Searched hist:228919 (Results 1 - 16 of 16) sorted by relevance

/freebsd-9.3-release/lib/libcompiler_rt/
H A D__sync_fetch_and_add_4.c228919 Tue Dec 27 20:18:08 MST 2011 ed Add locally implemented atomic intrinsics to libcompiler_rt.

The built-in atomic operations are not implemented in our version of GCC
4.2 for the ARM and MIPS architectures. Instead of emitting locked
instructions, they generate calls to functions that can be implemented
in the C runtime.

Only implement the atomic operations that are used by <stdatomic.h> for
datatype sizes that are supported by atomic(9). This means that on these
architectures, we can only use atomic operations on 32-bits and 64-bits
variables, which is typically sufficient.

This makes <stdatomic.h> work on all architectures except MIPS, since
MIPS and SPARC64 still use libgcc. Converting these architectures to
libcompiler_rt is on my todo list.
H A D__sync_fetch_and_add_8.c228919 Tue Dec 27 20:18:08 MST 2011 ed Add locally implemented atomic intrinsics to libcompiler_rt.

The built-in atomic operations are not implemented in our version of GCC
4.2 for the ARM and MIPS architectures. Instead of emitting locked
instructions, they generate calls to functions that can be implemented
in the C runtime.

Only implement the atomic operations that are used by <stdatomic.h> for
datatype sizes that are supported by atomic(9). This means that on these
architectures, we can only use atomic operations on 32-bits and 64-bits
variables, which is typically sufficient.

This makes <stdatomic.h> work on all architectures except MIPS, since
MIPS and SPARC64 still use libgcc. Converting these architectures to
libcompiler_rt is on my todo list.
H A D__sync_fetch_and_and_4.c228919 Tue Dec 27 20:18:08 MST 2011 ed Add locally implemented atomic intrinsics to libcompiler_rt.

The built-in atomic operations are not implemented in our version of GCC
4.2 for the ARM and MIPS architectures. Instead of emitting locked
instructions, they generate calls to functions that can be implemented
in the C runtime.

Only implement the atomic operations that are used by <stdatomic.h> for
datatype sizes that are supported by atomic(9). This means that on these
architectures, we can only use atomic operations on 32-bits and 64-bits
variables, which is typically sufficient.

This makes <stdatomic.h> work on all architectures except MIPS, since
MIPS and SPARC64 still use libgcc. Converting these architectures to
libcompiler_rt is on my todo list.
H A D__sync_fetch_and_and_8.c228919 Tue Dec 27 20:18:08 MST 2011 ed Add locally implemented atomic intrinsics to libcompiler_rt.

The built-in atomic operations are not implemented in our version of GCC
4.2 for the ARM and MIPS architectures. Instead of emitting locked
instructions, they generate calls to functions that can be implemented
in the C runtime.

Only implement the atomic operations that are used by <stdatomic.h> for
datatype sizes that are supported by atomic(9). This means that on these
architectures, we can only use atomic operations on 32-bits and 64-bits
variables, which is typically sufficient.

This makes <stdatomic.h> work on all architectures except MIPS, since
MIPS and SPARC64 still use libgcc. Converting these architectures to
libcompiler_rt is on my todo list.
H A D__sync_fetch_and_op_n.h228919 Tue Dec 27 20:18:08 MST 2011 ed Add locally implemented atomic intrinsics to libcompiler_rt.

The built-in atomic operations are not implemented in our version of GCC
4.2 for the ARM and MIPS architectures. Instead of emitting locked
instructions, they generate calls to functions that can be implemented
in the C runtime.

Only implement the atomic operations that are used by <stdatomic.h> for
datatype sizes that are supported by atomic(9). This means that on these
architectures, we can only use atomic operations on 32-bits and 64-bits
variables, which is typically sufficient.

This makes <stdatomic.h> work on all architectures except MIPS, since
MIPS and SPARC64 still use libgcc. Converting these architectures to
libcompiler_rt is on my todo list.
H A D__sync_fetch_and_or_4.c228919 Tue Dec 27 20:18:08 MST 2011 ed Add locally implemented atomic intrinsics to libcompiler_rt.

The built-in atomic operations are not implemented in our version of GCC
4.2 for the ARM and MIPS architectures. Instead of emitting locked
instructions, they generate calls to functions that can be implemented
in the C runtime.

Only implement the atomic operations that are used by <stdatomic.h> for
datatype sizes that are supported by atomic(9). This means that on these
architectures, we can only use atomic operations on 32-bits and 64-bits
variables, which is typically sufficient.

This makes <stdatomic.h> work on all architectures except MIPS, since
MIPS and SPARC64 still use libgcc. Converting these architectures to
libcompiler_rt is on my todo list.
H A D__sync_fetch_and_or_8.c228919 Tue Dec 27 20:18:08 MST 2011 ed Add locally implemented atomic intrinsics to libcompiler_rt.

The built-in atomic operations are not implemented in our version of GCC
4.2 for the ARM and MIPS architectures. Instead of emitting locked
instructions, they generate calls to functions that can be implemented
in the C runtime.

Only implement the atomic operations that are used by <stdatomic.h> for
datatype sizes that are supported by atomic(9). This means that on these
architectures, we can only use atomic operations on 32-bits and 64-bits
variables, which is typically sufficient.

This makes <stdatomic.h> work on all architectures except MIPS, since
MIPS and SPARC64 still use libgcc. Converting these architectures to
libcompiler_rt is on my todo list.
H A D__sync_fetch_and_sub_4.c228919 Tue Dec 27 20:18:08 MST 2011 ed Add locally implemented atomic intrinsics to libcompiler_rt.

The built-in atomic operations are not implemented in our version of GCC
4.2 for the ARM and MIPS architectures. Instead of emitting locked
instructions, they generate calls to functions that can be implemented
in the C runtime.

Only implement the atomic operations that are used by <stdatomic.h> for
datatype sizes that are supported by atomic(9). This means that on these
architectures, we can only use atomic operations on 32-bits and 64-bits
variables, which is typically sufficient.

This makes <stdatomic.h> work on all architectures except MIPS, since
MIPS and SPARC64 still use libgcc. Converting these architectures to
libcompiler_rt is on my todo list.
H A D__sync_fetch_and_sub_8.c228919 Tue Dec 27 20:18:08 MST 2011 ed Add locally implemented atomic intrinsics to libcompiler_rt.

The built-in atomic operations are not implemented in our version of GCC
4.2 for the ARM and MIPS architectures. Instead of emitting locked
instructions, they generate calls to functions that can be implemented
in the C runtime.

Only implement the atomic operations that are used by <stdatomic.h> for
datatype sizes that are supported by atomic(9). This means that on these
architectures, we can only use atomic operations on 32-bits and 64-bits
variables, which is typically sufficient.

This makes <stdatomic.h> work on all architectures except MIPS, since
MIPS and SPARC64 still use libgcc. Converting these architectures to
libcompiler_rt is on my todo list.
H A D__sync_fetch_and_xor_4.c228919 Tue Dec 27 20:18:08 MST 2011 ed Add locally implemented atomic intrinsics to libcompiler_rt.

The built-in atomic operations are not implemented in our version of GCC
4.2 for the ARM and MIPS architectures. Instead of emitting locked
instructions, they generate calls to functions that can be implemented
in the C runtime.

Only implement the atomic operations that are used by <stdatomic.h> for
datatype sizes that are supported by atomic(9). This means that on these
architectures, we can only use atomic operations on 32-bits and 64-bits
variables, which is typically sufficient.

This makes <stdatomic.h> work on all architectures except MIPS, since
MIPS and SPARC64 still use libgcc. Converting these architectures to
libcompiler_rt is on my todo list.
H A D__sync_fetch_and_xor_8.c228919 Tue Dec 27 20:18:08 MST 2011 ed Add locally implemented atomic intrinsics to libcompiler_rt.

The built-in atomic operations are not implemented in our version of GCC
4.2 for the ARM and MIPS architectures. Instead of emitting locked
instructions, they generate calls to functions that can be implemented
in the C runtime.

Only implement the atomic operations that are used by <stdatomic.h> for
datatype sizes that are supported by atomic(9). This means that on these
architectures, we can only use atomic operations on 32-bits and 64-bits
variables, which is typically sufficient.

This makes <stdatomic.h> work on all architectures except MIPS, since
MIPS and SPARC64 still use libgcc. Converting these architectures to
libcompiler_rt is on my todo list.
H A D__sync_lock_test_and_set_4.c228919 Tue Dec 27 20:18:08 MST 2011 ed Add locally implemented atomic intrinsics to libcompiler_rt.

The built-in atomic operations are not implemented in our version of GCC
4.2 for the ARM and MIPS architectures. Instead of emitting locked
instructions, they generate calls to functions that can be implemented
in the C runtime.

Only implement the atomic operations that are used by <stdatomic.h> for
datatype sizes that are supported by atomic(9). This means that on these
architectures, we can only use atomic operations on 32-bits and 64-bits
variables, which is typically sufficient.

This makes <stdatomic.h> work on all architectures except MIPS, since
MIPS and SPARC64 still use libgcc. Converting these architectures to
libcompiler_rt is on my todo list.
H A D__sync_lock_test_and_set_8.c228919 Tue Dec 27 20:18:08 MST 2011 ed Add locally implemented atomic intrinsics to libcompiler_rt.

The built-in atomic operations are not implemented in our version of GCC
4.2 for the ARM and MIPS architectures. Instead of emitting locked
instructions, they generate calls to functions that can be implemented
in the C runtime.

Only implement the atomic operations that are used by <stdatomic.h> for
datatype sizes that are supported by atomic(9). This means that on these
architectures, we can only use atomic operations on 32-bits and 64-bits
variables, which is typically sufficient.

This makes <stdatomic.h> work on all architectures except MIPS, since
MIPS and SPARC64 still use libgcc. Converting these architectures to
libcompiler_rt is on my todo list.
H A D__sync_val_compare_and_swap_4.c228919 Tue Dec 27 20:18:08 MST 2011 ed Add locally implemented atomic intrinsics to libcompiler_rt.

The built-in atomic operations are not implemented in our version of GCC
4.2 for the ARM and MIPS architectures. Instead of emitting locked
instructions, they generate calls to functions that can be implemented
in the C runtime.

Only implement the atomic operations that are used by <stdatomic.h> for
datatype sizes that are supported by atomic(9). This means that on these
architectures, we can only use atomic operations on 32-bits and 64-bits
variables, which is typically sufficient.

This makes <stdatomic.h> work on all architectures except MIPS, since
MIPS and SPARC64 still use libgcc. Converting these architectures to
libcompiler_rt is on my todo list.
H A D__sync_val_compare_and_swap_8.c228919 Tue Dec 27 20:18:08 MST 2011 ed Add locally implemented atomic intrinsics to libcompiler_rt.

The built-in atomic operations are not implemented in our version of GCC
4.2 for the ARM and MIPS architectures. Instead of emitting locked
instructions, they generate calls to functions that can be implemented
in the C runtime.

Only implement the atomic operations that are used by <stdatomic.h> for
datatype sizes that are supported by atomic(9). This means that on these
architectures, we can only use atomic operations on 32-bits and 64-bits
variables, which is typically sufficient.

This makes <stdatomic.h> work on all architectures except MIPS, since
MIPS and SPARC64 still use libgcc. Converting these architectures to
libcompiler_rt is on my todo list.
H A D__sync_val_compare_and_swap_n.h228919 Tue Dec 27 20:18:08 MST 2011 ed Add locally implemented atomic intrinsics to libcompiler_rt.

The built-in atomic operations are not implemented in our version of GCC
4.2 for the ARM and MIPS architectures. Instead of emitting locked
instructions, they generate calls to functions that can be implemented
in the C runtime.

Only implement the atomic operations that are used by <stdatomic.h> for
datatype sizes that are supported by atomic(9). This means that on these
architectures, we can only use atomic operations on 32-bits and 64-bits
variables, which is typically sufficient.

This makes <stdatomic.h> work on all architectures except MIPS, since
MIPS and SPARC64 still use libgcc. Converting these architectures to
libcompiler_rt is on my todo list.

Completed in 126 milliseconds