Searched hist:2385 (Results 1 - 25 of 25) sorted by relevance

/freebsd-11.0-release/lib/libipsec/
H A Dipsec_dump_policy.cdiff 125681 Wed Feb 11 04:34:34 MST 2004 bms Initial import of RFC 2385 (TCP-MD5) digest support.

This is the second of two commits; bring in the userland support to finish.

Teach libipsec and setkey about the tcp-md5 class of security associations,
thus allowing administrators to add per-host keys to the SADB for use by
the tcpsignature_compute() function.

Document that a single SPI must be used until such time as the code which
adds support to the SPD to specify flows for tcp-md5 treatment is suitable
for production.

Sponsored by: sentex.net
H A Dpfkey.cdiff 125681 Wed Feb 11 04:34:34 MST 2004 bms Initial import of RFC 2385 (TCP-MD5) digest support.

This is the second of two commits; bring in the userland support to finish.

Teach libipsec and setkey about the tcp-md5 class of security associations,
thus allowing administrators to add per-host keys to the SADB for use by
the tcpsignature_compute() function.

Document that a single SPI must be used until such time as the code which
adds support to the SPD to specify flows for tcp-md5 treatment is suitable
for production.

Sponsored by: sentex.net
H A Dpolicy_token.ldiff 125681 Wed Feb 11 04:34:34 MST 2004 bms Initial import of RFC 2385 (TCP-MD5) digest support.

This is the second of two commits; bring in the userland support to finish.

Teach libipsec and setkey about the tcp-md5 class of security associations,
thus allowing administrators to add per-host keys to the SADB for use by
the tcpsignature_compute() function.

Document that a single SPI must be used until such time as the code which
adds support to the SPD to specify flows for tcp-md5 treatment is suitable
for production.

Sponsored by: sentex.net
H A Dpfkey_dump.cdiff 125681 Wed Feb 11 04:34:34 MST 2004 bms Initial import of RFC 2385 (TCP-MD5) digest support.

This is the second of two commits; bring in the userland support to finish.

Teach libipsec and setkey about the tcp-md5 class of security associations,
thus allowing administrators to add per-host keys to the SADB for use by
the tcpsignature_compute() function.

Document that a single SPI must be used until such time as the code which
adds support to the SPD to specify flows for tcp-md5 treatment is suitable
for production.

Sponsored by: sentex.net
/freebsd-11.0-release/sbin/setkey/
H A Dparse.ydiff 125681 Wed Feb 11 04:34:34 MST 2004 bms Initial import of RFC 2385 (TCP-MD5) digest support.

This is the second of two commits; bring in the userland support to finish.

Teach libipsec and setkey about the tcp-md5 class of security associations,
thus allowing administrators to add per-host keys to the SADB for use by
the tcpsignature_compute() function.

Document that a single SPI must be used until such time as the code which
adds support to the SPD to specify flows for tcp-md5 treatment is suitable
for production.

Sponsored by: sentex.net
H A Dtoken.ldiff 125681 Wed Feb 11 04:34:34 MST 2004 bms Initial import of RFC 2385 (TCP-MD5) digest support.

This is the second of two commits; bring in the userland support to finish.

Teach libipsec and setkey about the tcp-md5 class of security associations,
thus allowing administrators to add per-host keys to the SADB for use by
the tcpsignature_compute() function.

Document that a single SPI must be used until such time as the code which
adds support to the SPD to specify flows for tcp-md5 treatment is suitable
for production.

Sponsored by: sentex.net
H A Dsetkey.8diff 125681 Wed Feb 11 04:34:34 MST 2004 bms Initial import of RFC 2385 (TCP-MD5) digest support.

This is the second of two commits; bring in the userland support to finish.

Teach libipsec and setkey about the tcp-md5 class of security associations,
thus allowing administrators to add per-host keys to the SADB for use by
the tcpsignature_compute() function.

Document that a single SPI must be used until such time as the code which
adds support to the SPD to specify flows for tcp-md5 treatment is suitable
for production.

Sponsored by: sentex.net
/freebsd-11.0-release/sys/net/
H A Dpfkeyv2.hdiff 125680 Wed Feb 11 04:26:04 MST 2004 bms Initial import of RFC 2385 (TCP-MD5) digest support.

This is the first of two commits; bringing in the kernel support first.
This can be enabled by compiling a kernel with options TCP_SIGNATURE
and FAST_IPSEC.

For the uninitiated, this is a TCP option which provides for a means of
authenticating TCP sessions which came into being before IPSEC. It is
still relevant today, however, as it is used by many commercial router
vendors, particularly with BGP, and as such has become a requirement for
interconnect at many major Internet points of presence.

Several parts of the TCP and IP headers, including the segment payload,
are digested with MD5, including a shared secret. The PF_KEY interface
is used to manage the secrets using security associations in the SADB.

There is a limitation here in that as there is no way to map a TCP flow
per-port back to an SPI without polluting tcpcb or using the SPD; the
code to do the latter is unstable at this time. Therefore this code only
supports per-host keying granularity.

Whilst FAST_IPSEC is mutually exclusive with KAME IPSEC (and thus IPv6),
TCP_SIGNATURE applies only to IPv4. For the vast majority of prospective
users of this feature, this will not pose any problem.

This implementation is output-only; that is, the option is honoured when
responding to a host initiating a TCP session, but no effort is made
[yet] to authenticate inbound traffic. This is, however, sufficient to
interwork with Cisco equipment.

Tested with a Cisco 2501 running IOS 12.0(27), and Quagga 0.96.4 with
local patches. Patches for tcpdump to validate TCP-MD5 sessions are also
available from me upon request.

Sponsored by: sentex.net
/freebsd-11.0-release/sys/netinet/
H A Dip.hdiff 125680 Wed Feb 11 04:26:04 MST 2004 bms Initial import of RFC 2385 (TCP-MD5) digest support.

This is the first of two commits; bringing in the kernel support first.
This can be enabled by compiling a kernel with options TCP_SIGNATURE
and FAST_IPSEC.

For the uninitiated, this is a TCP option which provides for a means of
authenticating TCP sessions which came into being before IPSEC. It is
still relevant today, however, as it is used by many commercial router
vendors, particularly with BGP, and as such has become a requirement for
interconnect at many major Internet points of presence.

Several parts of the TCP and IP headers, including the segment payload,
are digested with MD5, including a shared secret. The PF_KEY interface
is used to manage the secrets using security associations in the SADB.

There is a limitation here in that as there is no way to map a TCP flow
per-port back to an SPI without polluting tcpcb or using the SPD; the
code to do the latter is unstable at this time. Therefore this code only
supports per-host keying granularity.

Whilst FAST_IPSEC is mutually exclusive with KAME IPSEC (and thus IPv6),
TCP_SIGNATURE applies only to IPv4. For the vast majority of prospective
users of this feature, this will not pose any problem.

This implementation is output-only; that is, the option is honoured when
responding to a host initiating a TCP session, but no effort is made
[yet] to authenticate inbound traffic. This is, however, sufficient to
interwork with Cisco equipment.

Tested with a Cisco 2501 running IOS 12.0(27), and Quagga 0.96.4 with
local patches. Patches for tcpdump to validate TCP-MD5 sessions are also
available from me upon request.

Sponsored by: sentex.net
H A Dtcp.hdiff 125680 Wed Feb 11 04:26:04 MST 2004 bms Initial import of RFC 2385 (TCP-MD5) digest support.

This is the first of two commits; bringing in the kernel support first.
This can be enabled by compiling a kernel with options TCP_SIGNATURE
and FAST_IPSEC.

For the uninitiated, this is a TCP option which provides for a means of
authenticating TCP sessions which came into being before IPSEC. It is
still relevant today, however, as it is used by many commercial router
vendors, particularly with BGP, and as such has become a requirement for
interconnect at many major Internet points of presence.

Several parts of the TCP and IP headers, including the segment payload,
are digested with MD5, including a shared secret. The PF_KEY interface
is used to manage the secrets using security associations in the SADB.

There is a limitation here in that as there is no way to map a TCP flow
per-port back to an SPI without polluting tcpcb or using the SPD; the
code to do the latter is unstable at this time. Therefore this code only
supports per-host keying granularity.

Whilst FAST_IPSEC is mutually exclusive with KAME IPSEC (and thus IPv6),
TCP_SIGNATURE applies only to IPv4. For the vast majority of prospective
users of this feature, this will not pose any problem.

This implementation is output-only; that is, the option is honoured when
responding to a host initiating a TCP session, but no effort is made
[yet] to authenticate inbound traffic. This is, however, sufficient to
interwork with Cisco equipment.

Tested with a Cisco 2501 running IOS 12.0(27), and Quagga 0.96.4 with
local patches. Patches for tcpdump to validate TCP-MD5 sessions are also
available from me upon request.

Sponsored by: sentex.net
H A Dtcp_output.cdiff 293910 Thu Jan 14 10:28:41 MST 2016 glebius There is a bug in tcp_output()'s implementation of the TCP_SIGNATURE
(RFC 2385/TCP-MD5) kernel option.

If a tcpcb has TF_NOOPT flag, then tcp_addoptions() is not called,
and to.to_signature is an uninitialized stack variable. The value
is later used as write offset, which leads to writing to random
address.

Submitted by: rstone, jtl
Security: SA-16:05.tcp
diff 183001 Sat Sep 13 17:29:04 MDT 2008 bz Implement IPv6 support for TCP MD5 Signature Option (RFC 2385)
the same way it has been implemented for IPv4.

Reviewed by: bms (skimmed)
Tested by: Nick Hilliard (nick netability.ie) (with more changes)
MFC after: 2 months
diff 125680 Wed Feb 11 04:26:04 MST 2004 bms Initial import of RFC 2385 (TCP-MD5) digest support.

This is the first of two commits; bringing in the kernel support first.
This can be enabled by compiling a kernel with options TCP_SIGNATURE
and FAST_IPSEC.

For the uninitiated, this is a TCP option which provides for a means of
authenticating TCP sessions which came into being before IPSEC. It is
still relevant today, however, as it is used by many commercial router
vendors, particularly with BGP, and as such has become a requirement for
interconnect at many major Internet points of presence.

Several parts of the TCP and IP headers, including the segment payload,
are digested with MD5, including a shared secret. The PF_KEY interface
is used to manage the secrets using security associations in the SADB.

There is a limitation here in that as there is no way to map a TCP flow
per-port back to an SPI without polluting tcpcb or using the SPD; the
code to do the latter is unstable at this time. Therefore this code only
supports per-host keying granularity.

Whilst FAST_IPSEC is mutually exclusive with KAME IPSEC (and thus IPv6),
TCP_SIGNATURE applies only to IPv4. For the vast majority of prospective
users of this feature, this will not pose any problem.

This implementation is output-only; that is, the option is honoured when
responding to a host initiating a TCP session, but no effort is made
[yet] to authenticate inbound traffic. This is, however, sufficient to
interwork with Cisco equipment.

Tested with a Cisco 2501 running IOS 12.0(27), and Quagga 0.96.4 with
local patches. Patches for tcpdump to validate TCP-MD5 sessions are also
available from me upon request.

Sponsored by: sentex.net
H A Dtcp_syncache.cdiff 183001 Sat Sep 13 17:29:04 MDT 2008 bz Implement IPv6 support for TCP MD5 Signature Option (RFC 2385)
the same way it has been implemented for IPv4.

Reviewed by: bms (skimmed)
Tested by: Nick Hilliard (nick netability.ie) (with more changes)
MFC after: 2 months
diff 125680 Wed Feb 11 04:26:04 MST 2004 bms Initial import of RFC 2385 (TCP-MD5) digest support.

This is the first of two commits; bringing in the kernel support first.
This can be enabled by compiling a kernel with options TCP_SIGNATURE
and FAST_IPSEC.

For the uninitiated, this is a TCP option which provides for a means of
authenticating TCP sessions which came into being before IPSEC. It is
still relevant today, however, as it is used by many commercial router
vendors, particularly with BGP, and as such has become a requirement for
interconnect at many major Internet points of presence.

Several parts of the TCP and IP headers, including the segment payload,
are digested with MD5, including a shared secret. The PF_KEY interface
is used to manage the secrets using security associations in the SADB.

There is a limitation here in that as there is no way to map a TCP flow
per-port back to an SPI without polluting tcpcb or using the SPD; the
code to do the latter is unstable at this time. Therefore this code only
supports per-host keying granularity.

Whilst FAST_IPSEC is mutually exclusive with KAME IPSEC (and thus IPv6),
TCP_SIGNATURE applies only to IPv4. For the vast majority of prospective
users of this feature, this will not pose any problem.

This implementation is output-only; that is, the option is honoured when
responding to a host initiating a TCP session, but no effort is made
[yet] to authenticate inbound traffic. This is, however, sufficient to
interwork with Cisco equipment.

Tested with a Cisco 2501 running IOS 12.0(27), and Quagga 0.96.4 with
local patches. Patches for tcpdump to validate TCP-MD5 sessions are also
available from me upon request.

Sponsored by: sentex.net
H A Dtcp_subr.cdiff 183001 Sat Sep 13 17:29:04 MDT 2008 bz Implement IPv6 support for TCP MD5 Signature Option (RFC 2385)
the same way it has been implemented for IPv4.

Reviewed by: bms (skimmed)
Tested by: Nick Hilliard (nick netability.ie) (with more changes)
MFC after: 2 months
diff 125680 Wed Feb 11 04:26:04 MST 2004 bms Initial import of RFC 2385 (TCP-MD5) digest support.

This is the first of two commits; bringing in the kernel support first.
This can be enabled by compiling a kernel with options TCP_SIGNATURE
and FAST_IPSEC.

For the uninitiated, this is a TCP option which provides for a means of
authenticating TCP sessions which came into being before IPSEC. It is
still relevant today, however, as it is used by many commercial router
vendors, particularly with BGP, and as such has become a requirement for
interconnect at many major Internet points of presence.

Several parts of the TCP and IP headers, including the segment payload,
are digested with MD5, including a shared secret. The PF_KEY interface
is used to manage the secrets using security associations in the SADB.

There is a limitation here in that as there is no way to map a TCP flow
per-port back to an SPI without polluting tcpcb or using the SPD; the
code to do the latter is unstable at this time. Therefore this code only
supports per-host keying granularity.

Whilst FAST_IPSEC is mutually exclusive with KAME IPSEC (and thus IPv6),
TCP_SIGNATURE applies only to IPv4. For the vast majority of prospective
users of this feature, this will not pose any problem.

This implementation is output-only; that is, the option is honoured when
responding to a host initiating a TCP session, but no effort is made
[yet] to authenticate inbound traffic. This is, however, sufficient to
interwork with Cisco equipment.

Tested with a Cisco 2501 running IOS 12.0(27), and Quagga 0.96.4 with
local patches. Patches for tcpdump to validate TCP-MD5 sessions are also
available from me upon request.

Sponsored by: sentex.net
H A Dtcp_usrreq.cdiff 125680 Wed Feb 11 04:26:04 MST 2004 bms Initial import of RFC 2385 (TCP-MD5) digest support.

This is the first of two commits; bringing in the kernel support first.
This can be enabled by compiling a kernel with options TCP_SIGNATURE
and FAST_IPSEC.

For the uninitiated, this is a TCP option which provides for a means of
authenticating TCP sessions which came into being before IPSEC. It is
still relevant today, however, as it is used by many commercial router
vendors, particularly with BGP, and as such has become a requirement for
interconnect at many major Internet points of presence.

Several parts of the TCP and IP headers, including the segment payload,
are digested with MD5, including a shared secret. The PF_KEY interface
is used to manage the secrets using security associations in the SADB.

There is a limitation here in that as there is no way to map a TCP flow
per-port back to an SPI without polluting tcpcb or using the SPD; the
code to do the latter is unstable at this time. Therefore this code only
supports per-host keying granularity.

Whilst FAST_IPSEC is mutually exclusive with KAME IPSEC (and thus IPv6),
TCP_SIGNATURE applies only to IPv4. For the vast majority of prospective
users of this feature, this will not pose any problem.

This implementation is output-only; that is, the option is honoured when
responding to a host initiating a TCP session, but no effort is made
[yet] to authenticate inbound traffic. This is, however, sufficient to
interwork with Cisco equipment.

Tested with a Cisco 2501 running IOS 12.0(27), and Quagga 0.96.4 with
local patches. Patches for tcpdump to validate TCP-MD5 sessions are also
available from me upon request.

Sponsored by: sentex.net
H A Dtcp_var.hdiff 125680 Wed Feb 11 04:26:04 MST 2004 bms Initial import of RFC 2385 (TCP-MD5) digest support.

This is the first of two commits; bringing in the kernel support first.
This can be enabled by compiling a kernel with options TCP_SIGNATURE
and FAST_IPSEC.

For the uninitiated, this is a TCP option which provides for a means of
authenticating TCP sessions which came into being before IPSEC. It is
still relevant today, however, as it is used by many commercial router
vendors, particularly with BGP, and as such has become a requirement for
interconnect at many major Internet points of presence.

Several parts of the TCP and IP headers, including the segment payload,
are digested with MD5, including a shared secret. The PF_KEY interface
is used to manage the secrets using security associations in the SADB.

There is a limitation here in that as there is no way to map a TCP flow
per-port back to an SPI without polluting tcpcb or using the SPD; the
code to do the latter is unstable at this time. Therefore this code only
supports per-host keying granularity.

Whilst FAST_IPSEC is mutually exclusive with KAME IPSEC (and thus IPv6),
TCP_SIGNATURE applies only to IPv4. For the vast majority of prospective
users of this feature, this will not pose any problem.

This implementation is output-only; that is, the option is honoured when
responding to a host initiating a TCP session, but no effort is made
[yet] to authenticate inbound traffic. This is, however, sufficient to
interwork with Cisco equipment.

Tested with a Cisco 2501 running IOS 12.0(27), and Quagga 0.96.4 with
local patches. Patches for tcpdump to validate TCP-MD5 sessions are also
available from me upon request.

Sponsored by: sentex.net
H A Dtcp_reass.cdiff 125680 Wed Feb 11 04:26:04 MST 2004 bms Initial import of RFC 2385 (TCP-MD5) digest support.

This is the first of two commits; bringing in the kernel support first.
This can be enabled by compiling a kernel with options TCP_SIGNATURE
and FAST_IPSEC.

For the uninitiated, this is a TCP option which provides for a means of
authenticating TCP sessions which came into being before IPSEC. It is
still relevant today, however, as it is used by many commercial router
vendors, particularly with BGP, and as such has become a requirement for
interconnect at many major Internet points of presence.

Several parts of the TCP and IP headers, including the segment payload,
are digested with MD5, including a shared secret. The PF_KEY interface
is used to manage the secrets using security associations in the SADB.

There is a limitation here in that as there is no way to map a TCP flow
per-port back to an SPI without polluting tcpcb or using the SPD; the
code to do the latter is unstable at this time. Therefore this code only
supports per-host keying granularity.

Whilst FAST_IPSEC is mutually exclusive with KAME IPSEC (and thus IPv6),
TCP_SIGNATURE applies only to IPv4. For the vast majority of prospective
users of this feature, this will not pose any problem.

This implementation is output-only; that is, the option is honoured when
responding to a host initiating a TCP session, but no effort is made
[yet] to authenticate inbound traffic. This is, however, sufficient to
interwork with Cisco equipment.

Tested with a Cisco 2501 running IOS 12.0(27), and Quagga 0.96.4 with
local patches. Patches for tcpdump to validate TCP-MD5 sessions are also
available from me upon request.

Sponsored by: sentex.net
H A Dtcp_timewait.cdiff 125680 Wed Feb 11 04:26:04 MST 2004 bms Initial import of RFC 2385 (TCP-MD5) digest support.

This is the first of two commits; bringing in the kernel support first.
This can be enabled by compiling a kernel with options TCP_SIGNATURE
and FAST_IPSEC.

For the uninitiated, this is a TCP option which provides for a means of
authenticating TCP sessions which came into being before IPSEC. It is
still relevant today, however, as it is used by many commercial router
vendors, particularly with BGP, and as such has become a requirement for
interconnect at many major Internet points of presence.

Several parts of the TCP and IP headers, including the segment payload,
are digested with MD5, including a shared secret. The PF_KEY interface
is used to manage the secrets using security associations in the SADB.

There is a limitation here in that as there is no way to map a TCP flow
per-port back to an SPI without polluting tcpcb or using the SPD; the
code to do the latter is unstable at this time. Therefore this code only
supports per-host keying granularity.

Whilst FAST_IPSEC is mutually exclusive with KAME IPSEC (and thus IPv6),
TCP_SIGNATURE applies only to IPv4. For the vast majority of prospective
users of this feature, this will not pose any problem.

This implementation is output-only; that is, the option is honoured when
responding to a host initiating a TCP session, but no effort is made
[yet] to authenticate inbound traffic. This is, however, sufficient to
interwork with Cisco equipment.

Tested with a Cisco 2501 running IOS 12.0(27), and Quagga 0.96.4 with
local patches. Patches for tcpdump to validate TCP-MD5 sessions are also
available from me upon request.

Sponsored by: sentex.net
H A Dip_output.cdiff 125680 Wed Feb 11 04:26:04 MST 2004 bms Initial import of RFC 2385 (TCP-MD5) digest support.

This is the first of two commits; bringing in the kernel support first.
This can be enabled by compiling a kernel with options TCP_SIGNATURE
and FAST_IPSEC.

For the uninitiated, this is a TCP option which provides for a means of
authenticating TCP sessions which came into being before IPSEC. It is
still relevant today, however, as it is used by many commercial router
vendors, particularly with BGP, and as such has become a requirement for
interconnect at many major Internet points of presence.

Several parts of the TCP and IP headers, including the segment payload,
are digested with MD5, including a shared secret. The PF_KEY interface
is used to manage the secrets using security associations in the SADB.

There is a limitation here in that as there is no way to map a TCP flow
per-port back to an SPI without polluting tcpcb or using the SPD; the
code to do the latter is unstable at this time. Therefore this code only
supports per-host keying granularity.

Whilst FAST_IPSEC is mutually exclusive with KAME IPSEC (and thus IPv6),
TCP_SIGNATURE applies only to IPv4. For the vast majority of prospective
users of this feature, this will not pose any problem.

This implementation is output-only; that is, the option is honoured when
responding to a host initiating a TCP session, but no effort is made
[yet] to authenticate inbound traffic. This is, however, sufficient to
interwork with Cisco equipment.

Tested with a Cisco 2501 running IOS 12.0(27), and Quagga 0.96.4 with
local patches. Patches for tcpdump to validate TCP-MD5 sessions are also
available from me upon request.

Sponsored by: sentex.net
H A Dtcp_input.cdiff 125680 Wed Feb 11 04:26:04 MST 2004 bms Initial import of RFC 2385 (TCP-MD5) digest support.

This is the first of two commits; bringing in the kernel support first.
This can be enabled by compiling a kernel with options TCP_SIGNATURE
and FAST_IPSEC.

For the uninitiated, this is a TCP option which provides for a means of
authenticating TCP sessions which came into being before IPSEC. It is
still relevant today, however, as it is used by many commercial router
vendors, particularly with BGP, and as such has become a requirement for
interconnect at many major Internet points of presence.

Several parts of the TCP and IP headers, including the segment payload,
are digested with MD5, including a shared secret. The PF_KEY interface
is used to manage the secrets using security associations in the SADB.

There is a limitation here in that as there is no way to map a TCP flow
per-port back to an SPI without polluting tcpcb or using the SPD; the
code to do the latter is unstable at this time. Therefore this code only
supports per-host keying granularity.

Whilst FAST_IPSEC is mutually exclusive with KAME IPSEC (and thus IPv6),
TCP_SIGNATURE applies only to IPv4. For the vast majority of prospective
users of this feature, this will not pose any problem.

This implementation is output-only; that is, the option is honoured when
responding to a host initiating a TCP session, but no effort is made
[yet] to authenticate inbound traffic. This is, however, sufficient to
interwork with Cisco equipment.

Tested with a Cisco 2501 running IOS 12.0(27), and Quagga 0.96.4 with
local patches. Patches for tcpdump to validate TCP-MD5 sessions are also
available from me upon request.

Sponsored by: sentex.net
/freebsd-11.0-release/share/man/man4/
H A Dtcp.4diff 125680 Wed Feb 11 04:26:04 MST 2004 bms Initial import of RFC 2385 (TCP-MD5) digest support.

This is the first of two commits; bringing in the kernel support first.
This can be enabled by compiling a kernel with options TCP_SIGNATURE
and FAST_IPSEC.

For the uninitiated, this is a TCP option which provides for a means of
authenticating TCP sessions which came into being before IPSEC. It is
still relevant today, however, as it is used by many commercial router
vendors, particularly with BGP, and as such has become a requirement for
interconnect at many major Internet points of presence.

Several parts of the TCP and IP headers, including the segment payload,
are digested with MD5, including a shared secret. The PF_KEY interface
is used to manage the secrets using security associations in the SADB.

There is a limitation here in that as there is no way to map a TCP flow
per-port back to an SPI without polluting tcpcb or using the SPD; the
code to do the latter is unstable at this time. Therefore this code only
supports per-host keying granularity.

Whilst FAST_IPSEC is mutually exclusive with KAME IPSEC (and thus IPv6),
TCP_SIGNATURE applies only to IPv4. For the vast majority of prospective
users of this feature, this will not pose any problem.

This implementation is output-only; that is, the option is honoured when
responding to a host initiating a TCP session, but no effort is made
[yet] to authenticate inbound traffic. This is, however, sufficient to
interwork with Cisco equipment.

Tested with a Cisco 2501 running IOS 12.0(27), and Quagga 0.96.4 with
local patches. Patches for tcpdump to validate TCP-MD5 sessions are also
available from me upon request.

Sponsored by: sentex.net
/freebsd-11.0-release/sys/netipsec/
H A Dipsec.hdiff 125680 Wed Feb 11 04:26:04 MST 2004 bms Initial import of RFC 2385 (TCP-MD5) digest support.

This is the first of two commits; bringing in the kernel support first.
This can be enabled by compiling a kernel with options TCP_SIGNATURE
and FAST_IPSEC.

For the uninitiated, this is a TCP option which provides for a means of
authenticating TCP sessions which came into being before IPSEC. It is
still relevant today, however, as it is used by many commercial router
vendors, particularly with BGP, and as such has become a requirement for
interconnect at many major Internet points of presence.

Several parts of the TCP and IP headers, including the segment payload,
are digested with MD5, including a shared secret. The PF_KEY interface
is used to manage the secrets using security associations in the SADB.

There is a limitation here in that as there is no way to map a TCP flow
per-port back to an SPI without polluting tcpcb or using the SPD; the
code to do the latter is unstable at this time. Therefore this code only
supports per-host keying granularity.

Whilst FAST_IPSEC is mutually exclusive with KAME IPSEC (and thus IPv6),
TCP_SIGNATURE applies only to IPv4. For the vast majority of prospective
users of this feature, this will not pose any problem.

This implementation is output-only; that is, the option is honoured when
responding to a host initiating a TCP session, but no effort is made
[yet] to authenticate inbound traffic. This is, however, sufficient to
interwork with Cisco equipment.

Tested with a Cisco 2501 running IOS 12.0(27), and Quagga 0.96.4 with
local patches. Patches for tcpdump to validate TCP-MD5 sessions are also
available from me upon request.

Sponsored by: sentex.net
H A Dkey.cdiff 125680 Wed Feb 11 04:26:04 MST 2004 bms Initial import of RFC 2385 (TCP-MD5) digest support.

This is the first of two commits; bringing in the kernel support first.
This can be enabled by compiling a kernel with options TCP_SIGNATURE
and FAST_IPSEC.

For the uninitiated, this is a TCP option which provides for a means of
authenticating TCP sessions which came into being before IPSEC. It is
still relevant today, however, as it is used by many commercial router
vendors, particularly with BGP, and as such has become a requirement for
interconnect at many major Internet points of presence.

Several parts of the TCP and IP headers, including the segment payload,
are digested with MD5, including a shared secret. The PF_KEY interface
is used to manage the secrets using security associations in the SADB.

There is a limitation here in that as there is no way to map a TCP flow
per-port back to an SPI without polluting tcpcb or using the SPD; the
code to do the latter is unstable at this time. Therefore this code only
supports per-host keying granularity.

Whilst FAST_IPSEC is mutually exclusive with KAME IPSEC (and thus IPv6),
TCP_SIGNATURE applies only to IPv4. For the vast majority of prospective
users of this feature, this will not pose any problem.

This implementation is output-only; that is, the option is honoured when
responding to a host initiating a TCP session, but no effort is made
[yet] to authenticate inbound traffic. This is, however, sufficient to
interwork with Cisco equipment.

Tested with a Cisco 2501 running IOS 12.0(27), and Quagga 0.96.4 with
local patches. Patches for tcpdump to validate TCP-MD5 sessions are also
available from me upon request.

Sponsored by: sentex.net
/freebsd-11.0-release/release/doc/en_US.ISO8859-1/relnotes/
H A Darticle.xmldiff 125925 Tue Feb 17 05:05:43 MST 2004 bmah New release notes: TCP RFC 2385 (TCP-MD5) support, libarchive(3),
killall(1) -e, sdpd(8), awk 20040207, GNU readline patches 001-005,
GNU tar renaming, OpenPAM Eelgrass.
/freebsd-11.0-release/sys/conf/
H A Doptionsdiff 125680 Wed Feb 11 04:26:04 MST 2004 bms Initial import of RFC 2385 (TCP-MD5) digest support.

This is the first of two commits; bringing in the kernel support first.
This can be enabled by compiling a kernel with options TCP_SIGNATURE
and FAST_IPSEC.

For the uninitiated, this is a TCP option which provides for a means of
authenticating TCP sessions which came into being before IPSEC. It is
still relevant today, however, as it is used by many commercial router
vendors, particularly with BGP, and as such has become a requirement for
interconnect at many major Internet points of presence.

Several parts of the TCP and IP headers, including the segment payload,
are digested with MD5, including a shared secret. The PF_KEY interface
is used to manage the secrets using security associations in the SADB.

There is a limitation here in that as there is no way to map a TCP flow
per-port back to an SPI without polluting tcpcb or using the SPD; the
code to do the latter is unstable at this time. Therefore this code only
supports per-host keying granularity.

Whilst FAST_IPSEC is mutually exclusive with KAME IPSEC (and thus IPv6),
TCP_SIGNATURE applies only to IPv4. For the vast majority of prospective
users of this feature, this will not pose any problem.

This implementation is output-only; that is, the option is honoured when
responding to a host initiating a TCP session, but no effort is made
[yet] to authenticate inbound traffic. This is, however, sufficient to
interwork with Cisco equipment.

Tested with a Cisco 2501 running IOS 12.0(27), and Quagga 0.96.4 with
local patches. Patches for tcpdump to validate TCP-MD5 sessions are also
available from me upon request.

Sponsored by: sentex.net
H A Dfilesdiff 125680 Wed Feb 11 04:26:04 MST 2004 bms Initial import of RFC 2385 (TCP-MD5) digest support.

This is the first of two commits; bringing in the kernel support first.
This can be enabled by compiling a kernel with options TCP_SIGNATURE
and FAST_IPSEC.

For the uninitiated, this is a TCP option which provides for a means of
authenticating TCP sessions which came into being before IPSEC. It is
still relevant today, however, as it is used by many commercial router
vendors, particularly with BGP, and as such has become a requirement for
interconnect at many major Internet points of presence.

Several parts of the TCP and IP headers, including the segment payload,
are digested with MD5, including a shared secret. The PF_KEY interface
is used to manage the secrets using security associations in the SADB.

There is a limitation here in that as there is no way to map a TCP flow
per-port back to an SPI without polluting tcpcb or using the SPD; the
code to do the latter is unstable at this time. Therefore this code only
supports per-host keying granularity.

Whilst FAST_IPSEC is mutually exclusive with KAME IPSEC (and thus IPv6),
TCP_SIGNATURE applies only to IPv4. For the vast majority of prospective
users of this feature, this will not pose any problem.

This implementation is output-only; that is, the option is honoured when
responding to a host initiating a TCP session, but no effort is made
[yet] to authenticate inbound traffic. This is, however, sufficient to
interwork with Cisco equipment.

Tested with a Cisco 2501 running IOS 12.0(27), and Quagga 0.96.4 with
local patches. Patches for tcpdump to validate TCP-MD5 sessions are also
available from me upon request.

Sponsored by: sentex.net

Completed in 1694 milliseconds