Searched +hist:4 +hist:b975108 (Results 1 - 1 of 1) sorted by relevance

/linux-master/fs/xfs/libxfs/
H A Dxfs_format.hdiff 4f86bb4b Wed Mar 09 00:49:36 MST 2022 Chandan Babu R <chandan.babu@oracle.com> xfs: Conditionally upgrade existing inodes to use large extent counters

This commit enables upgrading existing inodes to use large extent counters
provided that underlying filesystem's superblock has large extent counter
feature enabled.

Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
diff 4ea1ff3b Mon Aug 17 10:59:51 MDT 2020 Darrick J. Wong <darrick.wong@oracle.com> xfs: widen ondisk quota expiration timestamps to handle y2038+

Enable the bigtime feature for quota timers. We decrease the accuracy
of the timers to ~4s in exchange for being able to set timers up to the
bigtime maximum.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 4ea1ff3b Mon Aug 17 10:59:51 MDT 2020 Darrick J. Wong <darrick.wong@oracle.com> xfs: widen ondisk quota expiration timestamps to handle y2038+

Enable the bigtime feature for quota timers. We decrease the accuracy
of the timers to ~4s in exchange for being able to set timers up to the
bigtime maximum.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 4b975108 Tue Mar 10 09:57:28 MDT 2020 Christoph Hellwig <hch@lst.de> xfs: remove the xfs_agfl_t typedef

There is just a single user left, so remove it.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 4b975108 Tue Mar 10 09:57:28 MDT 2020 Christoph Hellwig <hch@lst.de> xfs: remove the xfs_agfl_t typedef

There is just a single user left, so remove it.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 6bdcf26a Fri Nov 03 11:34:46 MDT 2017 Christoph Hellwig <hch@lst.de> xfs: use a b+tree for the in-core extent list

Replace the current linear list and the indirection array for the in-core
extent list with a b+tree to avoid the need for larger memory allocations
for the indirection array when lots of extents are present. The current
extent list implementations leads to heavy pressure on the memory
allocator when modifying files with a high extent count, and can lead
to high latencies because of that.

The replacement is a b+tree with a few quirks. The leaf nodes directly
store the extent record in two u64 values. The encoding is a little bit
different from the existing in-core extent records so that the start
offset and length which are required for lookups can be retreived with
simple mask operations. The inner nodes store a 64-bit key containing
the start offset in the first half of the node, and the pointers to the
next lower level in the second half. In either case we walk the node
from the beginninig to the end and do a linear search, as that is more
efficient for the low number of cache lines touched during a search
(2 for the inner nodes, 4 for the leaf nodes) than a binary search.
We store termination markers (zero length for the leaf nodes, an
otherwise impossible high bit for the inner nodes) to terminate the key
list / records instead of storing a count to use the available cache
lines as efficiently as possible.

One quirk of the algorithm is that while we normally split a node half and
half like usual btree implementations we just spill over entries added at
the very end of the list to a new node on its own. This means we get a
100% fill grade for the common cases of bulk insertion when reading an
inode into memory, and when only sequentially appending to a file. The
downside is a slightly higher chance of splits on the first random
insertions.

Both insert and removal manually recurse into the lower levels, but
the bulk deletion of the whole tree is still implemented as a recursive
function call, although one limited by the overall depth and with very
little stack usage in every iteration.

For the first few extents we dynamically grow the list from a single
extent to the next powers of two until we have a first full leaf block
and that building the actual tree.

The code started out based on the generic lib/btree.c code from Joern
Engel based on earlier work from Peter Zijlstra, but has since been
rewritten beyond recognition.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 5419040f Thu May 28 17:03:04 MDT 2015 Brian Foster <bfoster@redhat.com> xfs: introduce inode record hole mask for sparse inode chunks

The inode btrees track 64 inodes per record regardless of inode size.
Thus, inode chunks on disk vary in size depending on the size of the
inodes. This creates a contiguous allocation requirement for new inode
chunks that can be difficult to satisfy on an aged and fragmented (free
space) filesystems.

The inode record freecount currently uses 4 bytes on disk to track the
free inode count. With a maximum freecount value of 64, only one byte is
required. Convert the freecount field to a single byte and use two of
the remaining 3 higher order bytes left for the hole mask field. Use the
final leftover byte for the total count field.

The hole mask field tracks holes in the chunks of physical space that
the inode record refers to. This facilitates the sparse allocation of
inode chunks when contiguous chunks are not available and allows the
inode btrees to identify what portions of the chunk contain valid
inodes. The total count field contains the total number of valid inodes
referred to by the record. This can also be deduced from the hole mask.
The count field provides clarity and redundancy for internal record
verification.

Note that neither of the new fields can be written to disk on fs'
without sparse inode support. Doing so writes to the high-order bytes of
freecount and causes corruption from the perspective of older kernels.
The on-disk inobt record data structure is updated with a union to
distinguish between the original, "full" format and the new, "sparse"
format. The conversion routines to get, insert and update records are
updated to translate to and from the on-disk record accordingly such
that freecount remains a 4-byte value on non-supported fs, yet the new
fields of the in-core record are always valid with respect to the
record. This means that higher level code can refer to the current
in-core record format unconditionally and lower level code ensures that
records are translated to/from disk according to the capabilities of the
fs.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 5419040f Thu May 28 17:03:04 MDT 2015 Brian Foster <bfoster@redhat.com> xfs: introduce inode record hole mask for sparse inode chunks

The inode btrees track 64 inodes per record regardless of inode size.
Thus, inode chunks on disk vary in size depending on the size of the
inodes. This creates a contiguous allocation requirement for new inode
chunks that can be difficult to satisfy on an aged and fragmented (free
space) filesystems.

The inode record freecount currently uses 4 bytes on disk to track the
free inode count. With a maximum freecount value of 64, only one byte is
required. Convert the freecount field to a single byte and use two of
the remaining 3 higher order bytes left for the hole mask field. Use the
final leftover byte for the total count field.

The hole mask field tracks holes in the chunks of physical space that
the inode record refers to. This facilitates the sparse allocation of
inode chunks when contiguous chunks are not available and allows the
inode btrees to identify what portions of the chunk contain valid
inodes. The total count field contains the total number of valid inodes
referred to by the record. This can also be deduced from the hole mask.
The count field provides clarity and redundancy for internal record
verification.

Note that neither of the new fields can be written to disk on fs'
without sparse inode support. Doing so writes to the high-order bytes of
freecount and causes corruption from the perspective of older kernels.
The on-disk inobt record data structure is updated with a union to
distinguish between the original, "full" format and the new, "sparse"
format. The conversion routines to get, insert and update records are
updated to translate to and from the on-disk record accordingly such
that freecount remains a 4-byte value on non-supported fs, yet the new
fields of the in-core record are always valid with respect to the
record. This means that higher level code can refer to the current
in-core record format unconditionally and lower level code ensures that
records are translated to/from disk according to the capabilities of the
fs.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 4fb6e8ad Thu Nov 27 20:25:04 MST 2014 Christoph Hellwig <hch@lst.de> xfs: merge xfs_ag.h into xfs_format.h

More on-disk format consolidation. A few declarations that weren't on-disk
format related move into better suitable spots.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>

Completed in 167 milliseconds