reporting nodes set up.
diff 220147 Tue Mar 29 19:56:15 MDT 2011 marius Allocate memory for a DMA method table only in case we need to override
the iommu(4) provided one, i.e. in case of Hummingbird and Sabre bridges,
otherwise just use the iommu(4) one. This also fixes a bug introduced in
r220039 which caused an empty DMA method table to be used for the second
of a pair of Psycho bridges.
diff 220147 Tue Mar 29 19:56:15 MDT 2011 marius Allocate memory for a DMA method table only in case we need to override
the iommu(4) provided one, i.e. in case of Hummingbird and Sabre bridges,
otherwise just use the iommu(4) one. This also fixes a bug introduced in
r220039 which caused an empty DMA method table to be used for the second
of a pair of Psycho bridges.
diff 190109 Thu Mar 19 21:00:40 MDT 2009 marius - Ensure we find no unexpected partner.
- Failing to register as interrupt controller during attach shouldn't
be fatal so just inform about this instead of panicing.
- Disable rerun of the streaming cache as workaround for a silicon bug
of certain Psycho versions.
- Remove the comment regarding lack of newbus'ified bus_dma(9) as being
able to associate a DMA tag with a device would allow to implement
CDMA flushing/syncing in bus_dmamap_sync(9) but that would totally
kill performance. Given that for devices not behind a PCI-PCI bridge
the host-to-PCI bridges also only do CDMA flushing/syncing based on
interrupts there's no additional disadvantage for polling(4) callbacks
in the case schizo(4) has to do the CDMA flushing/syncing but rather a
general problem.
- Don't panic if the power failure, power management or over-temperature
interrupts doesn't exist as these aren't mandatory and not available
with all controllers (not even Psychos). [1]
- Take advantage of KOBJMETHOD_END.
- Remove some redundant variables.
- Add missing const.

PR: 131371 [1]
diff 190109 Thu Mar 19 21:00:40 MDT 2009 marius - Ensure we find no unexpected partner.
- Failing to register as interrupt controller during attach shouldn't
be fatal so just inform about this instead of panicing.
- Disable rerun of the streaming cache as workaround for a silicon bug
of certain Psycho versions.
- Remove the comment regarding lack of newbus'ified bus_dma(9) as being
able to associate a DMA tag with a device would allow to implement
CDMA flushing/syncing in bus_dmamap_sync(9) but that would totally
kill performance. Given that for devices not behind a PCI-PCI bridge
the host-to-PCI bridges also only do CDMA flushing/syncing based on
interrupts there's no additional disadvantage for polling(4) callbacks
in the case schizo(4) has to do the CDMA flushing/syncing but rather a
general problem.
- Don't panic if the power failure, power management or over-temperature
interrupts doesn't exist as these aren't mandatory and not available
with all controllers (not even Psychos). [1]
- Take advantage of KOBJMETHOD_END.
- Remove some redundant variables.
- Add missing const.

PR: 131371 [1]
diff 178279 Thu Apr 17 12:38:00 MDT 2008 marius On sparc64 machines with multiple host-PCI-bridges these bridges
have separate configuration spaces so by definition they implement
different PCI domains. Thus change psycho(4) to use PCI domains
instead of reenumerating all PCI busses so they have globally unique
bus numbers and drop support for reenumerating busses in the OFW PCI
code.
According to CVS history reenumeration was also required in order to
get some E450 to boot but given that no other open source kernel
changes the PCI bus numbers assigned by the firmware I believe the
real problem was that the old code used the bus number as the device
number for the PCI busses and unlike most of the other machines the
firmwares of the problematic ones don't use disjoint PCI bus numbers
across the host-PCI-bridges.

MFC after: 1 month
diff 174117 Fri Nov 30 23:02:42 MST 2007 marius - Add the PCI side of the HOST-PCI bridge itself to the bus. This
is required by the X.Org PCI domains code and additionally needs
a workaround for Hummingbird and Sabre bridges as these don't
allow their config headers to be read at any width, which is an
unusual behavior.
- In psycho(4) take advantage of DEFINE_CLASS_0 and use more
appropriate types for some softc members.

MFC after: 3 days
diff 170851 Sat Jun 16 23:46:41 MDT 2007 marius - Use the newly introduced pcib_mtx spin lock to lock psycho_ce(),
allowing it to be a filter/"fast" handler. Locking the interrupt
handlers with a spin lock is mainly a requirement in schizo(4)
but as we ought to register the spin lock anyway it should not
hurt to take advantage of it in psycho(4).
- Pass both a driver_filter_t and a driver_intr_t argument to
psycho_set_intr(), allowing to get rid of the FAST interrupt
flag hack.
- Don't register the over-temperature interrupt handler as filter/
"fast" handler so shutdown_nice() can acquire the process lock.
- Use bus_{read,write}_8() instead of bus_space_{read,write}_8()
in order to get rid of sc_bushandle and sc_bustag in the softc.
- Correct the debug output for adjusting the subordinate bus number.
- Remove the banal and outdated above psycho_filter_stub().
- Fix some white space nits.
diff 170851 Sat Jun 16 23:46:41 MDT 2007 marius - Use the newly introduced pcib_mtx spin lock to lock psycho_ce(),
allowing it to be a filter/"fast" handler. Locking the interrupt
handlers with a spin lock is mainly a requirement in schizo(4)
but as we ought to register the spin lock anyway it should not
hurt to take advantage of it in psycho(4).
- Pass both a driver_filter_t and a driver_intr_t argument to
psycho_set_intr(), allowing to get rid of the FAST interrupt
flag hack.
- Don't register the over-temperature interrupt handler as filter/
"fast" handler so shutdown_nice() can acquire the process lock.
- Use bus_{read,write}_8() instead of bus_space_{read,write}_8()
in order to get rid of sc_bushandle and sc_bustag in the softc.
- Correct the debug output for adjusting the subordinate bus number.
- Remove the banal and outdated above psycho_filter_stub().
- Fix some white space nits.
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
diff 167308 Wed Mar 07 21:13:51 MST 2007 marius Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.

Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.

PR: 76052 [1]
Approved by: re (kensmith)
/freebsd-10.2-release/sys/dev/cxgbe/tom/
H A Dt4_ddp.cdiff 270297 Thu Aug 21 20:04:07 MDT 2014 np MFC r266571, r266757, r268536, r269076, r269364, r269366, r269411,
r269413, r269428, r269440, r269537, r269644, r269731, and the cxgbe
portion of r270063.

r266571:
cxgbe(4): Remove stray if_up from the code that creates the tracing ifnet.

r266757:
cxgbe(4): netmap support for Terminator 5 (T5) based 10G/40G cards.
Netmap gets its own hardware-assisted virtual interface and won't take
over or disrupt the "normal" interface in any way. You can use both
simultaneously.

For kernels with DEV_NETMAP, cxgbe(4) carves out an ncxl<N> interface
(note the 'n' prefix) in the hardware to accompany each cxl<N>
interface. These two ifnet's per port share the same wire but really
are separate interfaces in the hardware and software. Each gets its own
L2 MAC addresses (unicast and multicast), MTU, checksum caps, etc. You
should run netmap on the 'n' interfaces only, that's what they are for.

With this, pkt-gen is able to transmit > 45Mpps out of a single 40G port
of a T580 card. 2 port tx is at ~56Mpps total (28M + 28M) as of now.
Single port receive is at 33Mpps but this is very much a work in
progress. I expect it to be closer to 40Mpps once done. In any case
the current effort can already saturate multiple 10G ports of a T5 card
at the smallest legal packet size. T4 gear is totally untested.

trantor:~# ./pkt-gen -i ncxl0 -f tx -D 00:07:43:ab:cd:ef
881.952141 main [1621] interface is ncxl0
881.952250 extract_ip_range [275] range is 10.0.0.1:0 to 10.0.0.1:0
881.952253 extract_ip_range [275] range is 10.1.0.1:0 to 10.1.0.1:0
881.962540 main [1804] mapped 334980KB at 0x801dff000
Sending on netmap:ncxl0: 4 queues, 1 threads and 1 cpus.
10.0.0.1 -> 10.1.0.1 (00:00:00:00:00:00 -> 00:07:43:ab:cd:ef)
881.962562 main [1882] Sending 512 packets every 0.000000000 s
881.962563 main [1884] Wait 2 secs for phy reset
884.088516 main [1886] Ready...
884.088535 nm_open [457] overriding ifname ncxl0 ringid 0x0 flags 0x1
884.088607 sender_body [996] start
884.093246 sender_body [1064] drop copy
885.090435 main_thread [1418] 45206353 pps (45289533 pkts in 1001840 usec)
886.091600 main_thread [1418] 45322792 pps (45375593 pkts in 1001165 usec)
887.092435 main_thread [1418] 45313992 pps (45351784 pkts in 1000834 usec)
888.094434 main_thread [1418] 45315765 pps (45406397 pkts in 1002000 usec)
889.095434 main_thread [1418] 45333218 pps (45378551 pkts in 1001000 usec)
890.097434 main_thread [1418] 45315247 pps (45405877 pkts in 1002000 usec)
891.099434 main_thread [1418] 45326515 pps (45417168 pkts in 1002000 usec)
892.101434 main_thread [1418] 45333039 pps (45423705 pkts in 1002000 usec)
893.103434 main_thread [1418] 45324105 pps (45414708 pkts in 1001999 usec)
894.105434 main_thread [1418] 45318042 pps (45408723 pkts in 1002001 usec)
895.106434 main_thread [1418] 45332430 pps (45377762 pkts in 1001000 usec)
896.107434 main_thread [1418] 45338072 pps (45383410 pkts in 1001000 usec)
...

r268536:
cxgbe(4): Add an iSCSI softc to the adapter structure.

r269076:
Some hooks in cxgbe(4) for the offloaded iSCSI driver.

r269364:
Improve compliance with style.Makefile(5).

r269366:
List one file per line in the Makefiles. This makes it easier to read
diffs when a file is added or removed.

r269411:
cxgbe(4): minor optimizations in ingress queue processing.

Reorganize struct sge_iq. Make the iq entry size a compile time
constant. While here, eliminate RX_FL_ESIZE and use EQ_ESIZE directly.

r269413:
cxgbe(4): Fix an off by one error when looking for the BAR2 doorbell
address of an egress queue.

r269428:
cxgbe(4): some optimizations in freelist handling.

r269440:
cxgbe(4): Remove an unused version of t4_enable_vi.

r269537:
cxgbe(4): Do not run any sleepable code in the SIOCSIFFLAGS handler when
IFF_PROMISC or IFF_ALLMULTI is being flipped. bpf(4) holds its global
mutex around ifpromisc in at least the bpf_dtor path.

r269644:
cxgbe(4): Let caller specify whether it's ok to sleep in
t4_sched_config and t4_sched_params.

r269731:
cxgbe(4): Do not poke T4-only registers on a T5 (and vice versa).

Relnotes: Yes (native netmap support for Chelsio T4/T5 cards)
diff 270297 Thu Aug 21 20:04:07 MDT 2014 np MFC r266571, r266757, r268536, r269076, r269364, r269366, r269411,
r269413, r269428, r269440, r269537, r269644, r269731, and the cxgbe
portion of r270063.

r266571:
cxgbe(4): Remove stray if_up from the code that creates the tracing ifnet.

r266757:
cxgbe(4): netmap support for Terminator 5 (T5) based 10G/40G cards.
Netmap gets its own hardware-assisted virtual interface and won't take
over or disrupt the "normal" interface in any way. You can use both
simultaneously.

For kernels with DEV_NETMAP, cxgbe(4) carves out an ncxl<N> interface
(note the 'n' prefix) in the hardware to accompany each cxl<N>
interface. These two ifnet's per port share the same wire but really
are separate interfaces in the hardware and software. Each gets its own
L2 MAC addresses (unicast and multicast), MTU, checksum caps, etc. You
should run netmap on the 'n' interfaces only, that's what they are for.

With this, pkt-gen is able to transmit > 45Mpps out of a single 40G port
of a T580 card. 2 port tx is at ~56Mpps total (28M + 28M) as of now.
Single port receive is at 33Mpps but this is very much a work in
progress. I expect it to be closer to 40Mpps once done. In any case
the current effort can already saturate multiple 10G ports of a T5 card
at the smallest legal packet size. T4 gear is totally untested.

trantor:~# ./pkt-gen -i ncxl0 -f tx -D 00:07:43:ab:cd:ef
881.952141 main [1621] interface is ncxl0
881.952250 extract_ip_range [275] range is 10.0.0.1:0 to 10.0.0.1:0
881.952253 extract_ip_range [275] range is 10.1.0.1:0 to 10.1.0.1:0
881.962540 main [1804] mapped 334980KB at 0x801dff000
Sending on netmap:ncxl0: 4 queues, 1 threads and 1 cpus.
10.0.0.1 -> 10.1.0.1 (00:00:00:00:00:00 -> 00:07:43:ab:cd:ef)
881.962562 main [1882] Sending 512 packets every 0.000000000 s
881.962563 main [1884] Wait 2 secs for phy reset
884.088516 main [1886] Ready...
884.088535 nm_open [457] overriding ifname ncxl0 ringid 0x0 flags 0x1
884.088607 sender_body [996] start
884.093246 sender_body [1064] drop copy
885.090435 main_thread [1418] 45206353 pps (45289533 pkts in 1001840 usec)
886.091600 main_thread [1418] 45322792 pps (45375593 pkts in 1001165 usec)
887.092435 main_thread [1418] 45313992 pps (45351784 pkts in 1000834 usec)
888.094434 main_thread [1418] 45315765 pps (45406397 pkts in 1002000 usec)
889.095434 main_thread [1418] 45333218 pps (45378551 pkts in 1001000 usec)
890.097434 main_thread [1418] 45315247 pps (45405877 pkts in 1002000 usec)
891.099434 main_thread [1418] 45326515 pps (45417168 pkts in 1002000 usec)
892.101434 main_thread [1418] 45333039 pps (45423705 pkts in 1002000 usec)
893.103434 main_thread [1418] 45324105 pps (45414708 pkts in 1001999 usec)
894.105434 main_thread [1418] 45318042 pps (45408723 pkts in 1002001 usec)
895.106434 main_thread [1418] 45332430 pps (45377762 pkts in 1001000 usec)
896.107434 main_thread [1418] 45338072 pps (45383410 pkts in 1001000 usec)
...

r268536:
cxgbe(4): Add an iSCSI softc to the adapter structure.

r269076:
Some hooks in cxgbe(4) for the offloaded iSCSI driver.

r269364:
Improve compliance with style.Makefile(5).

r269366:
List one file per line in the Makefiles. This makes it easier to read
diffs when a file is added or removed.

r269411:
cxgbe(4): minor optimizations in ingress queue processing.

Reorganize struct sge_iq. Make the iq entry size a compile time
constant. While here, eliminate RX_FL_ESIZE and use EQ_ESIZE directly.

r269413:
cxgbe(4): Fix an off by one error when looking for the BAR2 doorbell
address of an egress queue.

r269428:
cxgbe(4): some optimizations in freelist handling.

r269440:
cxgbe(4): Remove an unused version of t4_enable_vi.

r269537:
cxgbe(4): Do not run any sleepable code in the SIOCSIFFLAGS handler when
IFF_PROMISC or IFF_ALLMULTI is being flipped. bpf(4) holds its global
mutex around ifpromisc in at least the bpf_dtor path.

r269644:
cxgbe(4): Let caller specify whether it's ok to sleep in
t4_sched_config and t4_sched_params.

r269731:
cxgbe(4): Do not poke T4-only registers on a T5 (and vice versa).

Relnotes: Yes (native netmap support for Chelsio T4/T5 cards)
diff 270297 Thu Aug 21 20:04:07 MDT 2014 np MFC r266571, r266757, r268536, r269076, r269364, r269366, r269411,
r269413, r269428, r269440, r269537, r269644, r269731, and the cxgbe
portion of r270063.

r266571:
cxgbe(4): Remove stray if_up from the code that creates the tracing ifnet.

r266757:
cxgbe(4): netmap support for Terminator 5 (T5) based 10G/40G cards.
Netmap gets its own hardware-assisted virtual interface and won't take
over or disrupt the "normal" interface in any way. You can use both
simultaneously.

For kernels with DEV_NETMAP, cxgbe(4) carves out an ncxl<N> interface
(note the 'n' prefix) in the hardware to accompany each cxl<N>
interface. These two ifnet's per port share the same wire but really
are separate interfaces in the hardware and software. Each gets its own
L2 MAC addresses (unicast and multicast), MTU, checksum caps, etc. You
should run netmap on the 'n' interfaces only, that's what they are for.

With this, pkt-gen is able to transmit > 45Mpps out of a single 40G port
of a T580 card. 2 port tx is at ~56Mpps total (28M + 28M) as of now.
Single port receive is at 33Mpps but this is very much a work in
progress. I expect it to be closer to 40Mpps once done. In any case
the current effort can already saturate multiple 10G ports of a T5 card
at the smallest legal packet size. T4 gear is totally untested.

trantor:~# ./pkt-gen -i ncxl0 -f tx -D 00:07:43:ab:cd:ef
881.952141 main [1621] interface is ncxl0
881.952250 extract_ip_range [275] range is 10.0.0.1:0 to 10.0.0.1:0
881.952253 extract_ip_range [275] range is 10.1.0.1:0 to 10.1.0.1:0
881.962540 main [1804] mapped 334980KB at 0x801dff000
Sending on netmap:ncxl0: 4 queues, 1 threads and 1 cpus.
10.0.0.1 -> 10.1.0.1 (00:00:00:00:00:00 -> 00:07:43:ab:cd:ef)
881.962562 main [1882] Sending 512 packets every 0.000000000 s
881.962563 main [1884] Wait 2 secs for phy reset
884.088516 main [1886] Ready...
884.088535 nm_open [457] overriding ifname ncxl0 ringid 0x0 flags 0x1
884.088607 sender_body [996] start
884.093246 sender_body [1064] drop copy
885.090435 main_thread [1418] 45206353 pps (45289533 pkts in 1001840 usec)
886.091600 main_thread [1418] 45322792 pps (45375593 pkts in 1001165 usec)
887.092435 main_thread [1418] 45313992 pps (45351784 pkts in 1000834 usec)
888.094434 main_thread [1418] 45315765 pps (45406397 pkts in 1002000 usec)
889.095434 main_thread [1418] 45333218 pps (45378551 pkts in 1001000 usec)
890.097434 main_thread [1418] 45315247 pps (45405877 pkts in 1002000 usec)
891.099434 main_thread [1418] 45326515 pps (45417168 pkts in 1002000 usec)
892.101434 main_thread [1418] 45333039 pps (45423705 pkts in 1002000 usec)
893.103434 main_thread [1418] 45324105 pps (45414708 pkts in 1001999 usec)
894.105434 main_thread [1418] 45318042 pps (45408723 pkts in 1002001 usec)
895.106434 main_thread [1418] 45332430 pps (45377762 pkts in 1001000 usec)
896.107434 main_thread [1418] 45338072 pps (45383410 pkts in 1001000 usec)
...

r268536:
cxgbe(4): Add an iSCSI softc to the adapter structure.

r269076:
Some hooks in cxgbe(4) for the offloaded iSCSI driver.

r269364:
Improve compliance with style.Makefile(5).

r269366:
List one file per line in the Makefiles. This makes it easier to read
diffs when a file is added or removed.

r269411:
cxgbe(4): minor optimizations in ingress queue processing.

Reorganize struct sge_iq. Make the iq entry size a compile time
constant. While here, eliminate RX_FL_ESIZE and use EQ_ESIZE directly.

r269413:
cxgbe(4): Fix an off by one error when looking for the BAR2 doorbell
address of an egress queue.

r269428:
cxgbe(4): some optimizations in freelist handling.

r269440:
cxgbe(4): Remove an unused version of t4_enable_vi.

r269537:
cxgbe(4): Do not run any sleepable code in the SIOCSIFFLAGS handler when
IFF_PROMISC or IFF_ALLMULTI is being flipped. bpf(4) holds its global
mutex around ifpromisc in at least the bpf_dtor path.

r269644:
cxgbe(4): Let caller specify whether it's ok to sleep in
t4_sched_config and t4_sched_params.

r269731:
cxgbe(4): Do not poke T4-only registers on a T5 (and vice versa).

Relnotes: Yes (native netmap support for Chelsio T4/T5 cards)
diff 270297 Thu Aug 21 20:04:07 MDT 2014 np MFC r266571, r266757, r268536, r269076, r269364, r269366, r269411,
r269413, r269428, r269440, r269537, r269644, r269731, and the cxgbe
portion of r270063.

r266571:
cxgbe(4): Remove stray if_up from the code that creates the tracing ifnet.

r266757:
cxgbe(4): netmap support for Terminator 5 (T5) based 10G/40G cards.
Netmap gets its own hardware-assisted virtual interface and won't take
over or disrupt the "normal" interface in any way. You can use both
simultaneously.

For kernels with DEV_NETMAP, cxgbe(4) carves out an ncxl<N> interface
(note the 'n' prefix) in the hardware to accompany each cxl<N>
interface. These two ifnet's per port share the same wire but really
are separate interfaces in the hardware and software. Each gets its own
L2 MAC addresses (unicast and multicast), MTU, checksum caps, etc. You
should run netmap on the 'n' interfaces only, that's what they are for.

With this, pkt-gen is able to transmit > 45Mpps out of a single 40G port
of a T580 card. 2 port tx is at ~56Mpps total (28M + 28M) as of now.
Single port receive is at 33Mpps but this is very much a work in
progress. I expect it to be closer to 40Mpps once done. In any case
the current effort can already saturate multiple 10G ports of a T5 card
at the smallest legal packet size. T4 gear is totally untested.

trantor:~# ./pkt-gen -i ncxl0 -f tx -D 00:07:43:ab:cd:ef
881.952141 main [1621] interface is ncxl0
881.952250 extract_ip_range [275] range is 10.0.0.1:0 to 10.0.0.1:0
881.952253 extract_ip_range [275] range is 10.1.0.1:0 to 10.1.0.1:0
881.962540 main [1804] mapped 334980KB at 0x801dff000
Sending on netmap:ncxl0: 4 queues, 1 threads and 1 cpus.
10.0.0.1 -> 10.1.0.1 (00:00:00:00:00:00 -> 00:07:43:ab:cd:ef)
881.962562 main [1882] Sending 512 packets every 0.000000000 s
881.962563 main [1884] Wait 2 secs for phy reset
884.088516 main [1886] Ready...
884.088535 nm_open [457] overriding ifname ncxl0 ringid 0x0 flags 0x1
884.088607 sender_body [996] start
884.093246 sender_body [1064] drop copy
885.090435 main_thread [1418] 45206353 pps (45289533 pkts in 1001840 usec)
886.091600 main_thread [1418] 45322792 pps (45375593 pkts in 1001165 usec)
887.092435 main_thread [1418] 45313992 pps (45351784 pkts in 1000834 usec)
888.094434 main_thread [1418] 45315765 pps (45406397 pkts in 1002000 usec)
889.095434 main_thread [1418] 45333218 pps (45378551 pkts in 1001000 usec)
890.097434 main_thread [1418] 45315247 pps (45405877 pkts in 1002000 usec)
891.099434 main_thread [1418] 45326515 pps (45417168 pkts in 1002000 usec)
892.101434 main_thread [1418] 45333039 pps (45423705 pkts in 1002000 usec)
893.103434 main_thread [1418] 45324105 pps (45414708 pkts in 1001999 usec)
894.105434 main_thread [1418] 45318042 pps (45408723 pkts in 1002001 usec)
895.106434 main_thread [1418] 45332430 pps (45377762 pkts in 1001000 usec)
896.107434 main_thread [1418] 45338072 pps (45383410 pkts in 1001000 usec)
...

r268536:
cxgbe(4): Add an iSCSI softc to the adapter structure.

r269076:
Some hooks in cxgbe(4) for the offloaded iSCSI driver.

r269364:
Improve compliance with style.Makefile(5).

r269366:
List one file per line in the Makefiles. This makes it easier to read
diffs when a file is added or removed.

r269411:
cxgbe(4): minor optimizations in ingress queue processing.

Reorganize struct sge_iq. Make the iq entry size a compile time
constant. While here, eliminate RX_FL_ESIZE and use EQ_ESIZE directly.

r269413:
cxgbe(4): Fix an off by one error when looking for the BAR2 doorbell
address of an egress queue.

r269428:
cxgbe(4): some optimizations in freelist handling.

r269440:
cxgbe(4): Remove an unused version of t4_enable_vi.

r269537:
cxgbe(4): Do not run any sleepable code in the SIOCSIFFLAGS handler when
IFF_PROMISC or IFF_ALLMULTI is being flipped. bpf(4) holds its global
mutex around ifpromisc in at least the bpf_dtor path.

r269644:
cxgbe(4): Let caller specify whether it's ok to sleep in
t4_sched_config and t4_sched_params.

r269731:
cxgbe(4): Do not poke T4-only registers on a T5 (and vice versa).

Relnotes: Yes (native netmap support for Chelsio T4/T5 cards)
diff 270297 Thu Aug 21 20:04:07 MDT 2014 np MFC r266571, r266757, r268536, r269076, r269364, r269366, r269411,
r269413, r269428, r269440, r269537, r269644, r269731, and the cxgbe
portion of r270063.

r266571:
cxgbe(4): Remove stray if_up from the code that creates the tracing ifnet.

r266757:
cxgbe(4): netmap support for Terminator 5 (T5) based 10G/40G cards.
Netmap gets its own hardware-assisted virtual interface and won't take
over or disrupt the "normal" interface in any way. You can use both
simultaneously.

For kernels with DEV_NETMAP, cxgbe(4) carves out an ncxl<N> interface
(note the 'n' prefix) in the hardware to accompany each cxl<N>
interface. These two ifnet's per port share the same wire but really
are separate interfaces in the hardware and software. Each gets its own
L2 MAC addresses (unicast and multicast), MTU, checksum caps, etc. You
should run netmap on the 'n' interfaces only, that's what they are for.

With this, pkt-gen is able to transmit > 45Mpps out of a single 40G port
of a T580 card. 2 port tx is at ~56Mpps total (28M + 28M) as of now.
Single port receive is at 33Mpps but this is very much a work in
progress. I expect it to be closer to 40Mpps once done. In any case
the current effort can already saturate multiple 10G ports of a T5 card
at the smallest legal packet size. T4 gear is totally untested.

trantor:~# ./pkt-gen -i ncxl0 -f tx -D 00:07:43:ab:cd:ef
881.952141 main [1621] interface is ncxl0
881.952250 extract_ip_range [275] range is 10.0.0.1:0 to 10.0.0.1:0
881.952253 extract_ip_range [275] range is 10.1.0.1:0 to 10.1.0.1:0
881.962540 main [1804] mapped 334980KB at 0x801dff000
Sending on netmap:ncxl0: 4 queues, 1 threads and 1 cpus.
10.0.0.1 -> 10.1.0.1 (00:00:00:00:00:00 -> 00:07:43:ab:cd:ef)
881.962562 main [1882] Sending 512 packets every 0.000000000 s
881.962563 main [1884] Wait 2 secs for phy reset
884.088516 main [1886] Ready...
884.088535 nm_open [457] overriding ifname ncxl0 ringid 0x0 flags 0x1
884.088607 sender_body [996] start
884.093246 sender_body [1064] drop copy
885.090435 main_thread [1418] 45206353 pps (45289533 pkts in 1001840 usec)
886.091600 main_thread [1418] 45322792 pps (45375593 pkts in 1001165 usec)
887.092435 main_thread [1418] 45313992 pps (45351784 pkts in 1000834 usec)
888.094434 main_thread [1418] 45315765 pps (45406397 pkts in 1002000 usec)
889.095434 main_thread [1418] 45333218 pps (45378551 pkts in 1001000 usec)
890.097434 main_thread [1418] 45315247 pps (45405877 pkts in 1002000 usec)
891.099434 main_thread [1418] 45326515 pps (45417168 pkts in 1002000 usec)
892.101434 main_thread [1418] 45333039 pps (45423705 pkts in 1002000 usec)
893.103434 main_thread [1418] 45324105 pps (45414708 pkts in 1001999 usec)
894.105434 main_thread [1418] 45318042 pps (45408723 pkts in 1002001 usec)
895.106434 main_thread [1418] 45332430 pps (45377762 pkts in 1001000 usec)
896.107434 main_thread [1418] 45338072 pps (45383410 pkts in 1001000 usec)
...

r268536:
cxgbe(4): Add an iSCSI softc to the adapter structure.

r269076:
Some hooks in cxgbe(4) for the offloaded iSCSI driver.

r269364:
Improve compliance with style.Makefile(5).

r269366:
List one file per line in the Makefiles. This makes it easier to read
diffs when a file is added or removed.

r269411:
cxgbe(4): minor optimizations in ingress queue processing.

Reorganize struct sge_iq. Make the iq entry size a compile time
constant. While here, eliminate RX_FL_ESIZE and use EQ_ESIZE directly.

r269413:
cxgbe(4): Fix an off by one error when looking for the BAR2 doorbell
address of an egress queue.

r269428:
cxgbe(4): some optimizations in freelist handling.

r269440:
cxgbe(4): Remove an unused version of t4_enable_vi.

r269537:
cxgbe(4): Do not run any sleepable code in the SIOCSIFFLAGS handler when
IFF_PROMISC or IFF_ALLMULTI is being flipped. bpf(4) holds its global
mutex around ifpromisc in at least the bpf_dtor path.

r269644:
cxgbe(4): Let caller specify whether it's ok to sleep in
t4_sched_config and t4_sched_params.

r269731:
cxgbe(4): Do not poke T4-only registers on a T5 (and vice versa).

Relnotes: Yes (native netmap support for Chelsio T4/T5 cards)
diff 270297 Thu Aug 21 20:04:07 MDT 2014 np MFC r266571, r266757, r268536, r269076, r269364, r269366, r269411,
r269413, r269428, r269440, r269537, r269644, r269731, and the cxgbe
portion of r270063.

r266571:
cxgbe(4): Remove stray if_up from the code that creates the tracing ifnet.

r266757:
cxgbe(4): netmap support for Terminator 5 (T5) based 10G/40G cards.
Netmap gets its own hardware-assisted virtual interface and won't take
over or disrupt the "normal" interface in any way. You can use both
simultaneously.

For kernels with DEV_NETMAP, cxgbe(4) carves out an ncxl<N> interface
(note the 'n' prefix) in the hardware to accompany each cxl<N>
interface. These two ifnet's per port share the same wire but really
are separate interfaces in the hardware and software. Each gets its own
L2 MAC addresses (unicast and multicast), MTU, checksum caps, etc. You
should run netmap on the 'n' interfaces only, that's what they are for.

With this, pkt-gen is able to transmit > 45Mpps out of a single 40G port
of a T580 card. 2 port tx is at ~56Mpps total (28M + 28M) as of now.
Single port receive is at 33Mpps but this is very much a work in
progress. I expect it to be closer to 40Mpps once done. In any case
the current effort can already saturate multiple 10G ports of a T5 card
at the smallest legal packet size. T4 gear is totally untested.

trantor:~# ./pkt-gen -i ncxl0 -f tx -D 00:07:43:ab:cd:ef
881.952141 main [1621] interface is ncxl0
881.952250 extract_ip_range [275] range is 10.0.0.1:0 to 10.0.0.1:0
881.952253 extract_ip_range [275] range is 10.1.0.1:0 to 10.1.0.1:0
881.962540 main [1804] mapped 334980KB at 0x801dff000
Sending on netmap:ncxl0: 4 queues, 1 threads and 1 cpus.
10.0.0.1 -> 10.1.0.1 (00:00:00:00:00:00 -> 00:07:43:ab:cd:ef)
881.962562 main [1882] Sending 512 packets every 0.000000000 s
881.962563 main [1884] Wait 2 secs for phy reset
884.088516 main [1886] Ready...
884.088535 nm_open [457] overriding ifname ncxl0 ringid 0x0 flags 0x1
884.088607 sender_body [996] start
884.093246 sender_body [1064] drop copy
885.090435 main_thread [1418] 45206353 pps (45289533 pkts in 1001840 usec)
886.091600 main_thread [1418] 45322792 pps (45375593 pkts in 1001165 usec)
887.092435 main_thread [1418] 45313992 pps (45351784 pkts in 1000834 usec)
888.094434 main_thread [1418] 45315765 pps (45406397 pkts in 1002000 usec)
889.095434 main_thread [1418] 45333218 pps (45378551 pkts in 1001000 usec)
890.097434 main_thread [1418] 45315247 pps (45405877 pkts in 1002000 usec)
891.099434 main_thread [1418] 45326515 pps (45417168 pkts in 1002000 usec)
892.101434 main_thread [1418] 45333039 pps (45423705 pkts in 1002000 usec)
893.103434 main_thread [1418] 45324105 pps (45414708 pkts in 1001999 usec)
894.105434 main_thread [1418] 45318042 pps (45408723 pkts in 1002001 usec)
895.106434 main_thread [1418] 45332430 pps (45377762 pkts in 1001000 usec)
896.107434 main_thread [1418] 45338072 pps (45383410 pkts in 1001000 usec)
...

r268536:
cxgbe(4): Add an iSCSI softc to the adapter structure.

r269076:
Some hooks in cxgbe(4) for the offloaded iSCSI driver.

r269364:
Improve compliance with style.Makefile(5).

r269366:
List one file per line in the Makefiles. This makes it easier to read
diffs when a file is added or removed.

r269411:
cxgbe(4): minor optimizations in ingress queue processing.

Reorganize struct sge_iq. Make the iq entry size a compile time
constant. While here, eliminate RX_FL_ESIZE and use EQ_ESIZE directly.

r269413:
cxgbe(4): Fix an off by one error when looking for the BAR2 doorbell
address of an egress queue.

r269428:
cxgbe(4): some optimizations in freelist handling.

r269440:
cxgbe(4): Remove an unused version of t4_enable_vi.

r269537:
cxgbe(4): Do not run any sleepable code in the SIOCSIFFLAGS handler when
IFF_PROMISC or IFF_ALLMULTI is being flipped. bpf(4) holds its global
mutex around ifpromisc in at least the bpf_dtor path.

r269644:
cxgbe(4): Let caller specify whether it's ok to sleep in
t4_sched_config and t4_sched_params.

r269731:
cxgbe(4): Do not poke T4-only registers on a T5 (and vice versa).

Relnotes: Yes (native netmap support for Chelsio T4/T5 cards)
diff 270297 Thu Aug 21 20:04:07 MDT 2014 np MFC r266571, r266757, r268536, r269076, r269364, r269366, r269411,
r269413, r269428, r269440, r269537, r269644, r269731, and the cxgbe
portion of r270063.

r266571:
cxgbe(4): Remove stray if_up from the code that creates the tracing ifnet.

r266757:
cxgbe(4): netmap support for Terminator 5 (T5) based 10G/40G cards.
Netmap gets its own hardware-assisted virtual interface and won't take
over or disrupt the "normal" interface in any way. You can use both
simultaneously.

For kernels with DEV_NETMAP, cxgbe(4) carves out an ncxl<N> interface
(note the 'n' prefix) in the hardware to accompany each cxl<N>
interface. These two ifnet's per port share the same wire but really
are separate interfaces in the hardware and software. Each gets its own
L2 MAC addresses (unicast and multicast), MTU, checksum caps, etc. You
should run netmap on the 'n' interfaces only, that's what they are for.

With this, pkt-gen is able to transmit > 45Mpps out of a single 40G port
of a T580 card. 2 port tx is at ~56Mpps total (28M + 28M) as of now.
Single port receive is at 33Mpps but this is very much a work in
progress. I expect it to be closer to 40Mpps once done. In any case
the current effort can already saturate multiple 10G ports of a T5 card
at the smallest legal packet size. T4 gear is totally untested.

trantor:~# ./pkt-gen -i ncxl0 -f tx -D 00:07:43:ab:cd:ef
881.952141 main [1621] interface is ncxl0
881.952250 extract_ip_range [275] range is 10.0.0.1:0 to 10.0.0.1:0
881.952253 extract_ip_range [275] range is 10.1.0.1:0 to 10.1.0.1:0
881.962540 main [1804] mapped 334980KB at 0x801dff000
Sending on netmap:ncxl0: 4 queues, 1 threads and 1 cpus.
10.0.0.1 -> 10.1.0.1 (00:00:00:00:00:00 -> 00:07:43:ab:cd:ef)
881.962562 main [1882] Sending 512 packets every 0.000000000 s
881.962563 main [1884] Wait 2 secs for phy reset
884.088516 main [1886] Ready...
884.088535 nm_open [457] overriding ifname ncxl0 ringid 0x0 flags 0x1
884.088607 sender_body [996] start
884.093246 sender_body [1064] drop copy
885.090435 main_thread [1418] 45206353 pps (45289533 pkts in 1001840 usec)
886.091600 main_thread [1418] 45322792 pps (45375593 pkts in 1001165 usec)
887.092435 main_thread [1418] 45313992 pps (45351784 pkts in 1000834 usec)
888.094434 main_thread [1418] 45315765 pps (45406397 pkts in 1002000 usec)
889.095434 main_thread [1418] 45333218 pps (45378551 pkts in 1001000 usec)
890.097434 main_thread [1418] 45315247 pps (45405877 pkts in 1002000 usec)
891.099434 main_thread [1418] 45326515 pps (45417168 pkts in 1002000 usec)
892.101434 main_thread [1418] 45333039 pps (45423705 pkts in 1002000 usec)
893.103434 main_thread [1418] 45324105 pps (45414708 pkts in 1001999 usec)
894.105434 main_thread [1418] 45318042 pps (45408723 pkts in 1002001 usec)
895.106434 main_thread [1418] 45332430 pps (45377762 pkts in 1001000 usec)
896.107434 main_thread [1418] 45338072 pps (45383410 pkts in 1001000 usec)
...

r268536:
cxgbe(4): Add an iSCSI softc to the adapter structure.

r269076:
Some hooks in cxgbe(4) for the offloaded iSCSI driver.

r269364:
Improve compliance with style.Makefile(5).

r269366:
List one file per line in the Makefiles. This makes it easier to read
diffs when a file is added or removed.

r269411:
cxgbe(4): minor optimizations in ingress queue processing.

Reorganize struct sge_iq. Make the iq entry size a compile time
constant. While here, eliminate RX_FL_ESIZE and use EQ_ESIZE directly.

r269413:
cxgbe(4): Fix an off by one error when looking for the BAR2 doorbell
address of an egress queue.

r269428:
cxgbe(4): some optimizations in freelist handling.

r269440:
cxgbe(4): Remove an unused version of t4_enable_vi.

r269537:
cxgbe(4): Do not run any sleepable code in the SIOCSIFFLAGS handler when
IFF_PROMISC or IFF_ALLMULTI is being flipped. bpf(4) holds its global
mutex around ifpromisc in at least the bpf_dtor path.

r269644:
cxgbe(4): Let caller specify whether it's ok to sleep in
t4_sched_config and t4_sched_params.

r269731:
cxgbe(4): Do not poke T4-only registers on a T5 (and vice versa).

Relnotes: Yes (native netmap support for Chelsio T4/T5 cards)
diff 270297 Thu Aug 21 20:04:07 MDT 2014 np MFC r266571, r266757, r268536, r269076, r269364, r269366, r269411,
r269413, r269428, r269440, r269537, r269644, r269731, and the cxgbe
portion of r270063.

r266571:
cxgbe(4): Remove stray if_up from the code that creates the tracing ifnet.

r266757:
cxgbe(4): netmap support for Terminator 5 (T5) based 10G/40G cards.
Netmap gets its own hardware-assisted virtual interface and won't take
over or disrupt the "normal" interface in any way. You can use both
simultaneously.

For kernels with DEV_NETMAP, cxgbe(4) carves out an ncxl<N> interface
(note the 'n' prefix) in the hardware to accompany each cxl<N>
interface. These two ifnet's per port share the same wire but really
are separate interfaces in the hardware and software. Each gets its own
L2 MAC addresses (unicast and multicast), MTU, checksum caps, etc. You
should run netmap on the 'n' interfaces only, that's what they are for.

With this, pkt-gen is able to transmit > 45Mpps out of a single 40G port
of a T580 card. 2 port tx is at ~56Mpps total (28M + 28M) as of now.
Single port receive is at 33Mpps but this is very much a work in
progress. I expect it to be closer to 40Mpps once done. In any case
the current effort can already saturate multiple 10G ports of a T5 card
at the smallest legal packet size. T4 gear is totally untested.

trantor:~# ./pkt-gen -i ncxl0 -f tx -D 00:07:43:ab:cd:ef
881.952141 main [1621] interface is ncxl0
881.952250 extract_ip_range [275] range is 10.0.0.1:0 to 10.0.0.1:0
881.952253 extract_ip_range [275] range is 10.1.0.1:0 to 10.1.0.1:0
881.962540 main [1804] mapped 334980KB at 0x801dff000
Sending on netmap:ncxl0: 4 queues, 1 threads and 1 cpus.
10.0.0.1 -> 10.1.0.1 (00:00:00:00:00:00 -> 00:07:43:ab:cd:ef)
881.962562 main [1882] Sending 512 packets every 0.000000000 s
881.962563 main [1884] Wait 2 secs for phy reset
884.088516 main [1886] Ready...
884.088535 nm_open [457] overriding ifname ncxl0 ringid 0x0 flags 0x1
884.088607 sender_body [996] start
884.093246 sender_body [1064] drop copy
885.090435 main_thread [1418] 45206353 pps (45289533 pkts in 1001840 usec)
886.091600 main_thread [1418] 45322792 pps (45375593 pkts in 1001165 usec)
887.092435 main_thread [1418] 45313992 pps (45351784 pkts in 1000834 usec)
888.094434 main_thread [1418] 45315765 pps (45406397 pkts in 1002000 usec)
889.095434 main_thread [1418] 45333218 pps (45378551 pkts in 1001000 usec)
890.097434 main_thread [1418] 45315247 pps (45405877 pkts in 1002000 usec)
891.099434 main_thread [1418] 45326515 pps (45417168 pkts in 1002000 usec)
892.101434 main_thread [1418] 45333039 pps (45423705 pkts in 1002000 usec)
893.103434 main_thread [1418] 45324105 pps (45414708 pkts in 1001999 usec)
894.105434 main_thread [1418] 45318042 pps (45408723 pkts in 1002001 usec)
895.106434 main_thread [1418] 45332430 pps (45377762 pkts in 1001000 usec)
896.107434 main_thread [1418] 45338072 pps (45383410 pkts in 1001000 usec)
...

r268536:
cxgbe(4): Add an iSCSI softc to the adapter structure.

r269076:
Some hooks in cxgbe(4) for the offloaded iSCSI driver.

r269364:
Improve compliance with style.Makefile(5).

r269366:
List one file per line in the Makefiles. This makes it easier to read
diffs when a file is added or removed.

r269411:
cxgbe(4): minor optimizations in ingress queue processing.

Reorganize struct sge_iq. Make the iq entry size a compile time
constant. While here, eliminate RX_FL_ESIZE and use EQ_ESIZE directly.

r269413:
cxgbe(4): Fix an off by one error when looking for the BAR2 doorbell
address of an egress queue.

r269428:
cxgbe(4): some optimizations in freelist handling.

r269440:
cxgbe(4): Remove an unused version of t4_enable_vi.

r269537:
cxgbe(4): Do not run any sleepable code in the SIOCSIFFLAGS handler when
IFF_PROMISC or IFF_ALLMULTI is being flipped. bpf(4) holds its global
mutex around ifpromisc in at least the bpf_dtor path.

r269644:
cxgbe(4): Let caller specify whether it's ok to sleep in
t4_sched_config and t4_sched_params.

r269731:
cxgbe(4): Do not poke T4-only registers on a T5 (and vice versa).

Relnotes: Yes (native netmap support for Chelsio T4/T5 cards)
diff 270297 Thu Aug 21 20:04:07 MDT 2014 np MFC r266571, r266757, r268536, r269076, r269364, r269366, r269411,
r269413, r269428, r269440, r269537, r269644, r269731, and the cxgbe
portion of r270063.

r266571:
cxgbe(4): Remove stray if_up from the code that creates the tracing ifnet.

r266757:
cxgbe(4): netmap support for Terminator 5 (T5) based 10G/40G cards.
Netmap gets its own hardware-assisted virtual interface and won't take
over or disrupt the "normal" interface in any way. You can use both
simultaneously.

For kernels with DEV_NETMAP, cxgbe(4) carves out an ncxl<N> interface
(note the 'n' prefix) in the hardware to accompany each cxl<N>
interface. These two ifnet's per port share the same wire but really
are separate interfaces in the hardware and software. Each gets its own
L2 MAC addresses (unicast and multicast), MTU, checksum caps, etc. You
should run netmap on the 'n' interfaces only, that's what they are for.

With this, pkt-gen is able to transmit > 45Mpps out of a single 40G port
of a T580 card. 2 port tx is at ~56Mpps total (28M + 28M) as of now.
Single port receive is at 33Mpps but this is very much a work in
progress. I expect it to be closer to 40Mpps once done. In any case
the current effort can already saturate multiple 10G ports of a T5 card
at the smallest legal packet size. T4 gear is totally untested.

trantor:~# ./pkt-gen -i ncxl0 -f tx -D 00:07:43:ab:cd:ef
881.952141 main [1621] interface is ncxl0
881.952250 extract_ip_range [275] range is 10.0.0.1:0 to 10.0.0.1:0
881.952253 extract_ip_range [275] range is 10.1.0.1:0 to 10.1.0.1:0
881.962540 main [1804] mapped 334980KB at 0x801dff000
Sending on netmap:ncxl0: 4 queues, 1 threads and 1 cpus.
10.0.0.1 -> 10.1.0.1 (00:00:00:00:00:00 -> 00:07:43:ab:cd:ef)
881.962562 main [1882] Sending 512 packets every 0.000000000 s
881.962563 main [1884] Wait 2 secs for phy reset
884.088516 main [1886] Ready...
884.088535 nm_open [457] overriding ifname ncxl0 ringid 0x0 flags 0x1
884.088607 sender_body [996] start
884.093246 sender_body [1064] drop copy
885.090435 main_thread [1418] 45206353 pps (45289533 pkts in 1001840 usec)
886.091600 main_thread [1418] 45322792 pps (45375593 pkts in 1001165 usec)
887.092435 main_thread [1418] 45313992 pps (45351784 pkts in 1000834 usec)
888.094434 main_thread [1418] 45315765 pps (45406397 pkts in 1002000 usec)
889.095434 main_thread [1418] 45333218 pps (45378551 pkts in 1001000 usec)
890.097434 main_thread [1418] 45315247 pps (45405877 pkts in 1002000 usec)
891.099434 main_thread [1418] 45326515 pps (45417168 pkts in 1002000 usec)
892.101434 main_thread [1418] 45333039 pps (45423705 pkts in 1002000 usec)
893.103434 main_thread [1418] 45324105 pps (45414708 pkts in 1001999 usec)
894.105434 main_thread [1418] 45318042 pps (45408723 pkts in 1002001 usec)
895.106434 main_thread [1418] 45332430 pps (45377762 pkts in 1001000 usec)
896.107434 main_thread [1418] 45338072 pps (45383410 pkts in 1001000 usec)
...

r268536:
cxgbe(4): Add an iSCSI softc to the adapter structure.

r269076:
Some hooks in cxgbe(4) for the offloaded iSCSI driver.

r269364:
Improve compliance with style.Makefile(5).

r269366:
List one file per line in the Makefiles. This makes it easier to read
diffs when a file is added or removed.

r269411:
cxgbe(4): minor optimizations in ingress queue processing.

Reorganize struct sge_iq. Make the iq entry size a compile time
constant. While here, eliminate RX_FL_ESIZE and use EQ_ESIZE directly.

r269413:
cxgbe(4): Fix an off by one error when looking for the BAR2 doorbell
address of an egress queue.

r269428:
cxgbe(4): some optimizations in freelist handling.

r269440:
cxgbe(4): Remove an unused version of t4_enable_vi.

r269537:
cxgbe(4): Do not run any sleepable code in the SIOCSIFFLAGS handler when
IFF_PROMISC or IFF_ALLMULTI is being flipped. bpf(4) holds its global
mutex around ifpromisc in at least the bpf_dtor path.

r269644:
cxgbe(4): Let caller specify whether it's ok to sleep in
t4_sched_config and t4_sched_params.

r269731:
cxgbe(4): Do not poke T4-only registers on a T5 (and vice versa).

Relnotes: Yes (native netmap support for Chelsio T4/T5 cards)
diff 270297 Thu Aug 21 20:04:07 MDT 2014 np MFC r266571, r266757, r268536, r269076, r269364, r269366, r269411,
r269413, r269428, r269440, r269537, r269644, r269731, and the cxgbe
portion of r270063.

r266571:
cxgbe(4): Remove stray if_up from the code that creates the tracing ifnet.

r266757:
cxgbe(4): netmap support for Terminator 5 (T5) based 10G/40G cards.
Netmap gets its own hardware-assisted virtual interface and won't take
over or disrupt the "normal" interface in any way. You can use both
simultaneously.

For kernels with DEV_NETMAP, cxgbe(4) carves out an ncxl<N> interface
(note the 'n' prefix) in the hardware to accompany each cxl<N>
interface. These two ifnet's per port share the same wire but really
are separate interfaces in the hardware and software. Each gets its own
L2 MAC addresses (unicast and multicast), MTU, checksum caps, etc. You
should run netmap on the 'n' interfaces only, that's what they are for.

With this, pkt-gen is able to transmit > 45Mpps out of a single 40G port
of a T580 card. 2 port tx is at ~56Mpps total (28M + 28M) as of now.
Single port receive is at 33Mpps but this is very much a work in
progress. I expect it to be closer to 40Mpps once done. In any case
the current effort can already saturate multiple 10G ports of a T5 card
at the smallest legal packet size. T4 gear is totally untested.

trantor:~# ./pkt-gen -i ncxl0 -f tx -D 00:07:43:ab:cd:ef
881.952141 main [1621] interface is ncxl0
881.952250 extract_ip_range [275] range is 10.0.0.1:0 to 10.0.0.1:0
881.952253 extract_ip_range [275] range is 10.1.0.1:0 to 10.1.0.1:0
881.962540 main [1804] mapped 334980KB at 0x801dff000
Sending on netmap:ncxl0: 4 queues, 1 threads and 1 cpus.
10.0.0.1 -> 10.1.0.1 (00:00:00:00:00:00 -> 00:07:43:ab:cd:ef)
881.962562 main [1882] Sending 512 packets every 0.000000000 s
881.962563 main [1884] Wait 2 secs for phy reset
884.088516 main [1886] Ready...
884.088535 nm_open [457] overriding ifname ncxl0 ringid 0x0 flags 0x1
884.088607 sender_body [996] start
884.093246 sender_body [1064] drop copy
885.090435 main_thread [1418] 45206353 pps (45289533 pkts in 1001840 usec)
886.091600 main_thread [1418] 45322792 pps (45375593 pkts in 1001165 usec)
887.092435 main_thread [1418] 45313992 pps (45351784 pkts in 1000834 usec)
888.094434 main_thread [1418] 45315765 pps (45406397 pkts in 1002000 usec)
889.095434 main_thread [1418] 45333218 pps (45378551 pkts in 1001000 usec)
890.097434 main_thread [1418] 45315247 pps (45405877 pkts in 1002000 usec)
891.099434 main_thread [1418] 45326515 pps (45417168 pkts in 1002000 usec)
892.101434 main_thread [1418] 45333039 pps (45423705 pkts in 1002000 usec)
893.103434 main_thread [1418] 45324105 pps (45414708 pkts in 1001999 usec)
894.105434 main_thread [1418] 45318042 pps (45408723 pkts in 1002001 usec)
895.106434 main_thread [1418] 45332430 pps (45377762 pkts in 1001000 usec)
896.107434 main_thread [1418] 45338072 pps (45383410 pkts in 1001000 usec)
...

r268536:
cxgbe(4): Add an iSCSI softc to the adapter structure.

r269076:
Some hooks in cxgbe(4) for the offloaded iSCSI driver.

r269364:
Improve compliance with style.Makefile(5).

r269366:
List one file per line in the Makefiles. This makes it easier to read
diffs when a file is added or removed.

r269411:
cxgbe(4): minor optimizations in ingress queue processing.

Reorganize struct sge_iq. Make the iq entry size a compile time
constant. While here, eliminate RX_FL_ESIZE and use EQ_ESIZE directly.

r269413:
cxgbe(4): Fix an off by one error when looking for the BAR2 doorbell
address of an egress queue.

r269428:
cxgbe(4): some optimizations in freelist handling.

r269440:
cxgbe(4): Remove an unused version of t4_enable_vi.

r269537:
cxgbe(4): Do not run any sleepable code in the SIOCSIFFLAGS handler when
IFF_PROMISC or IFF_ALLMULTI is being flipped. bpf(4) holds its global
mutex around ifpromisc in at least the bpf_dtor path.

r269644:
cxgbe(4): Let caller specify whether it's ok to sleep in
t4_sched_config and t4_sched_params.

r269731:
cxgbe(4): Do not poke T4-only registers on a T5 (and vice versa).

Relnotes: Yes (native netmap support for Chelsio T4/T5 cards)
diff 270297 Thu Aug 21 20:04:07 MDT 2014 np MFC r266571, r266757, r268536, r269076, r269364, r269366, r269411,
r269413, r269428, r269440, r269537, r269644, r269731, and the cxgbe
portion of r270063.

r266571:
cxgbe(4): Remove stray if_up from the code that creates the tracing ifnet.

r266757:
cxgbe(4): netmap support for Terminator 5 (T5) based 10G/40G cards.
Netmap gets its own hardware-assisted virtual interface and won't take
over or disrupt the "normal" interface in any way. You can use both
simultaneously.

For kernels with DEV_NETMAP, cxgbe(4) carves out an ncxl<N> interface
(note the 'n' prefix) in the hardware to accompany each cxl<N>
interface. These two ifnet's per port share the same wire but really
are separate interfaces in the hardware and software. Each gets its own
L2 MAC addresses (unicast and multicast), MTU, checksum caps, etc. You
should run netmap on the 'n' interfaces only, that's what they are for.

With this, pkt-gen is able to transmit > 45Mpps out of a single 40G port
of a T580 card. 2 port tx is at ~56Mpps total (28M + 28M) as of now.
Single port receive is at 33Mpps but this is very much a work in
progress. I expect it to be closer to 40Mpps once done. In any case
the current effort can already saturate multiple 10G ports of a T5 card
at the smallest legal packet size. T4 gear is totally untested.

trantor:~# ./pkt-gen -i ncxl0 -f tx -D 00:07:43:ab:cd:ef
881.952141 main [1621] interface is ncxl0
881.952250 extract_ip_range [275] range is 10.0.0.1:0 to 10.0.0.1:0
881.952253 extract_ip_range [275] range is 10.1.0.1:0 to 10.1.0.1:0
881.962540 main [1804] mapped 334980KB at 0x801dff000
Sending on netmap:ncxl0: 4 queues, 1 threads and 1 cpus.
10.0.0.1 -> 10.1.0.1 (00:00:00:00:00:00 -> 00:07:43:ab:cd:ef)
881.962562 main [1882] Sending 512 packets every 0.000000000 s
881.962563 main [1884] Wait 2 secs for phy reset
884.088516 main [1886] Ready...
884.088535 nm_open [457] overriding ifname ncxl0 ringid 0x0 flags 0x1
884.088607 sender_body [996] start
884.093246 sender_body [1064] drop copy
885.090435 main_thread [1418] 45206353 pps (45289533 pkts in 1001840 usec)
886.091600 main_thread [1418] 45322792 pps (45375593 pkts in 1001165 usec)
887.092435 main_thread [1418] 45313992 pps (45351784 pkts in 1000834 usec)
888.094434 main_thread [1418] 45315765 pps (45406397 pkts in 1002000 usec)
889.095434 main_thread [1418] 45333218 pps (45378551 pkts in 1001000 usec)
890.097434 main_thread [1418] 45315247 pps (45405877 pkts in 1002000 usec)
891.099434 main_thread [1418] 45326515 pps (45417168 pkts in 1002000 usec)
892.101434 main_thread [1418] 45333039 pps (45423705 pkts in 1002000 usec)
893.103434 main_thread [1418] 45324105 pps (45414708 pkts in 1001999 usec)
894.105434 main_thread [1418] 45318042 pps (45408723 pkts in 1002001 usec)
895.106434 main_thread [1418] 45332430 pps (45377762 pkts in 1001000 usec)
896.107434 main_thread [1418] 45338072 pps (45383410 pkts in 1001000 usec)
...

r268536:
cxgbe(4): Add an iSCSI softc to the adapter structure.

r269076:
Some hooks in cxgbe(4) for the offloaded iSCSI driver.

r269364:
Improve compliance with style.Makefile(5).

r269366:
List one file per line in the Makefiles. This makes it easier to read
diffs when a file is added or removed.

r269411:
cxgbe(4): minor optimizations in ingress queue processing.

Reorganize struct sge_iq. Make the iq entry size a compile time
constant. While here, eliminate RX_FL_ESIZE and use EQ_ESIZE directly.

r269413:
cxgbe(4): Fix an off by one error when looking for the BAR2 doorbell
address of an egress queue.

r269428:
cxgbe(4): some optimizations in freelist handling.

r269440:
cxgbe(4): Remove an unused version of t4_enable_vi.

r269537:
cxgbe(4): Do not run any sleepable code in the SIOCSIFFLAGS handler when
IFF_PROMISC or IFF_ALLMULTI is being flipped. bpf(4) holds its global
mutex around ifpromisc in at least the bpf_dtor path.

r269644:
cxgbe(4): Let caller specify whether it's ok to sleep in
t4_sched_config and t4_sched_params.

r269731:
cxgbe(4): Do not poke T4-only registers on a T5 (and vice versa).

Relnotes: Yes (native netmap support for Chelsio T4/T5 cards)
diff 270297 Thu Aug 21 20:04:07 MDT 2014 np MFC r266571, r266757, r268536, r269076, r269364, r269366, r269411,
r269413, r269428, r269440, r269537, r269644, r269731, and the cxgbe
portion of r270063.

r266571:
cxgbe(4): Remove stray if_up from the code that creates the tracing ifnet.

r266757:
cxgbe(4): netmap support for Terminator 5 (T5) based 10G/40G cards.
Netmap gets its own hardware-assisted virtual interface and won't take
over or disrupt the "normal" interface in any way. You can use both
simultaneously.

For kernels with DEV_NETMAP, cxgbe(4) carves out an ncxl<N> interface
(note the 'n' prefix) in the hardware to accompany each cxl<N>
interface. These two ifnet's per port share the same wire but really
are separate interfaces in the hardware and software. Each gets its own
L2 MAC addresses (unicast and multicast), MTU, checksum caps, etc. You
should run netmap on the 'n' interfaces only, that's what they are for.

With this, pkt-gen is able to transmit > 45Mpps out of a single 40G port
of a T580 card. 2 port tx is at ~56Mpps total (28M + 28M) as of now.
Single port receive is at 33Mpps but this is very much a work in
progress. I expect it to be closer to 40Mpps once done. In any case
the current effort can already saturate multiple 10G ports of a T5 card
at the smallest legal packet size. T4 gear is totally untested.

trantor:~# ./pkt-gen -i ncxl0 -f tx -D 00:07:43:ab:cd:ef
881.952141 main [1621] interface is ncxl0
881.952250 extract_ip_range [275] range is 10.0.0.1:0 to 10.0.0.1:0
881.952253 extract_ip_range [275] range is 10.1.0.1:0 to 10.1.0.1:0
881.962540 main [1804] mapped 334980KB at 0x801dff000
Sending on netmap:ncxl0: 4 queues, 1 threads and 1 cpus.
10.0.0.1 -> 10.1.0.1 (00:00:00:00:00:00 -> 00:07:43:ab:cd:ef)
881.962562 main [1882] Sending 512 packets every 0.000000000 s
881.962563 main [1884] Wait 2 secs for phy reset
884.088516 main [1886] Ready...
884.088535 nm_open [457] overriding ifname ncxl0 ringid 0x0 flags 0x1
884.088607 sender_body [996] start
884.093246 sender_body [1064] drop copy
885.090435 main_thread [1418] 45206353 pps (45289533 pkts in 1001840 usec)
886.091600 main_thread [1418] 45322792 pps (45375593 pkts in 1001165 usec)
887.092435 main_thread [1418] 45313992 pps (45351784 pkts in 1000834 usec)
888.094434 main_thread [1418] 45315765 pps (45406397 pkts in 1002000 usec)
889.095434 main_thread [1418] 45333218 pps (45378551 pkts in 1001000 usec)
890.097434 main_thread [1418] 45315247 pps (45405877 pkts in 1002000 usec)
891.099434 main_thread [1418] 45326515 pps (45417168 pkts in 1002000 usec)
892.101434 main_thread [1418] 45333039 pps (45423705 pkts in 1002000 usec)
893.103434 main_thread [1418] 45324105 pps (45414708 pkts in 1001999 usec)
894.105434 main_thread [1418] 45318042 pps (45408723 pkts in 1002001 usec)
895.106434 main_thread [1418] 45332430 pps (45377762 pkts in 1001000 usec)
896.107434 main_thread [1418] 45338072 pps (45383410 pkts in 1001000 usec)
...

r268536:
cxgbe(4): Add an iSCSI softc to the adapter structure.

r269076:
Some hooks in cxgbe(4) for the offloaded iSCSI driver.

r269364:
Improve compliance with style.Makefile(5).

r269366:
List one file per line in the Makefiles. This makes it easier to read
diffs when a file is added or removed.

r269411:
cxgbe(4): minor optimizations in ingress queue processing.

Reorganize struct sge_iq. Make the iq entry size a compile time
constant. While here, eliminate RX_FL_ESIZE and use EQ_ESIZE directly.

r269413:
cxgbe(4): Fix an off by one error when looking for the BAR2 doorbell
address of an egress queue.

r269428:
cxgbe(4): some optimizations in freelist handling.

r269440:
cxgbe(4): Remove an unused version of t4_enable_vi.

r269537:
cxgbe(4): Do not run any sleepable code in the SIOCSIFFLAGS handler when
IFF_PROMISC or IFF_ALLMULTI is being flipped. bpf(4) holds its global
mutex around ifpromisc in at least the bpf_dtor path.

r269644:
cxgbe(4): Let caller specify whether it's ok to sleep in
t4_sched_config and t4_sched_params.

r269731:
cxgbe(4): Do not poke T4-only registers on a T5 (and vice versa).

Relnotes: Yes (native netmap support for Chelsio T4/T5 cards)
diff 270297 Thu Aug 21 20:04:07 MDT 2014 np MFC r266571, r266757, r268536, r269076, r269364, r269366, r269411,
r269413, r269428, r269440, r269537, r269644, r269731, and the cxgbe
portion of r270063.

r266571:
cxgbe(4): Remove stray if_up from the code that creates the tracing ifnet.

r266757:
cxgbe(4): netmap support for Terminator 5 (T5) based 10G/40G cards.
Netmap gets its own hardware-assisted virtual interface and won't take
over or disrupt the "normal" interface in any way. You can use both
simultaneously.

For kernels with DEV_NETMAP, cxgbe(4) carves out an ncxl<N> interface
(note the 'n' prefix) in the hardware to accompany each cxl<N>
interface. These two ifnet's per port share the same wire but really
are separate interfaces in the hardware and software. Each gets its own
L2 MAC addresses (unicast and multicast), MTU, checksum caps, etc. You
should run netmap on the 'n' interfaces only, that's what they are for.

With this, pkt-gen is able to transmit > 45Mpps out of a single 40G port
of a T580 card. 2 port tx is at ~56Mpps total (28M + 28M) as of now.
Single port receive is at 33Mpps but this is very much a work in
progress. I expect it to be closer to 40Mpps once done. In any case
the current effort can already saturate multiple 10G ports of a T5 card
at the smallest legal packet size. T4 gear is totally untested.

trantor:~# ./pkt-gen -i ncxl0 -f tx -D 00:07:43:ab:cd:ef
881.952141 main [1621] interface is ncxl0
881.952250 extract_ip_range [275] range is 10.0.0.1:0 to 10.0.0.1:0
881.952253 extract_ip_range [275] range is 10.1.0.1:0 to 10.1.0.1:0
881.962540 main [1804] mapped 334980KB at 0x801dff000
Sending on netmap:ncxl0: 4 queues, 1 threads and 1 cpus.
10.0.0.1 -> 10.1.0.1 (00:00:00:00:00:00 -> 00:07:43:ab:cd:ef)
881.962562 main [1882] Sending 512 packets every 0.000000000 s
881.962563 main [1884] Wait 2 secs for phy reset
884.088516 main [1886] Ready...
884.088535 nm_open [457] overriding ifname ncxl0 ringid 0x0 flags 0x1
884.088607 sender_body [996] start
884.093246 sender_body [1064] drop copy
885.090435 main_thread [1418] 45206353 pps (45289533 pkts in 1001840 usec)
886.091600 main_thread [1418] 45322792 pps (45375593 pkts in 1001165 usec)
887.092435 main_thread [1418] 45313992 pps (45351784 pkts in 1000834 usec)
888.094434 main_thread [1418] 45315765 pps (45406397 pkts in 1002000 usec)
889.095434 main_thread [1418] 45333218 pps (45378551 pkts in 1001000 usec)
890.097434 main_thread [1418] 45315247 pps (45405877 pkts in 1002000 usec)
891.099434 main_thread [1418] 45326515 pps (45417168 pkts in 1002000 usec)
892.101434 main_thread [1418] 45333039 pps (45423705 pkts in 1002000 usec)
893.103434 main_thread [1418] 45324105 pps (45414708 pkts in 1001999 usec)
894.105434 main_thread [1418] 45318042 pps (45408723 pkts in 1002001 usec)
895.106434 main_thread [1418] 45332430 pps (45377762 pkts in 1001000 usec)
896.107434 main_thread [1418] 45338072 pps (45383410 pkts in 1001000 usec)
...

r268536:
cxgbe(4): Add an iSCSI softc to the adapter structure.

r269076:
Some hooks in cxgbe(4) for the offloaded iSCSI driver.

r269364:
Improve compliance with style.Makefile(5).

r269366:
List one file per line in the Makefiles. This makes it easier to read
diffs when a file is added or removed.

r269411:
cxgbe(4): minor optimizations in ingress queue processing.

Reorganize struct sge_iq. Make the iq entry size a compile time
constant. While here, eliminate RX_FL_ESIZE and use EQ_ESIZE directly.

r269413:
cxgbe(4): Fix an off by one error when looking for the BAR2 doorbell
address of an egress queue.

r269428:
cxgbe(4): some optimizations in freelist handling.

r269440:
cxgbe(4): Remove an unused version of t4_enable_vi.

r269537:
cxgbe(4): Do not run any sleepable code in the SIOCSIFFLAGS handler when
IFF_PROMISC or IFF_ALLMULTI is being flipped. bpf(4) holds its global
mutex around ifpromisc in at least the bpf_dtor path.

r269644:
cxgbe(4): Let caller specify whether it's ok to sleep in
t4_sched_config and t4_sched_params.

r269731:
cxgbe(4): Do not poke T4-only registers on a T5 (and vice versa).

Relnotes: Yes (native netmap support for Chelsio T4/T5 cards)
diff 270297 Thu Aug 21 20:04:07 MDT 2014 np MFC r266571, r266757, r268536, r269076, r269364, r269366, r269411,
r269413, r269428, r269440, r269537, r269644, r269731, and the cxgbe
portion of r270063.

r266571:
cxgbe(4): Remove stray if_up from the code that creates the tracing ifnet.

r266757:
cxgbe(4): netmap support for Terminator 5 (T5) based 10G/40G cards.
Netmap gets its own hardware-assisted virtual interface and won't take
over or disrupt the "normal" interface in any way. You can use both
simultaneously.

For kernels with DEV_NETMAP, cxgbe(4) carves out an ncxl<N> interface
(note the 'n' prefix) in the hardware to accompany each cxl<N>
interface. These two ifnet's per port share the same wire but really
are separate interfaces in the hardware and software. Each gets its own
L2 MAC addresses (unicast and multicast), MTU, checksum caps, etc. You
should run netmap on the 'n' interfaces only, that's what they are for.

With this, pkt-gen is able to transmit > 45Mpps out of a single 40G port
of a T580 card. 2 port tx is at ~56Mpps total (28M + 28M) as of now.
Single port receive is at 33Mpps but this is very much a work in
progress. I expect it to be closer to 40Mpps once done. In any case
the current effort can already saturate multiple 10G ports of a T5 card
at the smallest legal packet size. T4 gear is totally untested.

trantor:~# ./pkt-gen -i ncxl0 -f tx -D 00:07:43:ab:cd:ef
881.952141 main [1621] interface is ncxl0
881.952250 extract_ip_range [275] range is 10.0.0.1:0 to 10.0.0.1:0
881.952253 extract_ip_range [275] range is 10.1.0.1:0 to 10.1.0.1:0
881.962540 main [1804] mapped 334980KB at 0x801dff000
Sending on netmap:ncxl0: 4 queues, 1 threads and 1 cpus.
10.0.0.1 -> 10.1.0.1 (00:00:00:00:00:00 -> 00:07:43:ab:cd:ef)
881.962562 main [1882] Sending 512 packets every 0.000000000 s
881.962563 main [1884] Wait 2 secs for phy reset
884.088516 main [1886] Ready...
884.088535 nm_open [457] overriding ifname ncxl0 ringid 0x0 flags 0x1
884.088607 sender_body [996] start
884.093246 sender_body [1064] drop copy
885.090435 main_thread [1418] 45206353 pps (45289533 pkts in 1001840 usec)
886.091600 main_thread [1418] 45322792 pps (45375593 pkts in 1001165 usec)
887.092435 main_thread [1418] 45313992 pps (45351784 pkts in 1000834 usec)
888.094434 main_thread [1418] 45315765 pps (45406397 pkts in 1002000 usec)
889.095434 main_thread [1418] 45333218 pps (45378551 pkts in 1001000 usec)
890.097434 main_thread [1418] 45315247 pps (45405877 pkts in 1002000 usec)
891.099434 main_thread [1418] 45326515 pps (45417168 pkts in 1002000 usec)
892.101434 main_thread [1418] 45333039 pps (45423705 pkts in 1002000 usec)
893.103434 main_thread [1418] 45324105 pps (45414708 pkts in 1001999 usec)
894.105434 main_thread [1418] 45318042 pps (45408723 pkts in 1002001 usec)
895.106434 main_thread [1418] 45332430 pps (45377762 pkts in 1001000 usec)
896.107434 main_thread [1418] 45338072 pps (45383410 pkts in 1001000 usec)
...

r268536:
cxgbe(4): Add an iSCSI softc to the adapter structure.

r269076:
Some hooks in cxgbe(4) for the offloaded iSCSI driver.

r269364:
Improve compliance with style.Makefile(5).

r269366:
List one file per line in the Makefiles. This makes it easier to read
diffs when a file is added or removed.

r269411:
cxgbe(4): minor optimizations in ingress queue processing.

Reorganize struct sge_iq. Make the iq entry size a compile time
constant. While here, eliminate RX_FL_ESIZE and use EQ_ESIZE directly.

r269413:
cxgbe(4): Fix an off by one error when looking for the BAR2 doorbell
address of an egress queue.

r269428:
cxgbe(4): some optimizations in freelist handling.

r269440:
cxgbe(4): Remove an unused version of t4_enable_vi.

r269537:
cxgbe(4): Do not run any sleepable code in the SIOCSIFFLAGS handler when
IFF_PROMISC or IFF_ALLMULTI is being flipped. bpf(4) holds its global
mutex around ifpromisc in at least the bpf_dtor path.

r269644:
cxgbe(4): Let caller specify whether it's ok to sleep in
t4_sched_config and t4_sched_params.

r269731:
cxgbe(4): Do not poke T4-only registers on a T5 (and vice versa).

Relnotes: Yes (native netmap support for Chelsio T4/T5 cards)
H A Dt4_cpl_io.cdiff 270297 Thu Aug 21 20:04:07 MDT 2014 np MFC r266571, r266757, r268536, r269076, r269364, r269366, r269411,
r269413, r269428, r269440, r269537, r269644, r269731, and the cxgbe
portion of r270063.

r266571:
cxgbe(4): Remove stray if_up from the code that creates the tracing ifnet.

r266757:
cxgbe(4): netmap support for Terminator 5 (T5) based 10G/40G cards.
Netmap gets its own hardware-assisted virtual interface and won't take
over or disrupt the "normal" interface in any way. You can use both
simultaneously.

For kernels with DEV_NETMAP, cxgbe(4) carves out an ncxl<N> interface
(note the 'n' prefix) in the hardware to accompany each cxl<N>
interface. These two ifnet's per port share the same wire but really
are separate interfaces in the hardware and software. Each gets its own
L2 MAC addresses (unicast and multicast), MTU, checksum caps, etc. You
should run netmap on the 'n' interfaces only, that's what they are for.

With this, pkt-gen is able to transmit > 45Mpps out of a single 40G port
of a T580 card. 2 port tx is at ~56Mpps total (28M + 28M) as of now.
Single port receive is at 33Mpps but this is very much a work in
progress. I expect it to be closer to 40Mpps once done. In any case
the current effort can already saturate multiple 10G ports of a T5 card
at the smallest legal packet size. T4 gear is totally untested.

trantor:~# ./pkt-gen -i ncxl0 -f tx -D 00:07:43:ab:cd:ef
881.952141 main [1621] interface is ncxl0
881.952250 extract_ip_range [275] range is 10.0.0.1:0 to 10.0.0.1:0
881.952253 extract_ip_range [275] range is 10.1.0.1:0 to 10.1.0.1:0
881.962540 main [1804] mapped 334980KB at 0x801dff000
Sending on netmap:ncxl0: 4 queues, 1 threads and 1 cpus.
10.0.0.1 -> 10.1.0.1 (00:00:00:00:00:00 -> 00:07:43:ab:cd:ef)
881.962562 main [1882] Sending 512 packets every 0.000000000 s
881.962563 main [1884] Wait 2 secs for phy reset
884.088516 main [1886] Ready...
884.088535 nm_open [457] overriding ifname ncxl0 ringid 0x0 flags 0x1
884.088607 sender_body [996] start
884.093246 sender_body [1064] drop copy
885.090435 main_thread [1418] 45206353 pps (45289533 pkts in 1001840 usec)
886.091600 main_thread [1418] 45322792 pps (45375593 pkts in 1001165 usec)
887.092435 main_thread [1418] 45313992 pps (45351784 pkts in 1000834 usec)
888.094434 main_thread [1418] 45315765 pps (45406397 pkts in 1002000 usec)
889.095434 main_thread [1418] 45333218 pps (45378551 pkts in 1001000 usec)
890.097434 main_thread [1418] 45315247 pps (45405877 pkts in 1002000 usec)
891.099434 main_thread [1418] 45326515 pps (45417168 pkts in 1002000 usec)
892.101434 main_thread [1418] 45333039 pps (45423705 pkts in 1002000 usec)
893.103434 main_thread [1418] 45324105 pps (45414708 pkts in 1001999 usec)
894.105434 main_thread [1418] 45318042 pps (45408723 pkts in 1002001 usec)
895.106434 main_thread [1418] 45332430 pps (45377762 pkts in 1001000 usec)
896.107434 main_thread [1418] 45338072 pps (45383410 pkts in 1001000 usec)
...

r268536:
cxgbe(4): Add an iSCSI softc to the adapter structure.

r269076:
Some hooks in cxgbe(4) for the offloaded iSCSI driver.

r269364:
Improve compliance with style.Makefile(5).

r269366:
List one file per line in the Makefiles. This makes it easier to read
diffs when a file is added or removed.

r269411:
cxgbe(4): minor optimizations in ingress queue processing.

Reorganize struct sge_iq. Make the iq entry size a compile time
constant. While here, eliminate RX_FL_ESIZE and use EQ_ESIZE directly.

r269413:
cxgbe(4): Fix an off by one error when looking for the BAR2 doorbell
address of an egress queue.

r269428:
cxgbe(4): some optimizations in freelist handling.

r269440:
cxgbe(4): Remove an unused version of t4_enable_vi.

r269537:
cxgbe(4): Do not run any sleepable code in the SIOCSIFFLAGS handler when
IFF_PROMISC or IFF_ALLMULTI is being flipped. bpf(4) holds its global
mutex around ifpromisc in at least the bpf_dtor path.

r269644:
cxgbe(4): Let caller specify whether it's ok to sleep in
t4_sched_config and t4_sched_params.

r269731:
cxgbe(4): Do not poke T4-only registers on a T5 (and vice versa).

Relnotes: Yes (native netmap support for Chelsio T4/T5 cards)
diff 270297 Thu Aug 21 20:04:07 MDT 2014 np MFC r266571, r266757, r268536, r269076, r269364, r269366, r269411,
r269413, r269428, r269440, r269537, r269644, r269731, and the cxgbe
portion of r270063.

r266571:
cxgbe(4): Remove stray if_up from the code that creates the tracing ifnet.

r266757:
cxgbe(4): netmap support for Terminator 5 (T5) based 10G/40G cards.
Netmap gets its own hardware-assisted virtual interface and won't take
over or disrupt the "normal" interface in any way. You can use both
simultaneously.

For kernels with DEV_NETMAP, cxgbe(4) carves out an ncxl<N> interface
(note the 'n' prefix) in the hardware to accompany each cxl<N>
interface. These two ifnet's per port share the same wire but really
are separate interfaces in the hardware and software. Each gets its own
L2 MAC addresses (unicast and multicast), MTU, checksum caps, etc. You
should run netmap on the 'n' interfaces only, that's what they are for.

With this, pkt-gen is able to transmit > 45Mpps out of a single 40G port
of a T580 card. 2 port tx is at ~56Mpps total (28M + 28M) as of now.
Single port receive is at 33Mpps but this is very much a work in
progress. I expect it to be closer to 40Mpps once done. In any case
the current effort can already saturate multiple 10G ports of a T5 card
at the smallest legal packet size. T4 gear is totally untested.

trantor:~# ./pkt-gen -i ncxl0 -f tx -D 00:07:43:ab:cd:ef
881.952141 main [1621] interface is ncxl0
881.952250 extract_ip_range [275] range is 10.0.0.1:0 to 10.0.0.1:0
881.952253 extract_ip_range [275] range is 10.1.0.1:0 to 10.1.0.1:0
881.962540 main [1804] mapped 334980KB at 0x801dff000
Sending on netmap:ncxl0: 4 queues, 1 threads and 1 cpus.
10.0.0.1 -> 10.1.0.1 (00:00:00:00:00:00 -> 00:07:43:ab:cd:ef)
881.962562 main [1882] Sending 512 packets every 0.000000000 s
881.962563 main [1884] Wait 2 secs for phy reset
884.088516 main [1886] Ready...
884.088535 nm_open [457] overriding ifname ncxl0 ringid 0x0 flags 0x1
884.088607 sender_body [996] start
884.093246 sender_body [1064] drop copy
885.090435 main_thread [1418] 45206353 pps (45289533 pkts in 1001840 usec)
886.091600 main_thread [1418] 45322792 pps (45375593 pkts in 1001165 usec)
887.092435 main_thread [1418] 45313992 pps (45351784 pkts in 1000834 usec)
888.094434 main_thread [1418] 45315765 pps (45406397 pkts in 1002000 usec)
889.095434 main_thread [1418] 45333218 pps (45378551 pkts in 1001000 usec)
890.097434 main_thread [1418] 45315247 pps (45405877 pkts in 1002000 usec)
891.099434 main_thread [1418] 45326515 pps (45417168 pkts in 1002000 usec)
892.101434 main_thread [1418] 45333039 pps (45423705 pkts in 1002000 usec)
893.103434 main_thread [1418] 45324105 pps (45414708 pkts in 1001999 usec)
894.105434 main_thread [1418] 45318042 pps (45408723 pkts in 1002001 usec)
895.106434 main_thread [1418] 45332430 pps (45377762 pkts in 1001000 usec)
896.107434 main_thread [1418] 45338072 pps (45383410 pkts in 1001000 usec)
...

r268536:
cxgbe(4): Add an iSCSI softc to the adapter structure.

r269076:
Some hooks in cxgbe(4) for the offloaded iSCSI driver.

r269364:
Improve compliance with style.Makefile(5).

r269366:
List one file per line in the Makefiles. This makes it easier to read
diffs when a file is added or removed.

r269411:
cxgbe(4): minor optimizations in ingress queue processing.

Reorganize struct sge_iq. Make the iq entry size a compile time
constant. While here, eliminate RX_FL_ESIZE and use EQ_ESIZE directly.

r269413:
cxgbe(4): Fix an off by one error when looking for the BAR2 doorbell
address of an egress queue.

r269428:
cxgbe(4): some optimizations in freelist handling.

r269440:
cxgbe(4): Remove an unused version of t4_enable_vi.

r269537:
cxgbe(4): Do not run any sleepable code in the SIOCSIFFLAGS handler when
IFF_PROMISC or IFF_ALLMULTI is being flipped. bpf(4) holds its global
mutex around ifpromisc in at least the bpf_dtor path.

r269644:
cxgbe(4): Let caller specify whether it's ok to sleep in
t4_sched_config and t4_sched_params.

r269731:
cxgbe(4): Do not poke T4-only registers on a T5 (and vice versa).

Relnotes: Yes (native netmap support for Chelsio T4/T5 cards)
diff 270297 Thu Aug 21 20:04:07 MDT 2014 np MFC r266571, r266757, r268536, r269076, r269364, r269366, r269411,
r269413, r269428, r269440, r269537, r269644, r269731, and the cxgbe
portion of r270063.

r266571:
cxgbe(4): Remove stray if_up from the code that creates the tracing ifnet.

r266757:
cxgbe(4): netmap support for Terminator 5 (T5) based 10G/40G cards.
Netmap gets its own hardware-assisted virtual interface and won't take
over or disrupt the "normal" interface in any way. You can use both
simultaneously.

For kernels with DEV_NETMAP, cxgbe(4) carves out an ncxl<N> interface
(note the 'n' prefix) in the hardware to accompany each cxl<N>
interface. These two ifnet's per port share the same wire but really
are separate interfaces in the hardware and software. Each gets its own
L2 MAC addresses (unicast and multicast), MTU, checksum caps, etc. You
should run netmap on the 'n' interfaces only, that's what they are for.

With this, pkt-gen is able to transmit > 45Mpps out of a single 40G port
of a T580 card. 2 port tx is at ~56Mpps total (28M + 28M) as of now.
Single port receive is at 33Mpps but this is very much a work in
progress. I expect it to be closer to 40Mpps once done. In any case
the current effort can already saturate multiple 10G ports of a T5 card
at the smallest legal packet size. T4 gear is totally untested.

trantor:~# ./pkt-gen -i ncxl0 -f tx -D 00:07:43:ab:cd:ef
881.952141 main [1621] interface is ncxl0
881.952250 extract_ip_range [275] range is 10.0.0.1:0 to 10.0.0.1:0
881.952253 extract_ip_range [275] range is 10.1.0.1:0 to 10.1.0.1:0
881.962540 main [1804] mapped 334980KB at 0x801dff000
Sending on netmap:ncxl0: 4 queues, 1 threads and 1 cpus.
10.0.0.1 -> 10.1.0.1 (00:00:00:00:00:00 -> 00:07:43:ab:cd:ef)
881.962562 main [1882] Sending 512 packets every 0.000000000 s
881.962563 main [1884] Wait 2 secs for phy reset
884.088516 main [1886] Ready...
884.088535 nm_open [457] overriding ifname ncxl0 ringid 0x0 flags 0x1
884.088607 sender_body [996] start
884.093246 sender_body [1064] drop copy
885.090435 main_thread [1418] 45206353 pps (45289533 pkts in 1001840 usec)
886.091600 main_thread [1418] 45322792 pps (45375593 pkts in 1001165 usec)
887.092435 main_thread [1418] 45313992 pps (45351784 pkts in 1000834 usec)
888.094434 main_thread [1418] 45315765 pps (45406397 pkts in 1002000 usec)
889.095434 main_thread [1418] 45333218 pps (45378551 pkts in 1001000 usec)
890.097434 main_thread [1418] 45315247 pps (45405877 pkts in 1002000 usec)
891.099434 main_thread [1418] 45326515 pps (45417168 pkts in 1002000 usec)
892.101434 main_thread [1418] 45333039 pps (45423705 pkts in 1002000 usec)
893.103434 main_thread [1418] 45324105 pps (45414708 pkts in 1001999 usec)
894.105434 main_thread [1418] 45318042 pps (45408723 pkts in 1002001 usec)
895.106434 main_thread [1418] 45332430 pps (45377762 pkts in 1001000 usec)
896.107434 main_thread [1418] 45338072 pps (45383410 pkts in 1001000 usec)
...

r268536:
cxgbe(4): Add an iSCSI softc to the adapter structure.

r269076:
Some hooks in cxgbe(4) for the offloaded iSCSI driver.

r269364:
Improve compliance with style.Makefile(5).

r269366:
List one file per line in the Makefiles. This makes it easier to read
diffs when a file is added or removed.

r269411:
cxgbe(4): minor optimizations in ingress queue processing.

Reorganize struct sge_iq. Make the iq entry size a compile time
constant. While here, eliminate RX_FL_ESIZE and use EQ_ESIZE directly.

r269413:
cxgbe(4): Fix an off by one error when looking for the BAR2 doorbell
address of an egress queue.

r269428:
cxgbe(4): some optimizations in freelist handling.

r269440:
cxgbe(4): Remove an unused version of t4_enable_vi.

r269537:
cxgbe(4): Do not run any sleepable code in the SIOCSIFFLAGS handler when
IFF_PROMISC or IFF_ALLMULTI is being flipped. bpf(4) holds its global
mutex around ifpromisc in at least the bpf_dtor path.

r269644:
cxgbe(4): Let caller specify whether it's ok to sleep in
t4_sched_config and t4_sched_params.

r269731:
cxgbe(4): Do not poke T4-only registers on a T5 (and vice versa).

Relnotes: Yes (native netmap support for Chelsio T4/T5 cards)
diff 270297 Thu Aug 21 20:04:07 MDT 2014 np MFC r266571, r266757, r268536, r269076, r269364, r269366, r269411,
r269413, r269428, r269440, r269537, r269644, r269731, and the cxgbe
portion of r270063.

r266571:
cxgbe(4): Remove stray if_up from the code that creates the tracing ifnet.

r266757:
cxgbe(4): netmap support for Terminator 5 (T5) based 10G/40G cards.
Netmap gets its own hardware-assisted virtual interface and won't take
over or disrupt the "normal" interface in any way. You can use both
simultaneously.

For kernels with DEV_NETMAP, cxgbe(4) carves out an ncxl<N> interface
(note the 'n' prefix) in the hardware to accompany each cxl<N>
interface. These two ifnet's per port share the same wire but really
are separate interfaces in the hardware and software. Each gets its own
L2 MAC addresses (unicast and multicast), MTU, checksum caps, etc. You
should run netmap on the 'n' interfaces only, that's what they are for.

With this, pkt-gen is able to transmit > 45Mpps out of a single 40G port
of a T580 card. 2 port tx is at ~56Mpps total (28M + 28M) as of now.
Single port receive is at 33Mpps but this is very much a work in
progress. I expect it to be closer to 40Mpps once done. In any case
the current effort can already saturate multiple 10G ports of a T5 card
at the smallest legal packet size. T4 gear is totally untested.

trantor:~# ./pkt-gen -i ncxl0 -f tx -D 00:07:43:ab:cd:ef
881.952141 main [1621] interface is ncxl0
881.952250 extract_ip_range [275] range is 10.0.0.1:0 to 10.0.0.1:0
881.952253 extract_ip_range [275] range is 10.1.0.1:0 to 10.1.0.1:0
881.962540 main [1804] mapped 334980KB at 0x801dff000
Sending on netmap:ncxl0: 4 queues, 1 threads and 1 cpus.
10.0.0.1 -> 10.1.0.1 (00:00:00:00:00:00 -> 00:07:43:ab:cd:ef)
881.962562 main [1882] Sending 512 packets every 0.000000000 s
881.962563 main [1884] Wait 2 secs for phy reset
884.088516 main [1886] Ready...
884.088535 nm_open [457] overriding ifname ncxl0 ringid 0x0 flags 0x1
884.088607 sender_body [996] start
884.093246 sender_body [1064] drop copy
885.090435 main_thread [1418] 45206353 pps (45289533 pkts in 1001840 usec)
886.091600 main_thread [1418] 45322792 pps (45375593 pkts in 1001165 usec)
887.092435 main_thread [1418] 45313992 pps (45351784 pkts in 1000834 usec)
888.094434 main_thread [1418] 45315765 pps (45406397 pkts in 1002000 usec)
889.095434 main_thread [1418] 45333218 pps (45378551 pkts in 1001000 usec)
890.097434 main_thread [1418] 45315247 pps (45405877 pkts in 1002000 usec)
891.099434 main_thread [1418] 45326515 pps (45417168 pkts in 1002000 usec)
892.101434 main_thread [1418] 45333039 pps (45423705 pkts in 1002000 usec)
893.103434 main_thread [1418] 45324105 pps (45414708 pkts in 1001999 usec)
894.105434 main_thread [1418] 45318042 pps (45408723 pkts in 1002001 usec)
895.106434 main_thread [1418] 45332430 pps (45377762 pkts in 1001000 usec)
896.107434 main_thread [1418] 45338072 pps (45383410 pkts in 1001000 usec)
...

r268536:
cxgbe(4): Add an iSCSI softc to the adapter structure.

r269076:
Some hooks in cxgbe(4) for the offloaded iSCSI driver.

r269364:
Improve compliance with style.Makefile(5).

r269366:
List one file per line in the Makefiles. This makes it easier to read
diffs when a file is added or removed.

r269411:
cxgbe(4): minor optimizations in ingress queue processing.

Reorganize struct sge_iq. Make the iq entry size a compile time
constant. While here, eliminate RX_FL_ESIZE and use EQ_ESIZE directly.

r269413:
cxgbe(4): Fix an off by one error when looking for the BAR2 doorbell
address of an egress queue.

r269428:
cxgbe(4): some optimizations in freelist handling.

r269440:
cxgbe(4): Remove an unused version of t4_enable_vi.

r269537:
cxgbe(4): Do not run any sleepable code in the SIOCSIFFLAGS handler when
IFF_PROMISC or IFF_ALLMULTI is being flipped. bpf(4) holds its global
mutex around ifpromisc in at least the bpf_dtor path.

r269644:
cxgbe(4): Let caller specify whether it's ok to sleep in
t4_sched_config and t4_sched_params.

r269731:
cxgbe(4): Do not poke T4-only registers on a T5 (and vice versa).

Relnotes: Yes (native netmap support for Chelsio T4/T5 cards)
diff 270297 Thu Aug 21 20:04:07 MDT 2014 np MFC r266571, r266757, r268536, r269076, r269364, r269366, r269411,
r269413, r269428, r269440, r269537, r269644, r269731, and the cxgbe
portion of r270063.

r266571:
cxgbe(4): Remove stray if_up from the code that creates the tracing ifnet.

r266757:
cxgbe(4): netmap support for Terminator 5 (T5) based 10G/40G cards.
Netmap gets its own hardware-assisted virtual interface and won't take
over or disrupt the "normal" interface in any way. You can use both
simultaneously.

For kernels with DEV_NETMAP, cxgbe(4) carves out an ncxl<N> interface
(note the 'n' prefix) in the hardware to accompany each cxl<N>
interface. These two ifnet's per port share the same wire but really
are separate interfaces in the hardware and software. Each gets its own
L2 MAC addresses (unicast and multicast), MTU, checksum caps, etc. You
should run netmap on the 'n' interfaces only, that's what they are for.

With this, pkt-gen is able to transmit > 45Mpps out of a single 40G port
of a T580 card. 2 port tx is at ~56Mpps total (28M + 28M) as of now.
Single port receive is at 33Mpps but this is very much a work in
progress. I expect it to be closer to 40Mpps once done. In any case
the current effort can already saturate multiple 10G ports of a T5 card
at the smallest legal packet size. T4 gear is totally untested.

trantor:~# ./pkt-gen -i ncxl0 -f tx -D 00:07:43:ab:cd:ef
881.952141 main [1621] interface is ncxl0
881.952250 extract_ip_range [275] range is 10.0.0.1:0 to 10.0.0.1:0
881.952253 extract_ip_range [275] range is 10.1.0.1:0 to 10.1.0.1:0
881.962540 main [1804] mapped 334980KB at 0x801dff000
Sending on netmap:ncxl0: 4 queues, 1 threads and 1 cpus.
10.0.0.1 -> 10.1.0.1 (00:00:00:00:00:00 -> 00:07:43:ab:cd:ef)
881.962562 main [1882] Sending 512 packets every 0.000000000 s
881.962563 main [1884] Wait 2 secs for phy reset
884.088516 main [1886] Ready...
884.088535 nm_open [457] overriding ifname ncxl0 ringid 0x0 flags 0x1
884.088607 sender_body [996] start
884.093246 sender_body [1064] drop copy
885.090435 main_thread [1418] 45206353 pps (45289533 pkts in 1001840 usec)
886.091600 main_thread [1418] 45322792 pps (45375593 pkts in 1001165 usec)
887.092435 main_thread [1418] 45313992 pps (45351784 pkts in 1000834 usec)
888.094434 main_thread [1418] 45315765 pps (45406397 pkts in 1002000 usec)
889.095434 main_thread [1418] 45333218 pps (45378551 pkts in 1001000 usec)
890.097434 main_thread [1418] 45315247 pps (45405877 pkts in 1002000 usec)
891.099434 main_thread [1418] 45326515 pps (45417168 pkts in 1002000 usec)
892.101434 main_thread [1418] 45333039 pps (45423705 pkts in 1002000 usec)
893.103434 main_thread [1418] 45324105 pps (45414708 pkts in 1001999 usec)
894.105434 main_thread [1418] 45318042 pps (45408723 pkts in 1002001 usec)
895.106434 main_thread [1418] 45332430 pps (45377762 pkts in 1001000 usec)
896.107434 main_thread [1418] 45338072 pps (45383410 pkts in 1001000 usec)
...

r268536:
cxgbe(4): Add an iSCSI softc to the adapter structure.

r269076:
Some hooks in cxgbe(4) for the offloaded iSCSI driver.

r269364:
Improve compliance with style.Makefile(5).

r269366:
List one file per line in the Makefiles. This makes it easier to read
diffs when a file is added or removed.

r269411:
cxgbe(4): minor optimizations in ingress queue processing.

Reorganize struct sge_iq. Make the iq entry size a compile time
constant. While here, eliminate RX_FL_ESIZE and use EQ_ESIZE directly.

r269413:
cxgbe(4): Fix an off by one error when looking for the BAR2 doorbell
address of an egress queue.

r269428:
cxgbe(4): some optimizations in freelist handling.

r269440:
cxgbe(4): Remove an unused version of t4_enable_vi.

r269537:
cxgbe(4): Do not run any sleepable code in the SIOCSIFFLAGS handler when
IFF_PROMISC or IFF_ALLMULTI is being flipped. bpf(4) holds its global
mutex around ifpromisc in at least the bpf_dtor path.

r269644:
cxgbe(4): Let caller specify whether it's ok to sleep in
t4_sched_config and t4_sched_params.

r269731:
cxgbe(4): Do not poke T4-only registers on a T5 (and vice versa).

Relnotes: Yes (native netmap support for Chelsio T4/T5 cards)
diff 270297 Thu Aug 21 20:04:07 MDT 2014 np MFC r266571, r266757, r268536, r269076, r269364, r269366, r269411,
r269413, r269428, r269440, r269537, r269644, r269731, and the cxgbe
portion of r270063.

r266571:
cxgbe(4): Remove stray if_up from the code that creates the tracing ifnet.

r266757:
cxgbe(4): netmap support for Terminator 5 (T5) based 10G/40G cards.
Netmap gets its own hardware-assisted virtual interface and won't take
over or disrupt the "normal" interface in any way. You can use both
simultaneously.

For kernels with DEV_NETMAP, cxgbe(4) carves out an ncxl<N> interface
(note the 'n' prefix) in the hardware to accompany each cxl<N>
interface. These two ifnet's per port share the same wire but really
are separate interfaces in the hardware and software. Each gets its own
L2 MAC addresses (unicast and multicast), MTU, checksum caps, etc. You
should run netmap on the 'n' interfaces only, that's what they are for.

With this, pkt-gen is able to transmit > 45Mpps out of a single 40G port
of a T580 card. 2 port tx is at ~56Mpps total (28M + 28M) as of now.
Single port receive is at 33Mpps but this is very much a work in
progress. I expect it to be closer to 40Mpps once done. In any case
the current effort can already saturate multiple 10G ports of a T5 card
at the smallest legal packet size. T4 gear is totally untested.

trantor:~# ./pkt-gen -i ncxl0 -f tx -D 00:07:43:ab:cd:ef
881.952141 main [1621] interface is ncxl0
881.952250 extract_ip_range [275] range is 10.0.0.1:0 to 10.0.0.1:0
881.952253 extract_ip_range [275] range is 10.1.0.1:0 to 10.1.0.1:0
881.962540 main [1804] mapped 334980KB at 0x801dff000
Sending on netmap:ncxl0: 4 queues, 1 threads and 1 cpus.
10.0.0.1 -> 10.1.0.1 (00:00:00:00:00:00 -> 00:07:43:ab:cd:ef)
881.962562 main [1882] Sending 512 packets every 0.000000000 s
881.962563 main [1884] Wait 2 secs for phy reset
884.088516 main [1886] Ready...
884.088535 nm_open [457] overriding ifname ncxl0 ringid 0x0 flags 0x1
884.088607 sender_body [996] start
884.093246 sender_body [1064] drop copy
885.090435 main_thread [1418] 45206353 pps (45289533 pkts in 1001840 usec)
886.091600 main_thread [1418] 45322792 pps (45375593 pkts in 1001165 usec)
887.092435 main_thread [1418] 45313992 pps (45351784 pkts in 1000834 usec)
888.094434 main_thread [1418] 45315765 pps (45406397 pkts in 1002000 usec)
889.095434 main_thread [1418] 45333218 pps (45378551 pkts in 1001000 usec)
890.097434 main_thread [1418] 45315247 pps (45405877 pkts in 1002000 usec)
891.099434 main_thread [1418] 45326515 pps (45417168 pkts in 1002000 usec)
892.101434 main_thread [1418] 45333039 pps (45423705 pkts in 1002000 usec)
893.103434 main_thread [1418] 45324105 pps (45414708 pkts in 1001999 usec)
894.105434 main_thread [1418] 45318042 pps (45408723 pkts in 1002001 usec)
895.106434 main_thread [1418] 45332430 pps (45377762 pkts in 1001000 usec)
896.107434 main_thread [1418] 45338072 pps (45383410 pkts in 1001000 usec)
...

r268536:
cxgbe(4): Add an iSCSI softc to the adapter structure.

r269076:
Some hooks in cxgbe(4) for the offloaded iSCSI driver.

r269364:
Improve compliance with style.Makefile(5).

r269366:
List one file per line in the Makefiles. This makes it easier to read
diffs when a file is added or removed.

r269411:
cxgbe(4): minor optimizations in ingress queue processing.

Reorganize struct sge_iq. Make the iq entry size a compile time
constant. While here, eliminate RX_FL_ESIZE and use EQ_ESIZE directly.

r269413:
cxgbe(4): Fix an off by one error when looking for the BAR2 doorbell
address of an egress queue.

r269428:
cxgbe(4): some optimizations in freelist handling.

r269440:
cxgbe(4): Remove an unused version of t4_enable_vi.

r269537:
cxgbe(4): Do not run any sleepable code in the SIOCSIFFLAGS handler when
IFF_PROMISC or IFF_ALLMULTI is being flipped. bpf(4) holds its global
mutex around ifpromisc in at least the bpf_dtor path.

r269644:
cxgbe(4): Let caller specify whether it's ok to sleep in
t4_sched_config and t4_sched_params.

r269731:
cxgbe(4): Do not poke T4-only registers on a T5 (and vice versa).

Relnotes: Yes (native netmap support for Chelsio T4/T5 cards)
diff 270297 Thu Aug 21 20:04:07 MDT 2014 np MFC r266571, r266757, r268536, r269076, r269364, r269366, r269411,
r269413, r269428, r269440, r269537, r269644, r269731, and the cxgbe
portion of r270063.

r266571:
cxgbe(4): Remove stray if_up from the code that creates the tracing ifnet.

r266757:
cxgbe(4): netmap support for Terminator 5 (T5) based 10G/40G cards.
Netmap gets its own hardware-assisted virtual interface and won't take
over or disrupt the "normal" interface in any way. You can use both
simultaneously.

For kernels with DEV_NETMAP, cxgbe(4) carves out an ncxl<N> interface
(note the 'n' prefix) in the hardware to accompany each cxl<N>
interface. These two ifnet's per port share the same wire but really
are separate interfaces in the hardware and software. Each gets its own
L2 MAC addresses (unicast and multicast), MTU, checksum caps, etc. You
should run netmap on the 'n' interfaces only, that's what they are for.

With this, pkt-gen is able to transmit > 45Mpps out of a single 40G port
of a T580 card. 2 port tx is at ~56Mpps total (28M + 28M) as of now.
Single port receive is at 33Mpps but this is very much a work in
progress. I expect it to be closer to 40Mpps once done. In any case
the current effort can already saturate multiple 10G ports of a T5 card
at the smallest legal packet size. T4 gear is totally untested.

trantor:~# ./pkt-gen -i ncxl0 -f tx -D 00:07:43:ab:cd:ef
881.952141 main [1621] interface is ncxl0
881.952250 extract_ip_range [275] range is 10.0.0.1:0 to 10.0.0.1:0
881.952253 extract_ip_range [275] range is 10.1.0.1:0 to 10.1.0.1:0
881.962540 main [1804] mapped 334980KB at 0x801dff000
Sending on netmap:ncxl0: 4 queues, 1 threads and 1 cpus.
10.0.0.1 -> 10.1.0.1 (00:00:00:00:00:00 -> 00:07:43:ab:cd:ef)
881.962562 main [1882] Sending 512 packets every 0.000000000 s
881.962563 main [1884] Wait 2 secs for phy reset
884.088516 main [1886] Ready...
884.088535 nm_open [457] overriding ifname ncxl0 ringid 0x0 flags 0x1
884.088607 sender_body [996] start
884.093246 sender_body [1064] drop copy
885.090435 main_thread [1418] 45206353 pps (45289533 pkts in 1001840 usec)
886.091600 main_thread [1418] 45322792 pps (45375593 pkts in 1001165 usec)
887.092435 main_thread [1418] 45313992 pps (45351784 pkts in 1000834 usec)
888.094434 main_thread [1418] 45315765 pps (45406397 pkts in 1002000 usec)
889.095434 main_thread [1418] 45333218 pps (45378551 pkts in 1001000 usec)
890.097434 main_thread [1418] 45315247 pps (45405877 pkts in 1002000 usec)
891.099434 main_thread [1418] 45326515 pps (45417168 pkts in 1002000 usec)
892.101434 main_thread [1418] 45333039 pps (45423705 pkts in 1002000 usec)
893.103434 main_thread [1418] 45324105 pps (45414708 pkts in 1001999 usec)
894.105434 main_thread [1418] 45318042 pps (45408723 pkts in 1002001 usec)
895.106434 main_thread [1418] 45332430 pps (45377762 pkts in 1001000 usec)
896.107434 main_thread [1418] 45338072 pps (45383410 pkts in 1001000 usec)
...

r268536:
cxgbe(4): Add an iSCSI softc to the adapter structure.

r269076:
Some hooks in cxgbe(4) for the offloaded iSCSI driver.

r269364:
Improve compliance with style.Makefile(5).

r269366:
List one file per line in the Makefiles. This makes it easier to read
diffs when a file is added or removed.

r269411:
cxgbe(4): minor optimizations in ingress queue processing.

Reorganize struct sge_iq. Make the iq entry size a compile time
constant. While here, eliminate RX_FL_ESIZE and use EQ_ESIZE directly.

r269413:
cxgbe(4): Fix an off by one error when looking for the BAR2 doorbell
address of an egress queue.

r269428:
cxgbe(4): some optimizations in freelist handling.

r269440:
cxgbe(4): Remove an unused version of t4_enable_vi.

r269537:
cxgbe(4): Do not run any sleepable code in the SIOCSIFFLAGS handler when
IFF_PROMISC or IFF_ALLMULTI is being flipped. bpf(4) holds its global
mutex around ifpromisc in at least the bpf_dtor path.

r269644:
cxgbe(4): Let caller specify whether it's ok to sleep in
t4_sched_config and t4_sched_params.

r269731:
cxgbe(4): Do not poke T4-only registers on a T5 (and vice versa).

Relnotes: Yes (native netmap support for Chelsio T4/T5 cards)
diff 270297 Thu Aug 21 20:04:07 MDT 2014 np MFC r266571, r266757, r268536, r269076, r269364, r269366, r269411,
r269413, r269428, r269440, r269537, r269644, r269731, and the cxgbe
portion of r270063.

r266571:
cxgbe(4): Remove stray if_up from the code that creates the tracing ifnet.

r266757:
cxgbe(4): netmap support for Terminator 5 (T5) based 10G/40G cards.
Netmap gets its own hardware-assisted virtual interface and won't take
over or disrupt the "normal" interface in any way. You can use both
simultaneously.

For kernels with DEV_NETMAP, cxgbe(4) carves out an ncxl<N> interface
(note the 'n' prefix) in the hardware to accompany each cxl<N>
interface. These two ifnet's per port share the same wire but really
are separate interfaces in the hardware and software. Each gets its own
L2 MAC addresses (unicast and multicast), MTU, checksum caps, etc. You
should run netmap on the 'n' interfaces only, that's what they are for.

With this, pkt-gen is able to transmit > 45Mpps out of a single 40G port
of a T580 card. 2 port tx is at ~56Mpps total (28M + 28M) as of now.
Single port receive is at 33Mpps but this is very much a work in
progress. I expect it to be closer to 40Mpps once done. In any case
the current effort can already saturate multiple 10G ports of a T5 card
at the smallest legal packet size. T4 gear is totally untested.

trantor:~# ./pkt-gen -i ncxl0 -f tx -D 00:07:43:ab:cd:ef
881.952141 main [1621] interface is ncxl0
881.952250 extract_ip_range [275] range is 10.0.0.1:0 to 10.0.0.1:0
881.952253 extract_ip_range [275] range is 10.1.0.1:0 to 10.1.0.1:0
881.962540 main [1804] mapped 334980KB at 0x801dff000
Sending on netmap:ncxl0: 4 queues, 1 threads and 1 cpus.
10.0.0.1 -> 10.1.0.1 (00:00:00:00:00:00 -> 00:07:43:ab:cd:ef)
881.962562 main [1882] Sending 512 packets every 0.000000000 s
881.962563 main [1884] Wait 2 secs for phy reset
884.088516 main [1886] Ready...
884.088535 nm_open [457] overriding ifname ncxl0 ringid 0x0 flags 0x1
884.088607 sender_body [996] start
884.093246 sender_body [1064] drop copy
885.090435 main_thread [1418] 45206353 pps (45289533 pkts in 1001840 usec)
886.091600 main_thread [1418] 45322792 pps (45375593 pkts in 1001165 usec)
887.092435 main_thread [1418] 45313992 pps (45351784 pkts in 1000834 usec)
888.094434 main_thread [1418] 45315765 pps (45406397 pkts in 1002000 usec)
889.095434 main_thread [1418] 45333218 pps (45378551 pkts in 1001000 usec)
890.097434 main_thread [1418] 45315247 pps (45405877 pkts in 1002000 usec)
891.099434 main_thread [1418] 45326515 pps (45417168 pkts in 1002000 usec)
892.101434 main_thread [1418] 45333039 pps (45423705 pkts in 1002000 usec)
893.103434 main_thread [1418] 45324105 pps (45414708 pkts in 1001999 usec)
894.105434 main_thread [1418] 45318042 pps (45408723 pkts in 1002001 usec)
895.106434 main_thread [1418] 45332430 pps (45377762 pkts in 1001000 usec)
896.107434 main_thread [1418] 45338072 pps (45383410 pkts in 1001000 usec)
...

r268536:
cxgbe(4): Add an iSCSI softc to the adapter structure.

r269076:
Some hooks in cxgbe(4) for the offloaded iSCSI driver.

r269364:
Improve compliance with style.Makefile(5).

r269366:
List one file per line in the Makefiles. This makes it easier to read
diffs when a file is added or removed.

r269411:
cxgbe(4): minor optimizations in ingress queue processing.

Reorganize struct sge_iq. Make the iq entry size a compile time
constant. While here, eliminate RX_FL_ESIZE and use EQ_ESIZE directly.

r269413:
cxgbe(4): Fix an off by one error when looking for the BAR2 doorbell
address of an egress queue.

r269428:
cxgbe(4): some optimizations in freelist handling.

r269440:
cxgbe(4): Remove an unused version of t4_enable_vi.

r269537:
cxgbe(4): Do not run any sleepable code in the SIOCSIFFLAGS handler when
IFF_PROMISC or IFF_ALLMULTI is being flipped. bpf(4) holds its global
mutex around ifpromisc in at least the bpf_dtor path.

r269644:
cxgbe(4): Let caller specify whether it's ok to sleep in
t4_sched_config and t4_sched_params.

r269731:
cxgbe(4): Do not poke T4-only registers on a T5 (and vice versa).

Relnotes: Yes (native netmap support for Chelsio T4/T5 cards)
diff 270297 Thu Aug 21 20:04:07 MDT 2014 np MFC r266571, r266757, r268536, r269076, r269364, r269366, r269411,
r269413, r269428, r269440, r269537, r269644, r269731, and the cxgbe
portion of r270063.

r266571:
cxgbe(4): Remove stray if_up from the code that creates the tracing ifnet.

r266757:
cxgbe(4): netmap support for Terminator 5 (T5) based 10G/40G cards.
Netmap gets its own hardware-assisted virtual interface and won't take
over or disrupt the "normal" interface in any way. You can use both
simultaneously.

For kernels with DEV_NETMAP, cxgbe(4) carves out an ncxl<N> interface
(note the 'n' prefix) in the hardware to accompany each cxl<N>
interface. These two ifnet's per port share the same wire but really
are separate interfaces in the hardware and software. Each gets its own
L2 MAC addresses (unicast and multicast), MTU, checksum caps, etc. You
should run netmap on the 'n' interfaces only, that's what they are for.

With this, pkt-gen is able to transmit > 45Mpps out of a single 40G port
of a T580 card. 2 port tx is at ~56Mpps total (28M + 28M) as of now.
Single port receive is at 33Mpps but this is very much a work in
progress. I expect it to be closer to 40Mpps once done. In any case
the current effort can already saturate multiple 10G ports of a T5 card
at the smallest legal packet size. T4 gear is totally untested.

trantor:~# ./pkt-gen -i ncxl0 -f tx -D 00:07:43:ab:cd:ef
881.952141 main [1621] interface is ncxl0
881.952250 extract_ip_range [275] range is 10.0.0.1:0 to 10.0.0.1:0
881.952253 extract_ip_range [275] range is 10.1.0.1:0 to 10.1.0.1:0
881.962540 main [1804] mapped 334980KB at 0x801dff000
Sending on netmap:ncxl0: 4 queues, 1 threads and 1 cpus.
10.0.0.1 -> 10.1.0.1 (00:00:00:00:00:00 -> 00:07:43:ab:cd:ef)
881.962562 main [1882] Sending 512 packets every 0.000000000 s
881.962563 main [1884] Wait 2 secs for phy reset
884.088516 main [1886] Ready...
884.088535 nm_open [457] overriding ifname ncxl0 ringid 0x0 flags 0x1
884.088607 sender_body [996] start
884.093246 sender_body [1064] drop copy
885.090435 main_thread [1418] 45206353 pps (45289533 pkts in 1001840 usec)
886.091600 main_thread [1418] 45322792 pps (45375593 pkts in 1001165 usec)
887.092435 main_thread [1418] 45313992 pps (45351784 pkts in 1000834 usec)
888.094434 main_thread [1418] 45315765 pps (45406397 pkts in 1002000 usec)
889.095434 main_thread [1418] 45333218 pps (45378551 pkts in 1001000 usec)
890.097434 main_thread [1418] 45315247 pps (45405877 pkts in 1002000 usec)
891.099434 main_thread [1418] 45326515 pps (45417168 pkts in 1002000 usec)
892.101434 main_thread [1418] 45333039 pps (45423705 pkts in 1002000 usec)
893.103434 main_thread [1418] 45324105 pps (45414708 pkts in 1001999 usec)
894.105434 main_thread [1418] 45318042 pps (45408723 pkts in 1002001 usec)
895.106434 main_thread [1418] 45332430 pps (45377762 pkts in 1001000 usec)
896.107434 main_thread [1418] 45338072 pps (45383410 pkts in 1001000 usec)
...

r268536:
cxgbe(4): Add an iSCSI softc to the adapter structure.

r269076:
Some hooks in cxgbe(4) for the offloaded iSCSI driver.

r269364:
Improve compliance with style.Makefile(5).

r269366:
List one file per line in the Makefiles. This makes it easier to read
diffs when a file is added or removed.

r269411:
cxgbe(4): minor optimizations in ingress queue processing.

Reorganize struct sge_iq. Make the iq entry size a compile time
constant. While here, eliminate RX_FL_ESIZE and use EQ_ESIZE directly.

r269413:
cxgbe(4): Fix an off by one error when looking for the BAR2 doorbell
address of an egress queue.

r269428:
cxgbe(4): some optimizations in freelist handling.

r269440:
cxgbe(4): Remove an unused version of t4_enable_vi.

r269537:
cxgbe(4): Do not run any sleepable code in the SIOCSIFFLAGS handler when
IFF_PROMISC or IFF_ALLMULTI is being flipped. bpf(4) holds its global
mutex around ifpromisc in at least the bpf_dtor path.

r269644:
cxgbe(4): Let caller specify whether it's ok to sleep in
t4_sched_config and t4_sched_params.

r269731:
cxgbe(4): Do not poke T4-only registers on a T5 (and vice versa).

Relnotes: Yes (native netmap support for Chelsio T4/T5 cards)
diff 270297 Thu Aug 21 20:04:07 MDT 2014 np MFC r266571, r266757, r268536, r269076, r269364, r269366, r269411,
r269413, r269428, r269440, r269537, r269644, r269731, and the cxgbe
portion of r270063.

r266571:
cxgbe(4): Remove stray if_up from the code that creates the tracing ifnet.

r266757:
cxgbe(4): netmap support for Terminator 5 (T5) based 10G/40G cards.
Netmap gets its own hardware-assisted virtual interface and won't take
over or disrupt the "normal" interface in any way. You can use both
simultaneously.

For kernels with DEV_NETMAP, cxgbe(4) carves out an ncxl<N> interface
(note the 'n' prefix) in the hardware to accompany each cxl<N>
interface. These two ifnet's per port share the same wire but really
are separate interfaces in the hardware and software. Each gets its own
L2 MAC addresses (unicast and multicast), MTU, checksum caps, etc. You
should run netmap on the 'n' interfaces only, that's what they are for.

With this, pkt-gen is able to transmit > 45Mpps out of a single 40G port
of a T580 card. 2 port tx is at ~56Mpps total (28M + 28M) as of now.
Single port receive is at 33Mpps but this is very much a work in
progress. I expect it to be closer to 40Mpps once done. In any case
the current effort can already saturate multiple 10G ports of a T5 card
at the smallest legal packet size. T4 gear is totally untested.

trantor:~# ./pkt-gen -i ncxl0 -f tx -D 00:07:43:ab:cd:ef
881.952141 main [1621] interface is ncxl0
881.952250 extract_ip_range [275] range is 10.0.0.1:0 to 10.0.0.1:0
881.952253 extract_ip_range [275] range is 10.1.0.1:0 to 10.1.0.1:0
881.962540 main [1804] mapped 334980KB at 0x801dff000
Sending on netmap:ncxl0: 4 queues, 1 threads and 1 cpus.
10.0.0.1 -> 10.1.0.1 (00:00:00:00:00:00 -> 00:07:43:ab:cd:ef)
881.962562 main [1882] Sending 512 packets every 0.000000000 s
881.962563 main [1884] Wait 2 secs for phy reset
884.088516 main [1886] Ready...
884.088535 nm_open [457] overriding ifname ncxl0 ringid 0x0 flags 0x1
884.088607 sender_body [996] start
884.093246 sender_body [1064] drop copy
885.090435 main_thread [1418] 45206353 pps (45289533 pkts in 1001840 usec)
886.091600 main_thread [1418] 45322792 pps (45375593 pkts in 1001165 usec)
887.092435 main_thread [1418] 45313992 pps (45351784 pkts in 1000834 usec)
888.094434 main_thread [1418] 45315765 pps (45406397 pkts in 1002000 usec)
889.095434 main_thread [1418] 45333218 pps (45378551 pkts in 1001000 usec)
890.097434 main_thread [1418] 45315247 pps (45405877 pkts in 1002000 usec)
891.099434 main_thread [1418] 45326515 pps (45417168 pkts in 1002000 usec)
892.101434 main_thread [1418] 45333039 pps (45423705 pkts in 1002000 usec)
893.103434 main_thread [1418] 45324105 pps (45414708 pkts in 1001999 usec)
894.105434 main_thread [1418] 45318042 pps (45408723 pkts in 1002001 usec)
895.106434 main_thread [1418] 45332430 pps (45377762 pkts in 1001000 usec)
896.107434 main_thread [1418] 45338072 pps (45383410 pkts in 1001000 usec)
...

r268536:
cxgbe(4): Add an iSCSI softc to the adapter structure.

r269076:
Some hooks in cxgbe(4) for the offloaded iSCSI driver.

r269364:
Improve compliance with style.Makefile(5).

r269366:
List one file per line in the Makefiles. This makes it easier to read
diffs when a file is added or removed.

r269411:
cxgbe(4): minor optimizations in ingress queue processing.

Reorganize struct sge_iq. Make the iq entry size a compile time
constant. While here, eliminate RX_FL_ESIZE and use EQ_ESIZE directly.

r269413:
cxgbe(4): Fix an off by one error when looking for the BAR2 doorbell
address of an egress queue.

r269428:
cxgbe(4): some optimizations in freelist handling.

r269440:
cxgbe(4): Remove an unused version of t4_enable_vi.

r269537:
cxgbe(4): Do not run any sleepable code in the SIOCSIFFLAGS handler when
IFF_PROMISC or IFF_ALLMULTI is being flipped. bpf(4) holds its global
mutex around ifpromisc in at least the bpf_dtor path.

r269644:
cxgbe(4): Let caller specify whether it's ok to sleep in
t4_sched_config and t4_sched_params.

r269731:
cxgbe(4): Do not poke T4-only registers on a T5 (and vice versa).

Relnotes: Yes (native netmap support for Chelsio T4/T5 cards)
diff 270297 Thu Aug 21 20:04:07 MDT 2014 np MFC r266571, r266757, r268536, r269076, r269364, r269366, r269411,
r269413, r269428, r269440, r269537, r269644, r269731, and the cxgbe
portion of r270063.

r266571:
cxgbe(4): Remove stray if_up from the code that creates the tracing ifnet.

r266757:
cxgbe(4): netmap support for Terminator 5 (T5) based 10G/40G cards.
Netmap gets its own hardware-assisted virtual interface and won't take
over or disrupt the "normal" interface in any way. You can use both
simultaneously.

For kernels with DEV_NETMAP, cxgbe(4) carves out an ncxl<N> interface
(note the 'n' prefix) in the hardware to accompany each cxl<N>
interface. These two ifnet's per port share the same wire but really
are separate interfaces in the hardware and software. Each gets its own
L2 MAC addresses (unicast and multicast), MTU, checksum caps, etc. You
should run netmap on the 'n' interfaces only, that's what they are for.

With this, pkt-gen is able to transmit > 45Mpps out of a single 40G port
of a T580 card. 2 port tx is at ~56Mpps total (28M + 28M) as of now.
Single port receive is at 33Mpps but this is very much a work in
progress. I expect it to be closer to 40Mpps once done. In any case
the current effort can already saturate multiple 10G ports of a T5 card
at the smallest legal packet size. T4 gear is totally untested.

trantor:~# ./pkt-gen -i ncxl0 -f tx -D 00:07:43:ab:cd:ef
881.952141 main [1621] interface is ncxl0
881.952250 extract_ip_range [275] range is 10.0.0.1:0 to 10.0.0.1:0
881.952253 extract_ip_range [275] range is 10.1.0.1:0 to 10.1.0.1:0
881.962540 main [1804] mapped 334980KB at 0x801dff000
Sending on netmap:ncxl0: 4 queues, 1 threads and 1 cpus.
10.0.0.1 -> 10.1.0.1 (00:00:00:00:00:00 -> 00:07:43:ab:cd:ef)
881.962562 main [1882] Sending 512 packets every 0.000000000 s
881.962563 main [1884] Wait 2 secs for phy reset
884.088516 main [1886] Ready...
884.088535 nm_open [457] overriding ifname ncxl0 ringid 0x0 flags 0x1
884.088607 sender_body [996] start
884.093246 sender_body [1064] drop copy
885.090435 main_thread [1418] 45206353 pps (45289533 pkts in 1001840 usec)
886.091600 main_thread [1418] 45322792 pps (45375593 pkts in 1001165 usec)
887.092435 main_thread [1418] 45313992 pps (45351784 pkts in 1000834 usec)
888.094434 main_thread [1418] 45315765 pps (45406397 pkts in 1002000 usec)
889.095434 main_thread [1418] 45333218 pps (45378551 pkts in 1001000 usec)
890.097434 main_thread [1418] 45315247 pps (45405877 pkts in 1002000 usec)
891.099434 main_thread [1418] 45326515 pps (45417168 pkts in 1002000 usec)
892.101434 main_thread [1418] 45333039 pps (45423705 pkts in 1002000 usec)
893.103434 main_thread [1418] 45324105 pps (45414708 pkts in 1001999 usec)
894.105434 main_thread [1418] 45318042 pps (45408723 pkts in 1002001 usec)
895.106434 main_thread [1418] 45332430 pps (45377762 pkts in 1001000 usec)
896.107434 main_thread [1418] 45338072 pps (45383410 pkts in 1001000 usec)
...

r268536:
cxgbe(4): Add an iSCSI softc to the adapter structure.

r269076:
Some hooks in cxgbe(4) for the offloaded iSCSI driver.

r269364:
Improve compliance with style.Makefile(5).

r269366:
List one file per line in the Makefiles. This makes it easier to read
diffs when a file is added or removed.

r269411:
cxgbe(4): minor optimizations in ingress queue processing.

Reorganize struct sge_iq. Make the iq entry size a compile time
constant. While here, eliminate RX_FL_ESIZE and use EQ_ESIZE directly.

r269413:
cxgbe(4): Fix an off by one error when looking for the BAR2 doorbell
address of an egress queue.

r269428:
cxgbe(4): some optimizations in freelist handling.

r269440:
cxgbe(4): Remove an unused version of t4_enable_vi.

r269537:
cxgbe(4): Do not run any sleepable code in the SIOCSIFFLAGS handler when
IFF_PROMISC or IFF_ALLMULTI is being flipped. bpf(4) holds its global
mutex around ifpromisc in at least the bpf_dtor path.

r269644:
cxgbe(4): Let caller specify whether it's ok to sleep in
t4_sched_config and t4_sched_params.

r269731:
cxgbe(4): Do not poke T4-only registers on a T5 (and vice versa).

Relnotes: Yes (native netmap support for Chelsio T4/T5 cards)
diff 270297 Thu Aug 21 20:04:07 MDT 2014 np MFC r266571, r266757, r268536, r269076, r269364, r269366, r269411,
r269413, r269428, r269440, r269537, r269644, r269731, and the cxgbe
portion of r270063.

r266571:
cxgbe(4): Remove stray if_up from the code that creates the tracing ifnet.

r266757:
cxgbe(4): netmap support for Terminator 5 (T5) based 10G/40G cards.
Netmap gets its own hardware-assisted virtual interface and won't take
over or disrupt the "normal" interface in any way. You can use both
simultaneously.

For kernels with DEV_NETMAP, cxgbe(4) carves out an ncxl<N> interface
(note the 'n' prefix) in the hardware to accompany each cxl<N>
interface. These two ifnet's per port share the same wire but really
are separate interfaces in the hardware and software. Each gets its own
L2 MAC addresses (unicast and multicast), MTU, checksum caps, etc. You
should run netmap on the 'n' interfaces only, that's what they are for.

With this, pkt-gen is able to transmit > 45Mpps out of a single 40G port
of a T580 card. 2 port tx is at ~56Mpps total (28M + 28M) as of now.
Single port receive is at 33Mpps but this is very much a work in
progress. I expect it to be closer to 40Mpps once done. In any case
the current effort can already saturate multiple 10G ports of a T5 card
at the smallest legal packet size. T4 gear is totally untested.

trantor:~# ./pkt-gen -i ncxl0 -f tx -D 00:07:43:ab:cd:ef
881.952141 main [1621] interface is ncxl0
881.952250 extract_ip_range [275] range is 10.0.0.1:0 to 10.0.0.1:0
881.952253 extract_ip_range [275] range is 10.1.0.1:0 to 10.1.0.1:0
881.962540 main [1804] mapped 334980KB at 0x801dff000
Sending on netmap:ncxl0: 4 queues, 1 threads and 1 cpus.
10.0.0.1 -> 10.1.0.1 (00:00:00:00:00:00 -> 00:07:43:ab:cd:ef)
881.962562 main [1882] Sending 512 packets every 0.000000000 s
881.962563 main [1884] Wait 2 secs for phy reset
884.088516 main [1886] Ready...
884.088535 nm_open [457] overriding ifname ncxl0 ringid 0x0 flags 0x1
884.088607 sender_body [996] start
884.093246 sender_body [1064] drop copy
885.090435 main_thread [1418] 45206353 pps (45289533 pkts in 1001840 usec)
886.091600 main_thread [1418] 45322792 pps (45375593 pkts in 1001165 usec)
887.092435 main_thread [1418] 45313992 pps (45351784 pkts in 1000834 usec)
888.094434 main_thread [1418] 45315765 pps (45406397 pkts in 1002000 usec)
889.095434 main_thread [1418] 45333218 pps (45378551 pkts in 1001000 usec)
890.097434 main_thread [1418] 45315247 pps (45405877 pkts in 1002000 usec)
891.099434 main_thread [1418] 45326515 pps (45417168 pkts in 1002000 usec)
892.101434 main_thread [1418] 45333039 pps (45423705 pkts in 1002000 usec)
893.103434 main_thread [1418] 45324105 pps (45414708 pkts in 1001999 usec)
894.105434 main_thread [1418] 45318042 pps (45408723 pkts in 1002001 usec)
895.106434 main_thread [1418] 45332430 pps (45377762 pkts in 1001000 usec)
896.107434 main_thread [1418] 45338072 pps (45383410 pkts in 1001000 usec)
...

r268536:
cxgbe(4): Add an iSCSI softc to the adapter structure.

r269076:
Some hooks in cxgbe(4) for the offloaded iSCSI driver.

r269364:
Improve compliance with style.Makefile(5).

r269366:
List one file per line in the Makefiles. This makes it easier to read
diffs when a file is added or removed.

r269411:
cxgbe(4): minor optimizations in ingress queue processing.

Reorganize struct sge_iq. Make the iq entry size a compile time
constant. While here, eliminate RX_FL_ESIZE and use EQ_ESIZE directly.

r269413:
cxgbe(4): Fix an off by one error when looking for the BAR2 doorbell
address of an egress queue.

r269428:
cxgbe(4): some optimizations in freelist handling.

r269440:
cxgbe(4): Remove an unused version of t4_enable_vi.

r269537:
cxgbe(4): Do not run any sleepable code in the SIOCSIFFLAGS handler when
IFF_PROMISC or IFF_ALLMULTI is being flipped. bpf(4) holds its global
mutex around ifpromisc in at least the bpf_dtor path.

r269644:
cxgbe(4): Let caller specify whether it's ok to sleep in
t4_sched_config and t4_sched_params.

r269731:
cxgbe(4): Do not poke T4-only registers on a T5 (and vice versa).

Relnotes: Yes (native netmap support for Chelsio T4/T5 cards)
diff 270297 Thu Aug 21 20:04:07 MDT 2014 np MFC r266571, r266757, r268536, r269076, r269364, r269366, r269411,
r269413, r269428, r269440, r269537, r269644, r269731, and the cxgbe
portion of r270063.

r266571:
cxgbe(4): Remove stray if_up from the code that creates the tracing ifnet.

r266757:
cxgbe(4): netmap support for Terminator 5 (T5) based 10G/40G cards.
Netmap gets its own hardware-assisted virtual interface and won't take
over or disrupt the "normal" interface in any way. You can use both
simultaneously.

For kernels with DEV_NETMAP, cxgbe(4) carves out an ncxl<N> interface
(note the 'n' prefix) in the hardware to accompany each cxl<N>
interface. These two ifnet's per port share the same wire but really
are separate interfaces in the hardware and software. Each gets its own
L2 MAC addresses (unicast and multicast), MTU, checksum caps, etc. You
should run netmap on the 'n' interfaces only, that's what they are for.

With this, pkt-gen is able to transmit > 45Mpps out of a single 40G port
of a T580 card. 2 port tx is at ~56Mpps total (28M + 28M) as of now.
Single port receive is at 33Mpps but this is very much a work in
progress. I expect it to be closer to 40Mpps once done. In any case
the current effort can already saturate multiple 10G ports of a T5 card
at the smallest legal packet size. T4 gear is totally untested.

trantor:~# ./pkt-gen -i ncxl0 -f tx -D 00:07:43:ab:cd:ef
881.952141 main [1621] interface is ncxl0
881.952250 extract_ip_range [275] range is 10.0.0.1:0 to 10.0.0.1:0
881.952253 extract_ip_range [275] range is 10.1.0.1:0 to 10.1.0.1:0
881.962540 main [1804] mapped 334980KB at 0x801dff000
Sending on netmap:ncxl0: 4 queues, 1 threads and 1 cpus.
10.0.0.1 -> 10.1.0.1 (00:00:00:00:00:00 -> 00:07:43:ab:cd:ef)
881.962562 main [1882] Sending 512 packets every 0.000000000 s
881.962563 main [1884] Wait 2 secs for phy reset
884.088516 main [1886] Ready...
884.088535 nm_open [457] overriding ifname ncxl0 ringid 0x0 flags 0x1
884.088607 sender_body [996] start
884.093246 sender_body [1064] drop copy
885.090435 main_thread [1418] 45206353 pps (45289533 pkts in 1001840 usec)
886.091600 main_thread [1418] 45322792 pps (45375593 pkts in 1001165 usec)
887.092435 main_thread [1418] 45313992 pps (45351784 pkts in 1000834 usec)
888.094434 main_thread [1418] 45315765 pps (45406397 pkts in 1002000 usec)
889.095434 main_thread [1418] 45333218 pps (45378551 pkts in 1001000 usec)
890.097434 main_thread [1418] 45315247 pps (45405877 pkts in 1002000 usec)
891.099434 main_thread [1418] 45326515 pps (45417168 pkts in 1002000 usec)
892.101434 main_thread [1418] 45333039 pps (45423705 pkts in 1002000 usec)
893.103434 main_thread [1418] 45324105 pps (45414708 pkts in 1001999 usec)
894.105434 main_thread [1418] 45318042 pps (45408723 pkts in 1002001 usec)
895.106434 main_thread [1418] 45332430 pps (45377762 pkts in 1001000 usec)
896.107434 main_thread [1418] 45338072 pps (45383410 pkts in 1001000 usec)
...

r268536:
cxgbe(4): Add an iSCSI softc to the adapter structure.

r269076:
Some hooks in cxgbe(4) for the offloaded iSCSI driver.

r269364:
Improve compliance with style.Makefile(5).

r269366:
List one file per line in the Makefiles. This makes it easier to read
diffs when a file is added or removed.

r269411:
cxgbe(4): minor optimizations in ingress queue processing.

Reorganize struct sge_iq. Make the iq entry size a compile time
constant. While here, eliminate RX_FL_ESIZE and use EQ_ESIZE directly.

r269413:
cxgbe(4): Fix an off by one error when looking for the BAR2 doorbell
address of an egress queue.

r269428:
cxgbe(4): some optimizations in freelist handling.

r269440:
cxgbe(4): Remove an unused version of t4_enable_vi.

r269537:
cxgbe(4): Do not run any sleepable code in the SIOCSIFFLAGS handler when
IFF_PROMISC or IFF_ALLMULTI is being flipped. bpf(4) holds its global
mutex around ifpromisc in at least the bpf_dtor path.

r269644:
cxgbe(4): Let caller specify whether it's ok to sleep in
t4_sched_config and t4_sched_params.

r269731:
cxgbe(4): Do not poke T4-only registers on a T5 (and vice versa).

Relnotes: Yes (native netmap support for Chelsio T4/T5 cards)
diff 270297 Thu Aug 21 20:04:07 MDT 2014 np MFC r266571, r266757, r268536, r269076, r269364, r269366, r269411,
r269413, r269428, r269440, r269537, r269644, r269731, and the cxgbe
portion of r270063.

r266571:
cxgbe(4): Remove stray if_up from the code that creates the tracing ifnet.

r266757:
cxgbe(4): netmap support for Terminator 5 (T5) based 10G/40G cards.
Netmap gets its own hardware-assisted virtual interface and won't take
over or disrupt the "normal" interface in any way. You can use both
simultaneously.

For kernels with DEV_NETMAP, cxgbe(4) carves out an ncxl<N> interface
(note the 'n' prefix) in the hardware to accompany each cxl<N>
interface. These two ifnet's per port share the same wire but really
are separate interfaces in the hardware and software. Each gets its own
L2 MAC addresses (unicast and multicast), MTU, checksum caps, etc. You
should run netmap on the 'n' interfaces only, that's what they are for.

With this, pkt-gen is able to transmit > 45Mpps out of a single 40G port
of a T580 card. 2 port tx is at ~56Mpps total (28M + 28M) as of now.
Single port receive is at 33Mpps but this is very much a work in
progress. I expect it to be closer to 40Mpps once done. In any case
the current effort can already saturate multiple 10G ports of a T5 card
at the smallest legal packet size. T4 gear is totally untested.

trantor:~# ./pkt-gen -i ncxl0 -f tx -D 00:07:43:ab:cd:ef
881.952141 main [1621] interface is ncxl0
881.952250 extract_ip_range [275] range is 10.0.0.1:0 to 10.0.0.1:0
881.952253 extract_ip_range [275] range is 10.1.0.1:0 to 10.1.0.1:0
881.962540 main [1804] mapped 334980KB at 0x801dff000
Sending on netmap:ncxl0: 4 queues, 1 threads and 1 cpus.
10.0.0.1 -> 10.1.0.1 (00:00:00:00:00:00 -> 00:07:43:ab:cd:ef)
881.962562 main [1882] Sending 512 packets every 0.000000000 s
881.962563 main [1884] Wait 2 secs for phy reset
884.088516 main [1886] Ready...
884.088535 nm_open [457] overriding ifname ncxl0 ringid 0x0 flags 0x1
884.088607 sender_body [996] start
884.093246 sender_body [1064] drop copy
885.090435 main_thread [1418] 45206353 pps (45289533 pkts in 1001840 usec)
886.091600 main_thread [1418] 45322792 pps (45375593 pkts in 1001165 usec)
887.092435 main_thread [1418] 45313992 pps (45351784 pkts in 1000834 usec)
888.094434 main_thread [1418] 45315765 pps (45406397 pkts in 1002000 usec)
889.095434 main_thread [1418] 45333218 pps (45378551 pkts in 1001000 usec)
890.097434 main_thread [1418] 45315247 pps (45405877 pkts in 1002000 usec)
891.099434 main_thread [1418] 45326515 pps (45417168 pkts in 1002000 usec)
892.101434 main_thread [1418] 45333039 pps (45423705 pkts in 1002000 usec)
893.103434 main_thread [1418] 45324105 pps (45414708 pkts in 1001999 usec)
894.105434 main_thread [1418] 45318042 pps (45408723 pkts in 1002001 usec)
895.106434 main_thread [1418] 45332430 pps (45377762 pkts in 1001000 usec)
896.107434 main_thread [1418] 45338072 pps (45383410 pkts in 1001000 usec)
...

r268536:
cxgbe(4): Add an iSCSI softc to the adapter structure.

r269076:
Some hooks in cxgbe(4) for the offloaded iSCSI driver.

r269364:
Improve compliance with style.Makefile(5).

r269366:
List one file per line in the Makefiles. This makes it easier to read
diffs when a file is added or removed.

r269411:
cxgbe(4): minor optimizations in ingress queue processing.

Reorganize struct sge_iq. Make the iq entry size a compile time
constant. While here, eliminate RX_FL_ESIZE and use EQ_ESIZE directly.

r269413:
cxgbe(4): Fix an off by one error when looking for the BAR2 doorbell
address of an egress queue.

r269428:
cxgbe(4): some optimizations in freelist handling.

r269440:
cxgbe(4): Remove an unused version of t4_enable_vi.

r269537:
cxgbe(4): Do not run any sleepable code in the SIOCSIFFLAGS handler when
IFF_PROMISC or IFF_ALLMULTI is being flipped. bpf(4) holds its global
mutex around ifpromisc in at least the bpf_dtor path.

r269644:
cxgbe(4): Let caller specify whether it's ok to sleep in
t4_sched_config and t4_sched_params.

r269731:
cxgbe(4): Do not poke T4-only registers on a T5 (and vice versa).

Relnotes: Yes (native netmap support for Chelsio T4/T5 cards)
/freebsd-10.2-release/sys/dev/nvme/
H A Dnvme_ns.cdiff 254389 Thu Aug 15 23:03:14 MDT 2013 ken Change the way that unmapped I/O capability is advertised.

The previous method was to set the D_UNMAPPED_IO flag in the cdevsw
for the driver. The problem with this is that in many cases (e.g.
sa(4)) there may be some instances of the driver that can handle
unmapped I/O and some that can't. The isp(4) driver can handle
unmapped I/O, but the esp(4) driver currently cannot. The cdevsw
is shared among all driver instances.

So instead of setting a flag on the cdevsw, set a flag on the cdev.
This allows drivers to indicate support for unmapped I/O on a
per-instance basis.

sys/conf.h: Remove the D_UNMAPPED_IO cdevsw flag and replace it
with an SI_UNMAPPED cdev flag.

kern_physio.c: Look at the cdev SI_UNMAPPED flag to determine
whether or not a particular driver can handle
unmapped I/O.

geom_dev.c: Set the SI_UNMAPPED flag for all GEOM cdevs.
Since GEOM will create a temporary mapping when
needed, setting SI_UNMAPPED unconditionally will
work.

Remove the D_UNMAPPED_IO flag.

nvme_ns.c: Set the SI_UNMAPPED flag on cdevs created here
if NVME_UNMAPPED_BIO_SUPPORT is enabled.

vfs_aio.c: In aio_qphysio(), check the SI_UNMAPPED flag on a
cdev instead of the D_UNMAPPED_IO flag on the cdevsw.

sys/param.h: Bump __FreeBSD_version to 1000045 for the switch from
setting the D_UNMAPPED_IO flag in the cdevsw to setting
SI_UNMAPPED in the cdev.

Reviewed by: kib, jimharris
MFC after: 1 week
Sponsored by: Spectra Logic
diff 254389 Thu Aug 15 23:03:14 MDT 2013 ken Change the way that unmapped I/O capability is advertised.

The previous method was to set the D_UNMAPPED_IO flag in the cdevsw
for the driver. The problem with this is that in many cases (e.g.
sa(4)) there may be some instances of the driver that can handle
unmapped I/O and some that can't. The isp(4) driver can handle
unmapped I/O, but the esp(4) driver currently cannot. The cdevsw
is shared among all driver instances.

So instead of setting a flag on the cdevsw, set a flag on the cdev.
This allows drivers to indicate support for unmapped I/O on a
per-instance basis.

sys/conf.h: Remove the D_UNMAPPED_IO cdevsw flag and replace it
with an SI_UNMAPPED cdev flag.

kern_physio.c: Look at the cdev SI_UNMAPPED flag to determine
whether or not a particular driver can handle
unmapped I/O.

geom_dev.c: Set the SI_UNMAPPED flag for all GEOM cdevs.
Since GEOM will create a temporary mapping when
needed, setting SI_UNMAPPED unconditionally will
work.

Remove the D_UNMAPPED_IO flag.

nvme_ns.c: Set the SI_UNMAPPED flag on cdevs created here
if NVME_UNMAPPED_BIO_SUPPORT is enabled.

vfs_aio.c: In aio_qphysio(), check the SI_UNMAPPED flag on a
cdev instead of the D_UNMAPPED_IO flag on the cdevsw.

sys/param.h: Bump __FreeBSD_version to 1000045 for the switch from
setting the D_UNMAPPED_IO flag in the cdevsw to setting
SI_UNMAPPED in the cdev.

Reviewed by: kib, jimharris
MFC after: 1 week
Sponsored by: Spectra Logic
diff 254389 Thu Aug 15 23:03:14 MDT 2013 ken Change the way that unmapped I/O capability is advertised.

The previous method was to set the D_UNMAPPED_IO flag in the cdevsw
for the driver. The problem with this is that in many cases (e.g.
sa(4)) there may be some instances of the driver that can handle
unmapped I/O and some that can't. The isp(4) driver can handle
unmapped I/O, but the esp(4) driver currently cannot. The cdevsw
is shared among all driver instances.

So instead of setting a flag on the cdevsw, set a flag on the cdev.
This allows drivers to indicate support for unmapped I/O on a
per-instance basis.

sys/conf.h: Remove the D_UNMAPPED_IO cdevsw flag and replace it
with an SI_UNMAPPED cdev flag.

kern_physio.c: Look at the cdev SI_UNMAPPED flag to determine
whether or not a particular driver can handle
unmapped I/O.

geom_dev.c: Set the SI_UNMAPPED flag for all GEOM cdevs.
Since GEOM will create a temporary mapping when
needed, setting SI_UNMAPPED unconditionally will
work.

Remove the D_UNMAPPED_IO flag.

nvme_ns.c: Set the SI_UNMAPPED flag on cdevs created here
if NVME_UNMAPPED_BIO_SUPPORT is enabled.

vfs_aio.c: In aio_qphysio(), check the SI_UNMAPPED flag on a
cdev instead of the D_UNMAPPED_IO flag on the cdevsw.

sys/param.h: Bump __FreeBSD_version to 1000045 for the switch from
setting the D_UNMAPPED_IO flag in the cdevsw to setting
SI_UNMAPPED in the cdev.

Reviewed by: kib, jimharris
MFC after: 1 week
Sponsored by: Spectra Logic
diff 253474 Fri Jul 19 21:34:20 MDT 2013 jimharris Fix nvme(4) and nvd(4) to support non 512-byte sector sizes.

Recent testing with QEMU that has variable sector size support for
NVMe uncovered some of these issues. Chatham prototype boards supported
only 512 byte sectors.

Sponsored by: Intel
Reviewed by: carl
MFC after: 3 days
diff 253474 Fri Jul 19 21:34:20 MDT 2013 jimharris Fix nvme(4) and nvd(4) to support non 512-byte sector sizes.

Recent testing with QEMU that has variable sector size support for
NVMe uncovered some of these issues. Chatham prototype boards supported
only 512 byte sectors.

Sponsored by: Intel
Reviewed by: carl
MFC after: 3 days
diff 248977 Mon Apr 01 16:35:11 MDT 2013 jimharris Add unmapped bio support to nvme(4) and nvd(4).

Sponsored by: Intel
diff 248977 Mon Apr 01 16:35:11 MDT 2013 jimharris Add unmapped bio support to nvme(4) and nvd(4).

Sponsored by: Intel
diff 248746 Tue Mar 26 20:02:39 MDT 2013 jimharris Add controller reset capability to nvme(4) and ability to explicitly
invoke it from nvmecontrol(8).

Controller reset will be performed in cases where I/O are repeatedly
timing out, the controller reports an unrecoverable condition, or
when explicitly requested via IOCTL or an nvme consumer. Since the
controller may be in such a state where it cannot even process queue
deletion requests, we will perform a controller reset without trying
to clean up anything on the controller first.

Sponsored by: Intel
Reviewed by: carl
240616 Mon Sep 17 19:31:27 MDT 2012 jimharris This is the first of several commits which will add NVM Express (NVMe)
support to FreeBSD. A full description of the overall functionality
being added is below. nvmexpress.org defines NVM Express as "an optimized
register interface, command set and feature set fo PCI Express (PCIe)-based
Solid-State Drives (SSDs)."

This commit adds nvme(4) and nvd(4) driver source code and Makefiles
to the tree.

Full NVMe functionality description:
Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe)
device support.

There will continue to be ongoing work on NVM Express support, but there
is more than enough to allow for evaluation of pre-production NVM Express
devices as well as soliciting feedback. Questions and feedback are welcome.

nvme(4) implements NVMe hardware abstraction and is a provider of NVMe
namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN.
nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks.
nvmecontrol(8) is used for NVMe configuration and management.

The following are currently supported:
nvme(4)
- full mandatory NVM command set support
- per-CPU IO queues (enabled by default but configurable)
- per-queue sysctls for statistics and full command/completion queue
dumps for debugging
- registration API for NVMe namespace consumers
- I/O error handling (except for timeoutsee below)
- compilation switches for support back to stable-7

nvd(4)
- BIO_DELETE and BIO_FLUSH (if supported by controller)
- proper BIO_ORDERED handling

nvmecontrol(8)
- devlist: list NVMe controllers and their namespaces
- identify: display controller or namespace identify data in
human-readable or hex format
- perftest: quick and dirty performance test to measure raw
performance of NVMe device without userspace/physio/GEOM
overhead

The following are still work in progress and will be completed over the
next 3-6 months in rough priority order:
- complete man pages
- firmware download and activation
- asynchronous error requests
- command timeout error handling
- controller resets
- nvmecontrol(8) log page retrieval

This has been primarily tested on amd64, with light testing on i386. I
would be happy to provide assistance to anyone interested in porting
this to other architectures, but am not currently planning to do this
work myself. Big-endian and dmamap sync for command/completion queues
are the main areas that would need to be addressed.

The nvme(4) driver currently has references to Chatham, which is an
Intel-developed prototype board which is not fully spec compliant.
These references will all be removed over time.

Sponsored by: Intel
Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
240616 Mon Sep 17 19:31:27 MDT 2012 jimharris This is the first of several commits which will add NVM Express (NVMe)
support to FreeBSD. A full description of the overall functionality
being added is below. nvmexpress.org defines NVM Express as "an optimized
register interface, command set and feature set fo PCI Express (PCIe)-based
Solid-State Drives (SSDs)."

This commit adds nvme(4) and nvd(4) driver source code and Makefiles
to the tree.

Full NVMe functionality description:
Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe)
device support.

There will continue to be ongoing work on NVM Express support, but there
is more than enough to allow for evaluation of pre-production NVM Express
devices as well as soliciting feedback. Questions and feedback are welcome.

nvme(4) implements NVMe hardware abstraction and is a provider of NVMe
namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN.
nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks.
nvmecontrol(8) is used for NVMe configuration and management.

The following are currently supported:
nvme(4)
- full mandatory NVM command set support
- per-CPU IO queues (enabled by default but configurable)
- per-queue sysctls for statistics and full command/completion queue
dumps for debugging
- registration API for NVMe namespace consumers
- I/O error handling (except for timeoutsee below)
- compilation switches for support back to stable-7

nvd(4)
- BIO_DELETE and BIO_FLUSH (if supported by controller)
- proper BIO_ORDERED handling

nvmecontrol(8)
- devlist: list NVMe controllers and their namespaces
- identify: display controller or namespace identify data in
human-readable or hex format
- perftest: quick and dirty performance test to measure raw
performance of NVMe device without userspace/physio/GEOM
overhead

The following are still work in progress and will be completed over the
next 3-6 months in rough priority order:
- complete man pages
- firmware download and activation
- asynchronous error requests
- command timeout error handling
- controller resets
- nvmecontrol(8) log page retrieval

This has been primarily tested on amd64, with light testing on i386. I
would be happy to provide assistance to anyone interested in porting
this to other architectures, but am not currently planning to do this
work myself. Big-endian and dmamap sync for command/completion queues
are the main areas that would need to be addressed.

The nvme(4) driver currently has references to Chatham, which is an
Intel-developed prototype board which is not fully spec compliant.
These references will all be removed over time.

Sponsored by: Intel
Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
240616 Mon Sep 17 19:31:27 MDT 2012 jimharris This is the first of several commits which will add NVM Express (NVMe)
support to FreeBSD. A full description of the overall functionality
being added is below. nvmexpress.org defines NVM Express as "an optimized
register interface, command set and feature set fo PCI Express (PCIe)-based
Solid-State Drives (SSDs)."

This commit adds nvme(4) and nvd(4) driver source code and Makefiles
to the tree.

Full NVMe functionality description:
Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe)
device support.

There will continue to be ongoing work on NVM Express support, but there
is more than enough to allow for evaluation of pre-production NVM Express
devices as well as soliciting feedback. Questions and feedback are welcome.

nvme(4) implements NVMe hardware abstraction and is a provider of NVMe
namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN.
nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks.
nvmecontrol(8) is used for NVMe configuration and management.

The following are currently supported:
nvme(4)
- full mandatory NVM command set support
- per-CPU IO queues (enabled by default but configurable)
- per-queue sysctls for statistics and full command/completion queue
dumps for debugging
- registration API for NVMe namespace consumers
- I/O error handling (except for timeoutsee below)
- compilation switches for support back to stable-7

nvd(4)
- BIO_DELETE and BIO_FLUSH (if supported by controller)
- proper BIO_ORDERED handling

nvmecontrol(8)
- devlist: list NVMe controllers and their namespaces
- identify: display controller or namespace identify data in
human-readable or hex format
- perftest: quick and dirty performance test to measure raw
performance of NVMe device without userspace/physio/GEOM
overhead

The following are still work in progress and will be completed over the
next 3-6 months in rough priority order:
- complete man pages
- firmware download and activation
- asynchronous error requests
- command timeout error handling
- controller resets
- nvmecontrol(8) log page retrieval

This has been primarily tested on amd64, with light testing on i386. I
would be happy to provide assistance to anyone interested in porting
this to other architectures, but am not currently planning to do this
work myself. Big-endian and dmamap sync for command/completion queues
are the main areas that would need to be addressed.

The nvme(4) driver currently has references to Chatham, which is an
Intel-developed prototype board which is not fully spec compliant.
These references will all be removed over time.

Sponsored by: Intel
Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
240616 Mon Sep 17 19:31:27 MDT 2012 jimharris This is the first of several commits which will add NVM Express (NVMe)
support to FreeBSD. A full description of the overall functionality
being added is below. nvmexpress.org defines NVM Express as "an optimized
register interface, command set and feature set fo PCI Express (PCIe)-based
Solid-State Drives (SSDs)."

This commit adds nvme(4) and nvd(4) driver source code and Makefiles
to the tree.

Full NVMe functionality description:
Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe)
device support.

There will continue to be ongoing work on NVM Express support, but there
is more than enough to allow for evaluation of pre-production NVM Express
devices as well as soliciting feedback. Questions and feedback are welcome.

nvme(4) implements NVMe hardware abstraction and is a provider of NVMe
namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN.
nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks.
nvmecontrol(8) is used for NVMe configuration and management.

The following are currently supported:
nvme(4)
- full mandatory NVM command set support
- per-CPU IO queues (enabled by default but configurable)
- per-queue sysctls for statistics and full command/completion queue
dumps for debugging
- registration API for NVMe namespace consumers
- I/O error handling (except for timeoutsee below)
- compilation switches for support back to stable-7

nvd(4)
- BIO_DELETE and BIO_FLUSH (if supported by controller)
- proper BIO_ORDERED handling

nvmecontrol(8)
- devlist: list NVMe controllers and their namespaces
- identify: display controller or namespace identify data in
human-readable or hex format
- perftest: quick and dirty performance test to measure raw
performance of NVMe device without userspace/physio/GEOM
overhead

The following are still work in progress and will be completed over the
next 3-6 months in rough priority order:
- complete man pages
- firmware download and activation
- asynchronous error requests
- command timeout error handling
- controller resets
- nvmecontrol(8) log page retrieval

This has been primarily tested on amd64, with light testing on i386. I
would be happy to provide assistance to anyone interested in porting
this to other architectures, but am not currently planning to do this
work myself. Big-endian and dmamap sync for command/completion queues
are the main areas that would need to be addressed.

The nvme(4) driver currently has references to Chatham, which is an
Intel-developed prototype board which is not fully spec compliant.
These references will all be removed over time.

Sponsored by: Intel
Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
240616 Mon Sep 17 19:31:27 MDT 2012 jimharris This is the first of several commits which will add NVM Express (NVMe)
support to FreeBSD. A full description of the overall functionality
being added is below. nvmexpress.org defines NVM Express as "an optimized
register interface, command set and feature set fo PCI Express (PCIe)-based
Solid-State Drives (SSDs)."

This commit adds nvme(4) and nvd(4) driver source code and Makefiles
to the tree.

Full NVMe functionality description:
Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe)
device support.

There will continue to be ongoing work on NVM Express support, but there
is more than enough to allow for evaluation of pre-production NVM Express
devices as well as soliciting feedback. Questions and feedback are welcome.

nvme(4) implements NVMe hardware abstraction and is a provider of NVMe
namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN.
nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks.
nvmecontrol(8) is used for NVMe configuration and management.

The following are currently supported:
nvme(4)
- full mandatory NVM command set support
- per-CPU IO queues (enabled by default but configurable)
- per-queue sysctls for statistics and full command/completion queue
dumps for debugging
- registration API for NVMe namespace consumers
- I/O error handling (except for timeoutsee below)
- compilation switches for support back to stable-7

nvd(4)
- BIO_DELETE and BIO_FLUSH (if supported by controller)
- proper BIO_ORDERED handling

nvmecontrol(8)
- devlist: list NVMe controllers and their namespaces
- identify: display controller or namespace identify data in
human-readable or hex format
- perftest: quick and dirty performance test to measure raw
performance of NVMe device without userspace/physio/GEOM
overhead

The following are still work in progress and will be completed over the
next 3-6 months in rough priority order:
- complete man pages
- firmware download and activation
- asynchronous error requests
- command timeout error handling
- controller resets
- nvmecontrol(8) log page retrieval

This has been primarily tested on amd64, with light testing on i386. I
would be happy to provide assistance to anyone interested in porting
this to other architectures, but am not currently planning to do this
work myself. Big-endian and dmamap sync for command/completion queues
are the main areas that would need to be addressed.

The nvme(4) driver currently has references to Chatham, which is an
Intel-developed prototype board which is not fully spec compliant.
These references will all be removed over time.

Sponsored by: Intel
Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
240616 Mon Sep 17 19:31:27 MDT 2012 jimharris This is the first of several commits which will add NVM Express (NVMe)
support to FreeBSD. A full description of the overall functionality
being added is below. nvmexpress.org defines NVM Express as "an optimized
register interface, command set and feature set fo PCI Express (PCIe)-based
Solid-State Drives (SSDs)."

This commit adds nvme(4) and nvd(4) driver source code and Makefiles
to the tree.

Full NVMe functionality description:
Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe)
device support.

There will continue to be ongoing work on NVM Express support, but there
is more than enough to allow for evaluation of pre-production NVM Express
devices as well as soliciting feedback. Questions and feedback are welcome.

nvme(4) implements NVMe hardware abstraction and is a provider of NVMe
namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN.
nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks.
nvmecontrol(8) is used for NVMe configuration and management.

The following are currently supported:
nvme(4)
- full mandatory NVM command set support
- per-CPU IO queues (enabled by default but configurable)
- per-queue sysctls for statistics and full command/completion queue
dumps for debugging
- registration API for NVMe namespace consumers
- I/O error handling (except for timeoutsee below)
- compilation switches for support back to stable-7

nvd(4)
- BIO_DELETE and BIO_FLUSH (if supported by controller)
- proper BIO_ORDERED handling

nvmecontrol(8)
- devlist: list NVMe controllers and their namespaces
- identify: display controller or namespace identify data in
human-readable or hex format
- perftest: quick and dirty performance test to measure raw
performance of NVMe device without userspace/physio/GEOM
overhead

The following are still work in progress and will be completed over the
next 3-6 months in rough priority order:
- complete man pages
- firmware download and activation
- asynchronous error requests
- command timeout error handling
- controller resets
- nvmecontrol(8) log page retrieval

This has been primarily tested on amd64, with light testing on i386. I
would be happy to provide assistance to anyone interested in porting
this to other architectures, but am not currently planning to do this
work myself. Big-endian and dmamap sync for command/completion queues
are the main areas that would need to be addressed.

The nvme(4) driver currently has references to Chatham, which is an
Intel-developed prototype board which is not fully spec compliant.
These references will all be removed over time.

Sponsored by: Intel
Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
240616 Mon Sep 17 19:31:27 MDT 2012 jimharris This is the first of several commits which will add NVM Express (NVMe)
support to FreeBSD. A full description of the overall functionality
being added is below. nvmexpress.org defines NVM Express as "an optimized
register interface, command set and feature set fo PCI Express (PCIe)-based
Solid-State Drives (SSDs)."

This commit adds nvme(4) and nvd(4) driver source code and Makefiles
to the tree.

Full NVMe functionality description:
Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe)
device support.

There will continue to be ongoing work on NVM Express support, but there
is more than enough to allow for evaluation of pre-production NVM Express
devices as well as soliciting feedback. Questions and feedback are welcome.

nvme(4) implements NVMe hardware abstraction and is a provider of NVMe
namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN.
nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks.
nvmecontrol(8) is used for NVMe configuration and management.

The following are currently supported:
nvme(4)
- full mandatory NVM command set support
- per-CPU IO queues (enabled by default but configurable)
- per-queue sysctls for statistics and full command/completion queue
dumps for debugging
- registration API for NVMe namespace consumers
- I/O error handling (except for timeoutsee below)
- compilation switches for support back to stable-7

nvd(4)
- BIO_DELETE and BIO_FLUSH (if supported by controller)
- proper BIO_ORDERED handling

nvmecontrol(8)
- devlist: list NVMe controllers and their namespaces
- identify: display controller or namespace identify data in
human-readable or hex format
- perftest: quick and dirty performance test to measure raw
performance of NVMe device without userspace/physio/GEOM
overhead

The following are still work in progress and will be completed over the
next 3-6 months in rough priority order:
- complete man pages
- firmware download and activation
- asynchronous error requests
- command timeout error handling
- controller resets
- nvmecontrol(8) log page retrieval

This has been primarily tested on amd64, with light testing on i386. I
would be happy to provide assistance to anyone interested in porting
this to other architectures, but am not currently planning to do this
work myself. Big-endian and dmamap sync for command/completion queues
are the main areas that would need to be addressed.

The nvme(4) driver currently has references to Chatham, which is an
Intel-developed prototype board which is not fully spec compliant.
These references will all be removed over time.

Sponsored by: Intel
Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
240616 Mon Sep 17 19:31:27 MDT 2012 jimharris This is the first of several commits which will add NVM Express (NVMe)
support to FreeBSD. A full description of the overall functionality
being added is below. nvmexpress.org defines NVM Express as "an optimized
register interface, command set and feature set fo PCI Express (PCIe)-based
Solid-State Drives (SSDs)."

This commit adds nvme(4) and nvd(4) driver source code and Makefiles
to the tree.

Full NVMe functionality description:
Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe)
device support.

There will continue to be ongoing work on NVM Express support, but there
is more than enough to allow for evaluation of pre-production NVM Express
devices as well as soliciting feedback. Questions and feedback are welcome.

nvme(4) implements NVMe hardware abstraction and is a provider of NVMe
namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN.
nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks.
nvmecontrol(8) is used for NVMe configuration and management.

The following are currently supported:
nvme(4)
- full mandatory NVM command set support
- per-CPU IO queues (enabled by default but configurable)
- per-queue sysctls for statistics and full command/completion queue
dumps for debugging
- registration API for NVMe namespace consumers
- I/O error handling (except for timeoutsee below)
- compilation switches for support back to stable-7

nvd(4)
- BIO_DELETE and BIO_FLUSH (if supported by controller)
- proper BIO_ORDERED handling

nvmecontrol(8)
- devlist: list NVMe controllers and their namespaces
- identify: display controller or namespace identify data in
human-readable or hex format
- perftest: quick and dirty performance test to measure raw
performance of NVMe device without userspace/physio/GEOM
overhead

The following are still work in progress and will be completed over the
next 3-6 months in rough priority order:
- complete man pages
- firmware download and activation
- asynchronous error requests
- command timeout error handling
- controller resets
- nvmecontrol(8) log page retrieval

This has been primarily tested on amd64, with light testing on i386. I
would be happy to provide assistance to anyone interested in porting
this to other architectures, but am not currently planning to do this
work myself. Big-endian and dmamap sync for command/completion queues
are the main areas that would need to be addressed.

The nvme(4) driver currently has references to Chatham, which is an
Intel-developed prototype board which is not fully spec compliant.
These references will all be removed over time.

Sponsored by: Intel
Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
240616 Mon Sep 17 19:31:27 MDT 2012 jimharris This is the first of several commits which will add NVM Express (NVMe)
support to FreeBSD. A full description of the overall functionality
being added is below. nvmexpress.org defines NVM Express as "an optimized
register interface, command set and feature set fo PCI Express (PCIe)-based
Solid-State Drives (SSDs)."

This commit adds nvme(4) and nvd(4) driver source code and Makefiles
to the tree.

Full NVMe functionality description:
Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe)
device support.

There will continue to be ongoing work on NVM Express support, but there
is more than enough to allow for evaluation of pre-production NVM Express
devices as well as soliciting feedback. Questions and feedback are welcome.

nvme(4) implements NVMe hardware abstraction and is a provider of NVMe
namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN.
nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks.
nvmecontrol(8) is used for NVMe configuration and management.

The following are currently supported:
nvme(4)
- full mandatory NVM command set support
- per-CPU IO queues (enabled by default but configurable)
- per-queue sysctls for statistics and full command/completion queue
dumps for debugging
- registration API for NVMe namespace consumers
- I/O error handling (except for timeoutsee below)
- compilation switches for support back to stable-7

nvd(4)
- BIO_DELETE and BIO_FLUSH (if supported by controller)
- proper BIO_ORDERED handling

nvmecontrol(8)
- devlist: list NVMe controllers and their namespaces
- identify: display controller or namespace identify data in
human-readable or hex format
- perftest: quick and dirty performance test to measure raw
performance of NVMe device without userspace/physio/GEOM
overhead

The following are still work in progress and will be completed over the
next 3-6 months in rough priority order:
- complete man pages
- firmware download and activation
- asynchronous error requests
- command timeout error handling
- controller resets
- nvmecontrol(8) log page retrieval

This has been primarily tested on amd64, with light testing on i386. I
would be happy to provide assistance to anyone interested in porting
this to other architectures, but am not currently planning to do this
work myself. Big-endian and dmamap sync for command/completion queues
are the main areas that would need to be addressed.

The nvme(4) driver currently has references to Chatham, which is an
Intel-developed prototype board which is not fully spec compliant.
These references will all be removed over time.

Sponsored by: Intel
Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
H A Dnvme_ns_cmd.cdiff 253474 Fri Jul 19 21:34:20 MDT 2013 jimharris Fix nvme(4) and nvd(4) to support non 512-byte sector sizes.

Recent testing with QEMU that has variable sector size support for
NVMe uncovered some of these issues. Chatham prototype boards supported
only 512 byte sectors.

Sponsored by: Intel
Reviewed by: carl
MFC after: 3 days
diff 253474 Fri Jul 19 21:34:20 MDT 2013 jimharris Fix nvme(4) and nvd(4) to support non 512-byte sector sizes.

Recent testing with QEMU that has variable sector size support for
NVMe uncovered some of these issues. Chatham prototype boards supported
only 512 byte sectors.

Sponsored by: Intel
Reviewed by: carl
MFC after: 3 days
diff 248977 Mon Apr 01 16:35:11 MDT 2013 jimharris Add unmapped bio support to nvme(4) and nvd(4).

Sponsored by: Intel
diff 248977 Mon Apr 01 16:35:11 MDT 2013 jimharris Add unmapped bio support to nvme(4) and nvd(4).

Sponsored by: Intel
240616 Mon Sep 17 19:31:27 MDT 2012 jimharris This is the first of several commits which will add NVM Express (NVMe)
support to FreeBSD. A full description of the overall functionality
being added is below. nvmexpress.org defines NVM Express as "an optimized
register interface, command set and feature set fo PCI Express (PCIe)-based
Solid-State Drives (SSDs)."

This commit adds nvme(4) and nvd(4) driver source code and Makefiles
to the tree.

Full NVMe functionality description:
Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe)
device support.

There will continue to be ongoing work on NVM Express support, but there
is more than enough to allow for evaluation of pre-production NVM Express
devices as well as soliciting feedback. Questions and feedback are welcome.

nvme(4) implements NVMe hardware abstraction and is a provider of NVMe
namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN.
nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks.
nvmecontrol(8) is used for NVMe configuration and management.

The following are currently supported:
nvme(4)
- full mandatory NVM command set support
- per-CPU IO queues (enabled by default but configurable)
- per-queue sysctls for statistics and full command/completion queue
dumps for debugging
- registration API for NVMe namespace consumers
- I/O error handling (except for timeoutsee below)
- compilation switches for support back to stable-7

nvd(4)
- BIO_DELETE and BIO_FLUSH (if supported by controller)
- proper BIO_ORDERED handling

nvmecontrol(8)
- devlist: list NVMe controllers and their namespaces
- identify: display controller or namespace identify data in
human-readable or hex format
- perftest: quick and dirty performance test to measure raw
performance of NVMe device without userspace/physio/GEOM
overhead

The following are still work in progress and will be completed over the
next 3-6 months in rough priority order:
- complete man pages
- firmware download and activation
- asynchronous error requests
- command timeout error handling
- controller resets
- nvmecontrol(8) log page retrieval

This has been primarily tested on amd64, with light testing on i386. I
would be happy to provide assistance to anyone interested in porting
this to other architectures, but am not currently planning to do this
work myself. Big-endian and dmamap sync for command/completion queues
are the main areas that would need to be addressed.

The nvme(4) driver currently has references to Chatham, which is an
Intel-developed prototype board which is not fully spec compliant.
These references will all be removed over time.

Sponsored by: Intel
Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
240616 Mon Sep 17 19:31:27 MDT 2012 jimharris This is the first of several commits which will add NVM Express (NVMe)
support to FreeBSD. A full description of the overall functionality
being added is below. nvmexpress.org defines NVM Express as "an optimized
register interface, command set and feature set fo PCI Express (PCIe)-based
Solid-State Drives (SSDs)."

This commit adds nvme(4) and nvd(4) driver source code and Makefiles
to the tree.

Full NVMe functionality description:
Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe)
device support.

There will continue to be ongoing work on NVM Express support, but there
is more than enough to allow for evaluation of pre-production NVM Express
devices as well as soliciting feedback. Questions and feedback are welcome.

nvme(4) implements NVMe hardware abstraction and is a provider of NVMe
namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN.
nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks.
nvmecontrol(8) is used for NVMe configuration and management.

The following are currently supported:
nvme(4)
- full mandatory NVM command set support
- per-CPU IO queues (enabled by default but configurable)
- per-queue sysctls for statistics and full command/completion queue
dumps for debugging
- registration API for NVMe namespace consumers
- I/O error handling (except for timeoutsee below)
- compilation switches for support back to stable-7

nvd(4)
- BIO_DELETE and BIO_FLUSH (if supported by controller)
- proper BIO_ORDERED handling

nvmecontrol(8)
- devlist: list NVMe controllers and their namespaces
- identify: display controller or namespace identify data in
human-readable or hex format
- perftest: quick and dirty performance test to measure raw
performance of NVMe device without userspace/physio/GEOM
overhead

The following are still work in progress and will be completed over the
next 3-6 months in rough priority order:
- complete man pages
- firmware download and activation
- asynchronous error requests
- command timeout error handling
- controller resets
- nvmecontrol(8) log page retrieval

This has been primarily tested on amd64, with light testing on i386. I
would be happy to provide assistance to anyone interested in porting
this to other architectures, but am not currently planning to do this
work myself. Big-endian and dmamap sync for command/completion queues
are the main areas that would need to be addressed.

The nvme(4) driver currently has references to Chatham, which is an
Intel-developed prototype board which is not fully spec compliant.
These references will all be removed over time.

Sponsored by: Intel
Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
240616 Mon Sep 17 19:31:27 MDT 2012 jimharris This is the first of several commits which will add NVM Express (NVMe)
support to FreeBSD. A full description of the overall functionality
being added is below. nvmexpress.org defines NVM Express as "an optimized
register interface, command set and feature set fo PCI Express (PCIe)-based
Solid-State Drives (SSDs)."

This commit adds nvme(4) and nvd(4) driver source code and Makefiles
to the tree.

Full NVMe functionality description:
Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe)
device support.

There will continue to be ongoing work on NVM Express support, but there
is more than enough to allow for evaluation of pre-production NVM Express
devices as well as soliciting feedback. Questions and feedback are welcome.

nvme(4) implements NVMe hardware abstraction and is a provider of NVMe
namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN.
nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks.
nvmecontrol(8) is used for NVMe configuration and management.

The following are currently supported:
nvme(4)
- full mandatory NVM command set support
- per-CPU IO queues (enabled by default but configurable)
- per-queue sysctls for statistics and full command/completion queue
dumps for debugging
- registration API for NVMe namespace consumers
- I/O error handling (except for timeoutsee below)
- compilation switches for support back to stable-7

nvd(4)
- BIO_DELETE and BIO_FLUSH (if supported by controller)
- proper BIO_ORDERED handling

nvmecontrol(8)
- devlist: list NVMe controllers and their namespaces
- identify: display controller or namespace identify data in
human-readable or hex format
- perftest: quick and dirty performance test to measure raw
performance of NVMe device without userspace/physio/GEOM
overhead

The following are still work in progress and will be completed over the
next 3-6 months in rough priority order:
- complete man pages
- firmware download and activation
- asynchronous error requests
- command timeout error handling
- controller resets
- nvmecontrol(8) log page retrieval

This has been primarily tested on amd64, with light testing on i386. I
would be happy to provide assistance to anyone interested in porting
this to other architectures, but am not currently planning to do this
work myself. Big-endian and dmamap sync for command/completion queues
are the main areas that would need to be addressed.

The nvme(4) driver currently has references to Chatham, which is an
Intel-developed prototype board which is not fully spec compliant.
These references will all be removed over time.

Sponsored by: Intel
Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
240616 Mon Sep 17 19:31:27 MDT 2012 jimharris This is the first of several commits which will add NVM Express (NVMe)
support to FreeBSD. A full description of the overall functionality
being added is below. nvmexpress.org defines NVM Express as "an optimized
register interface, command set and feature set fo PCI Express (PCIe)-based
Solid-State Drives (SSDs)."

This commit adds nvme(4) and nvd(4) driver source code and Makefiles
to the tree.

Full NVMe functionality description:
Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe)
device support.

There will continue to be ongoing work on NVM Express support, but there
is more than enough to allow for evaluation of pre-production NVM Express
devices as well as soliciting feedback. Questions and feedback are welcome.

nvme(4) implements NVMe hardware abstraction and is a provider of NVMe
namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN.
nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks.
nvmecontrol(8) is used for NVMe configuration and management.

The following are currently supported:
nvme(4)
- full mandatory NVM command set support
- per-CPU IO queues (enabled by default but configurable)
- per-queue sysctls for statistics and full command/completion queue
dumps for debugging
- registration API for NVMe namespace consumers
- I/O error handling (except for timeoutsee below)
- compilation switches for support back to stable-7

nvd(4)
- BIO_DELETE and BIO_FLUSH (if supported by controller)
- proper BIO_ORDERED handling

nvmecontrol(8)
- devlist: list NVMe controllers and their namespaces
- identify: display controller or namespace identify data in
human-readable or hex format
- perftest: quick and dirty performance test to measure raw
performance of NVMe device without userspace/physio/GEOM
overhead

The following are still work in progress and will be completed over the
next 3-6 months in rough priority order:
- complete man pages
- firmware download and activation
- asynchronous error requests
- command timeout error handling
- controller resets
- nvmecontrol(8) log page retrieval

This has been primarily tested on amd64, with light testing on i386. I
would be happy to provide assistance to anyone interested in porting
this to other architectures, but am not currently planning to do this
work myself. Big-endian and dmamap sync for command/completion queues
are the main areas that would need to be addressed.

The nvme(4) driver currently has references to Chatham, which is an
Intel-developed prototype board which is not fully spec compliant.
These references will all be removed over time.

Sponsored by: Intel
Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
240616 Mon Sep 17 19:31:27 MDT 2012 jimharris This is the first of several commits which will add NVM Express (NVMe)
support to FreeBSD. A full description of the overall functionality
being added is below. nvmexpress.org defines NVM Express as "an optimized
register interface, command set and feature set fo PCI Express (PCIe)-based
Solid-State Drives (SSDs)."

This commit adds nvme(4) and nvd(4) driver source code and Makefiles
to the tree.

Full NVMe functionality description:
Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe)
device support.

There will continue to be ongoing work on NVM Express support, but there
is more than enough to allow for evaluation of pre-production NVM Express
devices as well as soliciting feedback. Questions and feedback are welcome.

nvme(4) implements NVMe hardware abstraction and is a provider of NVMe
namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN.
nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks.
nvmecontrol(8) is used for NVMe configuration and management.

The following are currently supported:
nvme(4)
- full mandatory NVM command set support
- per-CPU IO queues (enabled by default but configurable)
- per-queue sysctls for statistics and full command/completion queue
dumps for debugging
- registration API for NVMe namespace consumers
- I/O error handling (except for timeoutsee below)
- compilation switches for support back to stable-7

nvd(4)
- BIO_DELETE and BIO_FLUSH (if supported by controller)
- proper BIO_ORDERED handling

nvmecontrol(8)
- devlist: list NVMe controllers and their namespaces
- identify: display controller or namespace identify data in
human-readable or hex format
- perftest: quick and dirty performance test to measure raw
performance of NVMe device without userspace/physio/GEOM
overhead

The following are still work in progress and will be completed over the
next 3-6 months in rough priority order:
- complete man pages
- firmware download and activation
- asynchronous error requests
- command timeout error handling
- controller resets
- nvmecontrol(8) log page retrieval

This has been primarily tested on amd64, with light testing on i386. I
would be happy to provide assistance to anyone interested in porting
this to other architectures, but am not currently planning to do this
work myself. Big-endian and dmamap sync for command/completion queues
are the main areas that would need to be addressed.

The nvme(4) driver currently has references to Chatham, which is an
Intel-developed prototype board which is not fully spec compliant.
These references will all be removed over time.

Sponsored by: Intel
Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
240616 Mon Sep 17 19:31:27 MDT 2012 jimharris This is the first of several commits which will add NVM Express (NVMe)
support to FreeBSD. A full description of the overall functionality
being added is below. nvmexpress.org defines NVM Express as "an optimized
register interface, command set and feature set fo PCI Express (PCIe)-based
Solid-State Drives (SSDs)."

This commit adds nvme(4) and nvd(4) driver source code and Makefiles
to the tree.

Full NVMe functionality description:
Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe)
device support.

There will continue to be ongoing work on NVM Express support, but there
is more than enough to allow for evaluation of pre-production NVM Express
devices as well as soliciting feedback. Questions and feedback are welcome.

nvme(4) implements NVMe hardware abstraction and is a provider of NVMe
namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN.
nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks.
nvmecontrol(8) is used for NVMe configuration and management.

The following are currently supported:
nvme(4)
- full mandatory NVM command set support
- per-CPU IO queues (enabled by default but configurable)
- per-queue sysctls for statistics and full command/completion queue
dumps for debugging
- registration API for NVMe namespace consumers
- I/O error handling (except for timeoutsee below)
- compilation switches for support back to stable-7

nvd(4)
- BIO_DELETE and BIO_FLUSH (if supported by controller)
- proper BIO_ORDERED handling

nvmecontrol(8)
- devlist: list NVMe controllers and their namespaces
- identify: display controller or namespace identify data in
human-readable or hex format
- perftest: quick and dirty performance test to measure raw
performance of NVMe device without userspace/physio/GEOM
overhead

The following are still work in progress and will be completed over the
next 3-6 months in rough priority order:
- complete man pages
- firmware download and activation
- asynchronous error requests
- command timeout error handling
- controller resets
- nvmecontrol(8) log page retrieval

This has been primarily tested on amd64, with light testing on i386. I
would be happy to provide assistance to anyone interested in porting
this to other architectures, but am not currently planning to do this
work myself. Big-endian and dmamap sync for command/completion queues
are the main areas that would need to be addressed.

The nvme(4) driver currently has references to Chatham, which is an
Intel-developed prototype board which is not fully spec compliant.
These references will all be removed over time.

Sponsored by: Intel
Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
240616 Mon Sep 17 19:31:27 MDT 2012 jimharris This is the first of several commits which will add NVM Express (NVMe)
support to FreeBSD. A full description of the overall functionality
being added is below. nvmexpress.org defines NVM Express as "an optimized
register interface, command set and feature set fo PCI Express (PCIe)-based
Solid-State Drives (SSDs)."

This commit adds nvme(4) and nvd(4) driver source code and Makefiles
to the tree.

Full NVMe functionality description:
Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe)
device support.

There will continue to be ongoing work on NVM Express support, but there
is more than enough to allow for evaluation of pre-production NVM Express
devices as well as soliciting feedback. Questions and feedback are welcome.

nvme(4) implements NVMe hardware abstraction and is a provider of NVMe
namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN.
nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks.
nvmecontrol(8) is used for NVMe configuration and management.

The following are currently supported:
nvme(4)
- full mandatory NVM command set support
- per-CPU IO queues (enabled by default but configurable)
- per-queue sysctls for statistics and full command/completion queue
dumps for debugging
- registration API for NVMe namespace consumers
- I/O error handling (except for timeoutsee below)
- compilation switches for support back to stable-7

nvd(4)
- BIO_DELETE and BIO_FLUSH (if supported by controller)
- proper BIO_ORDERED handling

nvmecontrol(8)
- devlist: list NVMe controllers and their namespaces
- identify: display controller or namespace identify data in
human-readable or hex format
- perftest: quick and dirty performance test to measure raw
performance of NVMe device without userspace/physio/GEOM
overhead

The following are still work in progress and will be completed over the
next 3-6 months in rough priority order:
- complete man pages
- firmware download and activation
- asynchronous error requests
- command timeout error handling
- controller resets
- nvmecontrol(8) log page retrieval

This has been primarily tested on amd64, with light testing on i386. I
would be happy to provide assistance to anyone interested in porting
this to other architectures, but am not currently planning to do this
work myself. Big-endian and dmamap sync for command/completion queues
are the main areas that would need to be addressed.

The nvme(4) driver currently has references to Chatham, which is an
Intel-developed prototype board which is not fully spec compliant.
These references will all be removed over time.

Sponsored by: Intel
Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
240616 Mon Sep 17 19:31:27 MDT 2012 jimharris This is the first of several commits which will add NVM Express (NVMe)
support to FreeBSD. A full description of the overall functionality
being added is below. nvmexpress.org defines NVM Express as "an optimized
register interface, command set and feature set fo PCI Express (PCIe)-based
Solid-State Drives (SSDs)."

This commit adds nvme(4) and nvd(4) driver source code and Makefiles
to the tree.

Full NVMe functionality description:
Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe)
device support.

There will continue to be ongoing work on NVM Express support, but there
is more than enough to allow for evaluation of pre-production NVM Express
devices as well as soliciting feedback. Questions and feedback are welcome.

nvme(4) implements NVMe hardware abstraction and is a provider of NVMe
namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN.
nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks.
nvmecontrol(8) is used for NVMe configuration and management.

The following are currently supported:
nvme(4)
- full mandatory NVM command set support
- per-CPU IO queues (enabled by default but configurable)
- per-queue sysctls for statistics and full command/completion queue
dumps for debugging
- registration API for NVMe namespace consumers
- I/O error handling (except for timeoutsee below)
- compilation switches for support back to stable-7

nvd(4)
- BIO_DELETE and BIO_FLUSH (if supported by controller)
- proper BIO_ORDERED handling

nvmecontrol(8)
- devlist: list NVMe controllers and their namespaces
- identify: display controller or namespace identify data in
human-readable or hex format
- perftest: quick and dirty performance test to measure raw
performance of NVMe device without userspace/physio/GEOM
overhead

The following are still work in progress and will be completed over the
next 3-6 months in rough priority order:
- complete man pages
- firmware download and activation
- asynchronous error requests
- command timeout error handling
- controller resets
- nvmecontrol(8) log page retrieval

This has been primarily tested on amd64, with light testing on i386. I
would be happy to provide assistance to anyone interested in porting
this to other architectures, but am not currently planning to do this
work myself. Big-endian and dmamap sync for command/completion queues
are the main areas that would need to be addressed.

The nvme(4) driver currently has references to Chatham, which is an
Intel-developed prototype board which is not fully spec compliant.
These references will all be removed over time.

Sponsored by: Intel
Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
240616 Mon Sep 17 19:31:27 MDT 2012 jimharris This is the first of several commits which will add NVM Express (NVMe)
support to FreeBSD. A full description of the overall functionality
being added is below. nvmexpress.org defines NVM Express as "an optimized
register interface, command set and feature set fo PCI Express (PCIe)-based
Solid-State Drives (SSDs)."

This commit adds nvme(4) and nvd(4) driver source code and Makefiles
to the tree.

Full NVMe functionality description:
Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe)
device support.

There will continue to be ongoing work on NVM Express support, but there
is more than enough to allow for evaluation of pre-production NVM Express
devices as well as soliciting feedback. Questions and feedback are welcome.

nvme(4) implements NVMe hardware abstraction and is a provider of NVMe
namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN.
nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks.
nvmecontrol(8) is used for NVMe configuration and management.

The following are currently supported:
nvme(4)
- full mandatory NVM command set support
- per-CPU IO queues (enabled by default but configurable)
- per-queue sysctls for statistics and full command/completion queue
dumps for debugging
- registration API for NVMe namespace consumers
- I/O error handling (except for timeoutsee below)
- compilation switches for support back to stable-7

nvd(4)
- BIO_DELETE and BIO_FLUSH (if supported by controller)
- proper BIO_ORDERED handling

nvmecontrol(8)
- devlist: list NVMe controllers and their namespaces
- identify: display controller or namespace identify data in
human-readable or hex format
- perftest: quick and dirty performance test to measure raw
performance of NVMe device without userspace/physio/GEOM
overhead

The following are still work in progress and will be completed over the
next 3-6 months in rough priority order:
- complete man pages
- firmware download and activation
- asynchronous error requests
- command timeout error handling
- controller resets
- nvmecontrol(8) log page retrieval

This has been primarily tested on amd64, with light testing on i386. I
would be happy to provide assistance to anyone interested in porting
this to other architectures, but am not currently planning to do this
work myself. Big-endian and dmamap sync for command/completion queues
are the main areas that would need to be addressed.

The nvme(4) driver currently has references to Chatham, which is an
Intel-developed prototype board which is not fully spec compliant.
These references will all be removed over time.

Sponsored by: Intel
Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>
/freebsd-10.2-release/tools/tools/cxgbetool/
H A Dcxgbetool.cdiff 269357 Thu Jul 31 23:17:55 MDT 2014 np MFC r269106:

Add a 'raw' parameter to the 'modinfo' subcommand. This is handy when
trying to figure out why a QSFP+/SFP+ connector or cable wasn't
identified correctly by cxgbe(4). Its output looks like this:

# cxgbetool t5nex0 modinfo 0 raw
00: 03 04 21 00 00 00 00 00 ..!. ....
08: 04 00 00 00 67 00 00 00 .... g...
10: 00 00 05 00 41 6d 70 68 .... Amph
18: 65 6e 6f 6c 20 20 20 20 enol
20: 20 20 20 20 00 41 50 48 .APH
28: 35 37 31 35 34 30 30 30 5715 4000
30: 33 20 20 20 20 20 20 20 3
38: 4b 20 20 20 01 00 00 fa K ....
40: 00 00 00 00 41 50 46 31 .... APF1
48: 30 30 34 30 30 33 30 30 0040 0300
50: 30 33 20 20 31 30 30 31 03 1001
58: 33 30 20 20 00 00 00 97 30 ....
diff 269357 Thu Jul 31 23:17:55 MDT 2014 np MFC r269106:

Add a 'raw' parameter to the 'modinfo' subcommand. This is handy when
trying to figure out why a QSFP+/SFP+ connector or cable wasn't
identified correctly by cxgbe(4). Its output looks like this:

# cxgbetool t5nex0 modinfo 0 raw
00: 03 04 21 00 00 00 00 00 ..!. ....
08: 04 00 00 00 67 00 00 00 .... g...
10: 00 00 05 00 41 6d 70 68 .... Amph
18: 65 6e 6f 6c 20 20 20 20 enol
20: 20 20 20 20 00 41 50 48 .APH
28: 35 37 31 35 34 30 30 30 5715 4000
30: 33 20 20 20 20 20 20 20 3
38: 4b 20 20 20 01 00 00 fa K ....
40: 00 00 00 00 41 50 46 31 .... APF1
48: 30 30 34 30 30 33 30 30 0040 0300
50: 30 33 20 20 31 30 30 31 03 1001
58: 33 30 20 20 00 00 00 97 30 ....
diff 259142 Mon Dec 09 22:53:32 MST 2013 np MFC r257654, r257772, r258441, r258689, r258698, r258879, r259048, and
r259103.

r257654:
cxgbe(4): Exclude MPS_RPLC_MAP_CTL (0x11114) from the register dump. Turns
out it's a write-only register with strange side effects on read.

r257772:
cxgbe(4): Tidy up the display for payload memory statistics (pm_stats).

r258441:
cxgbe(4): update the internal list of device features.

r258689:
Disable an assertion that relies on some code[1] that isn't in HEAD yet.

r258698:
cxgbetool: "modinfo" command to display SFP+ module information.

r258879:
cxgbe(4): T4_SET_SCHED_CLASS and T4_SET_SCHED_QUEUE ioctls to program
scheduling classes in the chip and to bind tx queue(s) to a scheduling
class respectively. These can be used for various kinds of tx traffic
throttling (to force selected tx queues to drain at a fixed Kbps rate,
or a % of the port's total bandwidth, or at a fixed pps rate, etc.).

r259048:
Two new cxgbetool subcommands to set up scheduler classes and to bind
them to NIC queues.

r259103:
cxgbe(4): save a copy of the RSS map for each port for the driver's use.
diff 259142 Mon Dec 09 22:53:32 MST 2013 np MFC r257654, r257772, r258441, r258689, r258698, r258879, r259048, and
r259103.

r257654:
cxgbe(4): Exclude MPS_RPLC_MAP_CTL (0x11114) from the register dump. Turns
out it's a write-only register with strange side effects on read.

r257772:
cxgbe(4): Tidy up the display for payload memory statistics (pm_stats).

r258441:
cxgbe(4): update the internal list of device features.

r258689:
Disable an assertion that relies on some code[1] that isn't in HEAD yet.

r258698:
cxgbetool: "modinfo" command to display SFP+ module information.

r258879:
cxgbe(4): T4_SET_SCHED_CLASS and T4_SET_SCHED_QUEUE ioctls to program
scheduling classes in the chip and to bind tx queue(s) to a scheduling
class respectively. These can be used for various kinds of tx traffic
throttling (to force selected tx queues to drain at a fixed Kbps rate,
or a % of the port's total bandwidth, or at a fixed pps rate, etc.).

r259048:
Two new cxgbetool subcommands to set up scheduler classes and to bind
them to NIC queues.

r259103:
cxgbe(4): save a copy of the RSS map for each port for the driver's use.
diff 259142 Mon Dec 09 22:53:32 MST 2013 np MFC r257654, r257772, r258441, r258689, r258698, r258879, r259048, and
r259103.

r257654:
cxgbe(4): Exclude MPS_RPLC_MAP_CTL (0x11114) from the register dump. Turns
out it's a write-only register with strange side effects on read.

r257772:
cxgbe(4): Tidy up the display for payload memory statistics (pm_stats).

r258441:
cxgbe(4): update the internal list of device features.

r258689:
Disable an assertion that relies on some code[1] that isn't in HEAD yet.

r258698:
cxgbetool: "modinfo" command to display SFP+ module information.

r258879:
cxgbe(4): T4_SET_SCHED_CLASS and T4_SET_SCHED_QUEUE ioctls to program
scheduling classes in the chip and to bind tx queue(s) to a scheduling
class respectively. These can be used for various kinds of tx traffic
throttling (to force selected tx queues to drain at a fixed Kbps rate,
or a % of the port's total bandwidth, or at a fixed pps rate, etc.).

r259048:
Two new cxgbetool subcommands to set up scheduler classes and to bind
them to NIC queues.

r259103:
cxgbe(4): save a copy of the RSS map for each port for the driver's use.
diff 259142 Mon Dec 09 22:53:32 MST 2013 np MFC r257654, r257772, r258441, r258689, r258698, r258879, r259048, and
r259103.

r257654:
cxgbe(4): Exclude MPS_RPLC_MAP_CTL (0x11114) from the register dump. Turns
out it's a write-only register with strange side effects on read.

r257772:
cxgbe(4): Tidy up the display for payload memory statistics (pm_stats).

r258441:
cxgbe(4): update the internal list of device features.

r258689:
Disable an assertion that relies on some code[1] that isn't in HEAD yet.

r258698:
cxgbetool: "modinfo" command to display SFP+ module information.

r258879:
cxgbe(4): T4_SET_SCHED_CLASS and T4_SET_SCHED_QUEUE ioctls to program
scheduling classes in the chip and to bind tx queue(s) to a scheduling
class respectively. These can be used for various kinds of tx traffic
throttling (to force selected tx queues to drain at a fixed Kbps rate,
or a % of the port's total bandwidth, or at a fixed pps rate, etc.).

r259048:
Two new cxgbetool subcommands to set up scheduler classes and to bind
them to NIC queues.

r259103:
cxgbe(4): save a copy of the RSS map for each port for the driver's use.
diff 259142 Mon Dec 09 22:53:32 MST 2013 np MFC r257654, r257772, r258441, r258689, r258698, r258879, r259048, and
r259103.

r257654:
cxgbe(4): Exclude MPS_RPLC_MAP_CTL (0x11114) from the register dump. Turns
out it's a write-only register with strange side effects on read.

r257772:
cxgbe(4): Tidy up the display for payload memory statistics (pm_stats).

r258441:
cxgbe(4): update the internal list of device features.

r258689:
Disable an assertion that relies on some code[1] that isn't in HEAD yet.

r258698:
cxgbetool: "modinfo" command to display SFP+ module information.

r258879:
cxgbe(4): T4_SET_SCHED_CLASS and T4_SET_SCHED_QUEUE ioctls to program
scheduling classes in the chip and to bind tx queue(s) to a scheduling
class respectively. These can be used for various kinds of tx traffic
throttling (to force selected tx queues to drain at a fixed Kbps rate,
or a % of the port's total bandwidth, or at a fixed pps rate, etc.).

r259048:
Two new cxgbetool subcommands to set up scheduler classes and to bind
them to NIC queues.

r259103:
cxgbe(4): save a copy of the RSS map for each port for the driver's use.
diff 253691 Fri Jul 26 22:11:14 MDT 2013 np Add support for packet-sniffing tracers to cxgbe(4). This works with
all T4 and T5 based cards and is useful for analyzing TSO, LRO, TOE, and
for general purpose monitoring without tapping any cxgbe or cxl ifnet
directly.

Tracers on the T4/T5 chips provide access to Ethernet frames exactly as
they were received from or transmitted on the wire. On transmit, a
tracer will capture a frame after TSO segmentation, hw VLAN tag
insertion, hw L3 & L4 checksum insertion, etc. It will also capture
frames generated by the TCP offload engine (TOE traffic is normally
invisible to the kernel). On receive, a tracer will capture a frame
before hw VLAN extraction, runt filtering, other badness filtering,
before the steering/drop/L2-rewrite filters or the TOE have had a go at
it, and of course before sw LRO in the driver.

There are 4 tracers on a chip. A tracer can trace only in one direction
(tx or rx). For now cxgbetool will set up tracers to capture the first
128B of every transmitted or received frame on a given port. This is a
small subset of what the hardware can do. A pseudo ifnet with the same
name as the nexus driver (t4nex0 or t5nex0) will be created for tracing.
The data delivered to this ifnet is an additional copy made inside the
chip. Normal delivery to cxgbe<n> or cxl<n> will be made as usual.

/* watch cxl0, which is the first port hanging off t5nex0. */
# cxgbetool t5nex0 tracer 0 tx0 (watch what cxl0 is transmitting)
# cxgbetool t5nex0 tracer 1 rx0 (watch what cxl0 is receiving)
# cxgbetool t5nex0 tracer list
# tcpdump -i t5nex0 <== all that cxl0 sees and puts on the wire

If you were doing TSO, a tcpdump on cxl0 may have shown you ~64K
"frames" with no L3/L4 checksum but this will show you the frames that
were actually transmitted.

/* all done */
# cxgbetool t5nex0 tracer 0 disable
# cxgbetool t5nex0 tracer 1 disable
# cxgbetool t5nex0 tracer list
# ifconfig t5nex0 destroy
diff 253691 Fri Jul 26 22:11:14 MDT 2013 np Add support for packet-sniffing tracers to cxgbe(4). This works with
all T4 and T5 based cards and is useful for analyzing TSO, LRO, TOE, and
for general purpose monitoring without tapping any cxgbe or cxl ifnet
directly.

Tracers on the T4/T5 chips provide access to Ethernet frames exactly as
they were received from or transmitted on the wire. On transmit, a
tracer will capture a frame after TSO segmentation, hw VLAN tag
insertion, hw L3 & L4 checksum insertion, etc. It will also capture
frames generated by the TCP offload engine (TOE traffic is normally
invisible to the kernel). On receive, a tracer will capture a frame
before hw VLAN extraction, runt filtering, other badness filtering,
before the steering/drop/L2-rewrite filters or the TOE have had a go at
it, and of course before sw LRO in the driver.

There are 4 tracers on a chip. A tracer can trace only in one direction
(tx or rx). For now cxgbetool will set up tracers to capture the first
128B of every transmitted or received frame on a given port. This is a
small subset of what the hardware can do. A pseudo ifnet with the same
name as the nexus driver (t4nex0 or t5nex0) will be created for tracing.
The data delivered to this ifnet is an additional copy made inside the
chip. Normal delivery to cxgbe<n> or cxl<n> will be made as usual.

/* watch cxl0, which is the first port hanging off t5nex0. */
# cxgbetool t5nex0 tracer 0 tx0 (watch what cxl0 is transmitting)
# cxgbetool t5nex0 tracer 1 rx0 (watch what cxl0 is receiving)
# cxgbetool t5nex0 tracer list
# tcpdump -i t5nex0 <== all that cxl0 sees and puts on the wire

If you were doing TSO, a tcpdump on cxl0 may have shown you ~64K
"frames" with no L3/L4 checksum but this will show you the frames that
were actually transmitted.

/* all done */
# cxgbetool t5nex0 tracer 0 disable
# cxgbetool t5nex0 tracer 1 disable
# cxgbetool t5nex0 tracer list
# ifconfig t5nex0 destroy
diff 248925 Sat Mar 30 02:34:15 MDT 2013 np cxgbe(4): Add support for Chelsio's Terminator 5 (aka T5) ASIC. This
includes support for the NIC and TOE features of the 40G, 10G, and
1G/100M cards based on the T5.

The ASIC is mostly backward compatible with the Terminator 4 so cxgbe(4)
has been updated instead of writing a brand new driver. T5 cards will
show up as cxl (short for cxlgb) ports attached to the t5nex bus driver.

Sponsored by: Chelsio
diff 248925 Sat Mar 30 02:34:15 MDT 2013 np cxgbe(4): Add support for Chelsio's Terminator 5 (aka T5) ASIC. This
includes support for the NIC and TOE features of the 40G, 10G, and
1G/100M cards based on the T5.

The ASIC is mostly backward compatible with the Terminator 4 so cxgbe(4)
has been updated instead of writing a brand new driver. T5 cards will
show up as cxl (short for cxlgb) ports attached to the t5nex bus driver.

Sponsored by: Chelsio
diff 248925 Sat Mar 30 02:34:15 MDT 2013 np cxgbe(4): Add support for Chelsio's Terminator 5 (aka T5) ASIC. This
includes support for the NIC and TOE features of the 40G, 10G, and
1G/100M cards based on the T5.

The ASIC is mostly backward compatible with the Terminator 4 so cxgbe(4)
has been updated instead of writing a brand new driver. T5 cards will
show up as cxl (short for cxlgb) ports attached to the t5nex bus driver.

Sponsored by: Chelsio
/freebsd-10.2-release/sbin/mdconfig/
H A DMakefilediff 157160 Sun Mar 26 23:21:11 MST 2006 wkoszek Teach md(4) and mdconfig(8) how to understand XML. Right now there won't be
a problem with listing large number of md(4) devices. Either 'list' or
'query' mode uses XML.

Additionally, new functionality was introduced. It's possible to pass
multiple devices to -u:

# ./mdconfig -l -u md0,md1

Approved by: cognet (mentor)
diff 157160 Sun Mar 26 23:21:11 MST 2006 wkoszek Teach md(4) and mdconfig(8) how to understand XML. Right now there won't be
a problem with listing large number of md(4) devices. Either 'list' or
'query' mode uses XML.

Additionally, new functionality was introduced. It's possible to pass
multiple devices to -u:

# ./mdconfig -l -u md0,md1

Approved by: cognet (mentor)
diff 135340 Thu Sep 16 21:32:13 MDT 2004 pjd - Make md(4) 64-bit clean.
After this change it should be possible to use very big md(4) devices.
- Clean up and simplify the code a bit.
- Use humanize_number(3) to print size of md(4) devices.
- Add 't' suffix which stands for terabyte.
- Make '-S' to really work with all types of devices.
- Other minor changes.
diff 135340 Thu Sep 16 21:32:13 MDT 2004 pjd - Make md(4) 64-bit clean.
After this change it should be possible to use very big md(4) devices.
- Clean up and simplify the code a bit.
- Use humanize_number(3) to print size of md(4) devices.
- Add 't' suffix which stands for terabyte.
- Make '-S' to really work with all types of devices.
- Other minor changes.
diff 135340 Thu Sep 16 21:32:13 MDT 2004 pjd - Make md(4) 64-bit clean.
After this change it should be possible to use very big md(4) devices.
- Clean up and simplify the code a bit.
- Use humanize_number(3) to print size of md(4) devices.
- Add 't' suffix which stands for terabyte.
- Make '-S' to really work with all types of devices.
- Other minor changes.
diff 74047 Fri Mar 09 20:09:28 MST 2001 phk Make md(4) and mdconfig(8) take over the role of vn(4) and vnconfig(8)
entirely as previously advertised.

md(4) adopted all assets of vn(4) some time back and has proper devfs
support and cloning abilities to boot.
diff 74047 Fri Mar 09 20:09:28 MST 2001 phk Make md(4) and mdconfig(8) take over the role of vn(4) and vnconfig(8)
entirely as previously advertised.

md(4) adopted all assets of vn(4) some time back and has proper devfs
support and cloning abilities to boot.
diff 74047 Fri Mar 09 20:09:28 MST 2001 phk Make md(4) and mdconfig(8) take over the role of vn(4) and vnconfig(8)
entirely as previously advertised.

md(4) adopted all assets of vn(4) some time back and has proper devfs
support and cloning abilities to boot.
diff 74047 Fri Mar 09 20:09:28 MST 2001 phk Make md(4) and mdconfig(8) take over the role of vn(4) and vnconfig(8)
entirely as previously advertised.

md(4) adopted all assets of vn(4) some time back and has proper devfs
support and cloning abilities to boot.
70448 Thu Dec 28 20:57:57 MST 2000 phk Preliminary scaffolding for the new integrated vn+md device driver.

I decided to work on the md(4) driver and integrate the vn(4)
functionality into it mainly based on the name being more suitable.
Ideally 'vd' as in "virtual disk" would probably be the most logical
but our sound-master pointed out that this would cause uncontrollable
fits of giggles in the brits. Another complication would the needed
changes to the ramdisk boot/root functionality.

The vn driver will stay around for some time after I complete this
merge for transition reasons, and I'll make it whine to people that
they should migrate to the md(4) driver for some time before it
dies.

The kernel part of the new md(4) driver will be committed after more
testing.
70448 Thu Dec 28 20:57:57 MST 2000 phk Preliminary scaffolding for the new integrated vn+md device driver.

I decided to work on the md(4) driver and integrate the vn(4)
functionality into it mainly based on the name being more suitable.
Ideally 'vd' as in "virtual disk" would probably be the most logical
but our sound-master pointed out that this would cause uncontrollable
fits of giggles in the brits. Another complication would the needed
changes to the ramdisk boot/root functionality.

The vn driver will stay around for some time after I complete this
merge for transition reasons, and I'll make it whine to people that
they should migrate to the md(4) driver for some time before it
dies.

The kernel part of the new md(4) driver will be committed after more
testing.
70448 Thu Dec 28 20:57:57 MST 2000 phk Preliminary scaffolding for the new integrated vn+md device driver.

I decided to work on the md(4) driver and integrate the vn(4)
functionality into it mainly based on the name being more suitable.
Ideally 'vd' as in "virtual disk" would probably be the most logical
but our sound-master pointed out that this would cause uncontrollable
fits of giggles in the brits. Another complication would the needed
changes to the ramdisk boot/root functionality.

The vn driver will stay around for some time after I complete this
merge for transition reasons, and I'll make it whine to people that
they should migrate to the md(4) driver for some time before it
dies.

The kernel part of the new md(4) driver will be committed after more
testing.
70448 Thu Dec 28 20:57:57 MST 2000 phk Preliminary scaffolding for the new integrated vn+md device driver.

I decided to work on the md(4) driver and integrate the vn(4)
functionality into it mainly based on the name being more suitable.
Ideally 'vd' as in "virtual disk" would probably be the most logical
but our sound-master pointed out that this would cause uncontrollable
fits of giggles in the brits. Another complication would the needed
changes to the ramdisk boot/root functionality.

The vn driver will stay around for some time after I complete this
merge for transition reasons, and I'll make it whine to people that
they should migrate to the md(4) driver for some time before it
dies.

The kernel part of the new md(4) driver will be committed after more
testing.
/freebsd-10.2-release/sys/dev/iicbus/
H A Diiconf.cdiff 228257 Sun Dec 04 12:00:45 MST 2011 adrian Allow the i2c node requirements to be slightly relaxed.

These realtek switch PHYs speak a variant of i2c with some slightly
modified handling.

From the submitter, slightly modified now that some further digging
has been done:

The I2C framework makes a assumption that the read/not-write bit of the first
byte (the address) indicates whether reads or writes are to follow.

The RTL8366 family uses the bus: after sending the address+read/not-write byte,
two register address bytes are sent, then the 16-bit register value is sent
or received. While the register write access can be performed as a 4-byte
write, the read access requires the read bit to be set, but the first two bytes
for the register address then need to be transmitted.

This patch maintains the i2c protocol behaviour but allows it to be relaxed
(for these kinds of switch PHYs, and whatever else Realtek may do with this
almost-but-not-quite i2c bus) - by setting the "strict" hint to 0.
The "strict" hint defaults to 1.

Submitted by: Stefan Bethke <stb@lassitu.de>
diff 181304 Mon Aug 04 21:16:00 MDT 2008 jhb Add locking to the core iicbus(4) drivers:
- Add an sx lock to the iic(4) driver to serialize open(), close(), read(),
and write and to protect sc_addr and sc_count in the softc.
- Use cdev->si_drv1 instead of using the minor number of the cdev to
lookup the softc via newbus in iic(4).
- Store the device_t in the softc to avoid a similar detour via minor
numbers in iic(4).
- Only add at most one instance of iic(4) and iicsmb(4) to each iicbus(4)
instance, and do it in the child driver.
- Add a mutex to the iicbus(4) softc to synchronize the request/release bus
stuff.
- Use __BUS_ACCESSOR() for IICBUS_ACCESSOR() instead of rolling our own.
- Add a mutex to the iicsmb(4) softc to protect softc state updated in the
interrupt handler.
- Remove Giant from all the smbus methods in iicsmb(4) now that all the
iicbus(4) backend is locked.
diff 181304 Mon Aug 04 21:16:00 MDT 2008 jhb Add locking to the core iicbus(4) drivers:
- Add an sx lock to the iic(4) driver to serialize open(), close(), read(),
and write and to protect sc_addr and sc_count in the softc.
- Use cdev->si_drv1 instead of using the minor number of the cdev to
lookup the softc via newbus in iic(4).
- Store the device_t in the softc to avoid a similar detour via minor
numbers in iic(4).
- Only add at most one instance of iic(4) and iicsmb(4) to each iicbus(4)
instance, and do it in the child driver.
- Add a mutex to the iicbus(4) softc to synchronize the request/release bus
stuff.
- Use __BUS_ACCESSOR() for IICBUS_ACCESSOR() instead of rolling our own.
- Add a mutex to the iicsmb(4) softc to protect softc state updated in the
interrupt handler.
- Remove Giant from all the smbus methods in iicsmb(4) now that all the
iicbus(4) backend is locked.
diff 181304 Mon Aug 04 21:16:00 MDT 2008 jhb Add locking to the core iicbus(4) drivers:
- Add an sx lock to the iic(4) driver to serialize open(), close(), read(),
and write and to protect sc_addr and sc_count in the softc.
- Use cdev->si_drv1 instead of using the minor number of the cdev to
lookup the softc via newbus in iic(4).
- Store the device_t in the softc to avoid a similar detour via minor
numbers in iic(4).
- Only add at most one instance of iic(4) and iicsmb(4) to each iicbus(4)
instance, and do it in the child driver.
- Add a mutex to the iicbus(4) softc to synchronize the request/release bus
stuff.
- Use __BUS_ACCESSOR() for IICBUS_ACCESSOR() instead of rolling our own.
- Add a mutex to the iicsmb(4) softc to protect softc state updated in the
interrupt handler.
- Remove Giant from all the smbus methods in iicsmb(4) now that all the
iicbus(4) backend is locked.
diff 181304 Mon Aug 04 21:16:00 MDT 2008 jhb Add locking to the core iicbus(4) drivers:
- Add an sx lock to the iic(4) driver to serialize open(), close(), read(),
and write and to protect sc_addr and sc_count in the softc.
- Use cdev->si_drv1 instead of using the minor number of the cdev to
lookup the softc via newbus in iic(4).
- Store the device_t in the softc to avoid a similar detour via minor
numbers in iic(4).
- Only add at most one instance of iic(4) and iicsmb(4) to each iicbus(4)
instance, and do it in the child driver.
- Add a mutex to the iicbus(4) softc to synchronize the request/release bus
stuff.
- Use __BUS_ACCESSOR() for IICBUS_ACCESSOR() instead of rolling our own.
- Add a mutex to the iicsmb(4) softc to protect softc state updated in the
interrupt handler.
- Remove Giant from all the smbus methods in iicsmb(4) now that all the
iicbus(4) backend is locked.
diff 181304 Mon Aug 04 21:16:00 MDT 2008 jhb Add locking to the core iicbus(4) drivers:
- Add an sx lock to the iic(4) driver to serialize open(), close(), read(),
and write and to protect sc_addr and sc_count in the softc.
- Use cdev->si_drv1 instead of using the minor number of the cdev to
lookup the softc via newbus in iic(4).
- Store the device_t in the softc to avoid a similar detour via minor
numbers in iic(4).
- Only add at most one instance of iic(4) and iicsmb(4) to each iicbus(4)
instance, and do it in the child driver.
- Add a mutex to the iicbus(4) softc to synchronize the request/release bus
stuff.
- Use __BUS_ACCESSOR() for IICBUS_ACCESSOR() instead of rolling our own.
- Add a mutex to the iicsmb(4) softc to protect softc state updated in the
interrupt handler.
- Remove Giant from all the smbus methods in iicsmb(4) now that all the
iicbus(4) backend is locked.
diff 181304 Mon Aug 04 21:16:00 MDT 2008 jhb Add locking to the core iicbus(4) drivers:
- Add an sx lock to the iic(4) driver to serialize open(), close(), read(),
and write and to protect sc_addr and sc_count in the softc.
- Use cdev->si_drv1 instead of using the minor number of the cdev to
lookup the softc via newbus in iic(4).
- Store the device_t in the softc to avoid a similar detour via minor
numbers in iic(4).
- Only add at most one instance of iic(4) and iicsmb(4) to each iicbus(4)
instance, and do it in the child driver.
- Add a mutex to the iicbus(4) softc to synchronize the request/release bus
stuff.
- Use __BUS_ACCESSOR() for IICBUS_ACCESSOR() instead of rolling our own.
- Add a mutex to the iicsmb(4) softc to protect softc state updated in the
interrupt handler.
- Remove Giant from all the smbus methods in iicsmb(4) now that all the
iicbus(4) backend is locked.
diff 181304 Mon Aug 04 21:16:00 MDT 2008 jhb Add locking to the core iicbus(4) drivers:
- Add an sx lock to the iic(4) driver to serialize open(), close(), read(),
and write and to protect sc_addr and sc_count in the softc.
- Use cdev->si_drv1 instead of using the minor number of the cdev to
lookup the softc via newbus in iic(4).
- Store the device_t in the softc to avoid a similar detour via minor
numbers in iic(4).
- Only add at most one instance of iic(4) and iicsmb(4) to each iicbus(4)
instance, and do it in the child driver.
- Add a mutex to the iicbus(4) softc to synchronize the request/release bus
stuff.
- Use __BUS_ACCESSOR() for IICBUS_ACCESSOR() instead of rolling our own.
- Add a mutex to the iicsmb(4) softc to protect softc state updated in the
interrupt handler.
- Remove Giant from all the smbus methods in iicsmb(4) now that all the
iicbus(4) backend is locked.
diff 181304 Mon Aug 04 21:16:00 MDT 2008 jhb Add locking to the core iicbus(4) drivers:
- Add an sx lock to the iic(4) driver to serialize open(), close(), read(),
and write and to protect sc_addr and sc_count in the softc.
- Use cdev->si_drv1 instead of using the minor number of the cdev to
lookup the softc via newbus in iic(4).
- Store the device_t in the softc to avoid a similar detour via minor
numbers in iic(4).
- Only add at most one instance of iic(4) and iicsmb(4) to each iicbus(4)
instance, and do it in the child driver.
- Add a mutex to the iicbus(4) softc to synchronize the request/release bus
stuff.
- Use __BUS_ACCESSOR() for IICBUS_ACCESSOR() instead of rolling our own.
- Add a mutex to the iicsmb(4) softc to protect softc state updated in the
interrupt handler.
- Remove Giant from all the smbus methods in iicsmb(4) now that all the
iicbus(4) backend is locked.
diff 181304 Mon Aug 04 21:16:00 MDT 2008 jhb Add locking to the core iicbus(4) drivers:
- Add an sx lock to the iic(4) driver to serialize open(), close(), read(),
and write and to protect sc_addr and sc_count in the softc.
- Use cdev->si_drv1 instead of using the minor number of the cdev to
lookup the softc via newbus in iic(4).
- Store the device_t in the softc to avoid a similar detour via minor
numbers in iic(4).
- Only add at most one instance of iic(4) and iicsmb(4) to each iicbus(4)
instance, and do it in the child driver.
- Add a mutex to the iicbus(4) softc to synchronize the request/release bus
stuff.
- Use __BUS_ACCESSOR() for IICBUS_ACCESSOR() instead of rolling our own.
- Add a mutex to the iicsmb(4) softc to protect softc state updated in the
interrupt handler.
- Remove Giant from all the smbus methods in iicsmb(4) now that all the
iicbus(4) backend is locked.
diff 181304 Mon Aug 04 21:16:00 MDT 2008 jhb Add locking to the core iicbus(4) drivers:
- Add an sx lock to the iic(4) driver to serialize open(), close(), read(),
and write and to protect sc_addr and sc_count in the softc.
- Use cdev->si_drv1 instead of using the minor number of the cdev to
lookup the softc via newbus in iic(4).
- Store the device_t in the softc to avoid a similar detour via minor
numbers in iic(4).
- Only add at most one instance of iic(4) and iicsmb(4) to each iicbus(4)
instance, and do it in the child driver.
- Add a mutex to the iicbus(4) softc to synchronize the request/release bus
stuff.
- Use __BUS_ACCESSOR() for IICBUS_ACCESSOR() instead of rolling our own.
- Add a mutex to the iicsmb(4) softc to protect softc state updated in the
interrupt handler.
- Remove Giant from all the smbus methods in iicsmb(4) now that all the
iicbus(4) backend is locked.
diff 181304 Mon Aug 04 21:16:00 MDT 2008 jhb Add locking to the core iicbus(4) drivers:
- Add an sx lock to the iic(4) driver to serialize open(), close(), read(),
and write and to protect sc_addr and sc_count in the softc.
- Use cdev->si_drv1 instead of using the minor number of the cdev to
lookup the softc via newbus in iic(4).
- Store the device_t in the softc to avoid a similar detour via minor
numbers in iic(4).
- Only add at most one instance of iic(4) and iicsmb(4) to each iicbus(4)
instance, and do it in the child driver.
- Add a mutex to the iicbus(4) softc to synchronize the request/release bus
stuff.
- Use __BUS_ACCESSOR() for IICBUS_ACCESSOR() instead of rolling our own.
- Add a mutex to the iicsmb(4) softc to protect softc state updated in the
interrupt handler.
- Remove Giant from all the smbus methods in iicsmb(4) now that all the
iicbus(4) backend is locked.
/freebsd-10.2-release/etc/etc.mips/
H A Dttysdiff 203068 Wed Jan 27 12:01:18 MST 2010 ed Remove pseudo-terminals from ttys(5).

When we had utmp(5), we had to list all the psuedo-terminals in ttys(5)
to make ttyslot(3) function properly. Now that pututxline(3) deals with
slot allocation internally (not based on TTY names), we don't need to
list all the TTYs on the system in ttys(5) to make user accounting work
properly.

This patch removes all the entries from the /etc/ttys files, but also
the pts(4) entries that were appended implicitly, which was added in
r154838.
diff 199243 Fri Nov 13 06:06:38 MST 2009 ed Switch the default terminal emulation style to xterm for most platforms.

Right now syscons(4) uses a cons25-style terminal emulator. The
disadvantages of that are:

- Little compatibility with embedded devices with serial interfaces.
- Bad bandwidth efficiency, mainly because of the lack of scrolling
regions.
- A very hard transition path to support for modern character sets like
UTF-8.

Our terminal emulation library, libteken, has been supporting
xterm-style terminal emulation for months, so flip the switch and make
everyone use an xterm-style console driver.

I still have to enable this on i386. Right now pc98 and i386 share the
same /etc/ttys file. I'm not going to switch pc98, because it uses its
own Kanji-capable cons25 emulator.

IMPORTANT: What to do if things go wrong (i.e. graphical artifacts):

- Run the application inside script(1), try to reduce the problem and
send me the log file.
- In the mean time, you can run `vidcontrol -T cons25' and `export
TERM=cons25' so you can run applications the same way you did before.
You can also build your kernel with `options TEKEN_CONS25' to make all
virtual terminals use the cons25 emulator by default.

Discussed on: current@
diff 188535 Thu Feb 12 19:35:47 MST 2009 ed Remove pts(4) entries from /etc/ttys.

Even though I increased the amount of pts(4) entries in /etc/ttys some
time ago, I didn't realize back then those entries shouldn't have been
there in the first place.

I just looked at the getttyent() source code and it turns out when you
call setttyent(), it walks through /dev/pts and looks for the device
with the highest number. After you receive EOF's from getttyent(), it
makes up entries for pts(4) devices.

This means that adding entries for pts(4) is somewhat harmful, because
if you now traverse the list, you get redundant entries, so just remove
them.
diff 188535 Thu Feb 12 19:35:47 MST 2009 ed Remove pts(4) entries from /etc/ttys.

Even though I increased the amount of pts(4) entries in /etc/ttys some
time ago, I didn't realize back then those entries shouldn't have been
there in the first place.

I just looked at the getttyent() source code and it turns out when you
call setttyent(), it walks through /dev/pts and looks for the device
with the highest number. After you receive EOF's from getttyent(), it
makes up entries for pts(4) devices.

This means that adding entries for pts(4) is somewhat harmful, because
if you now traverse the list, you get redundant entries, so just remove
them.
diff 188535 Thu Feb 12 19:35:47 MST 2009 ed Remove pts(4) entries from /etc/ttys.

Even though I increased the amount of pts(4) entries in /etc/ttys some
time ago, I didn't realize back then those entries shouldn't have been
there in the first place.

I just looked at the getttyent() source code and it turns out when you
call setttyent(), it walks through /dev/pts and looks for the device
with the highest number. After you receive EOF's from getttyent(), it
makes up entries for pts(4) devices.

This means that adding entries for pts(4) is somewhat harmful, because
if you now traverse the list, you get redundant entries, so just remove
them.
diff 188535 Thu Feb 12 19:35:47 MST 2009 ed Remove pts(4) entries from /etc/ttys.

Even though I increased the amount of pts(4) entries in /etc/ttys some
time ago, I didn't realize back then those entries shouldn't have been
there in the first place.

I just looked at the getttyent() source code and it turns out when you
call setttyent(), it walks through /dev/pts and looks for the device
with the highest number. After you receive EOF's from getttyent(), it
makes up entries for pts(4) devices.

This means that adding entries for pts(4) is somewhat harmful, because
if you now traverse the list, you get redundant entries, so just remove
them.
diff 182104 Sun Aug 24 08:50:42 MDT 2008 ed Restore 256 pty(4) entries.

As discussed with Robert Watson on the src-committers list, it is safer
to keep at least some pty(4) entries in /etc/ttys, for applications that
roll their own PTY allocation routine and only search for BSD-style
PTY's.

This means we've now just toggled the amount of entries for pts(4) and
pty(4).

Requested by: rwatson
diff 182104 Sun Aug 24 08:50:42 MDT 2008 ed Restore 256 pty(4) entries.

As discussed with Robert Watson on the src-committers list, it is safer
to keep at least some pty(4) entries in /etc/ttys, for applications that
roll their own PTY allocation routine and only search for BSD-style
PTY's.

This means we've now just toggled the amount of entries for pts(4) and
pty(4).

Requested by: rwatson
diff 182104 Sun Aug 24 08:50:42 MDT 2008 ed Restore 256 pty(4) entries.

As discussed with Robert Watson on the src-committers list, it is safer
to keep at least some pty(4) entries in /etc/ttys, for applications that
roll their own PTY allocation routine and only search for BSD-style
PTY's.

This means we've now just toggled the amount of entries for pts(4) and
pty(4).

Requested by: rwatson
diff 182104 Sun Aug 24 08:50:42 MDT 2008 ed Restore 256 pty(4) entries.

As discussed with Robert Watson on the src-committers list, it is safer
to keep at least some pty(4) entries in /etc/ttys, for applications that
roll their own PTY allocation routine and only search for BSD-style
PTY's.

This means we've now just toggled the amount of entries for pts(4) and
pty(4).

Requested by: rwatson

Completed in 353 milliseconds

<<11121314151617181920>>