Searched +hist:2 +hist:c08f65f (Results 1 - 2 of 2) sorted by relevance

/linux-master/
H A D.mailmapdiff 71cfc131 Fri Feb 02 11:23:39 MST 2024 Nadav Amit <nadav.amit@gmail.com> vmw_balloon: change maintainership

Jerrin will be the new maintainer of the VMware balloon driver following
Broadcom's acquisition and Nadav's departure.

Update accordingly:
1. Update the maintainer name and email.
2. Update the reviewer list to Broadcom's, which acquired VMware.
3. Add .mailmap entries for Nadav.

Cc: Jerrin Shaji George <jerrin.shaji-george@broadcom.com>
Signed-off-by: Nadav Amit <nadav.amit@gmail.com>
Acked-by: Jerrin Shaji George <jerrin.shaji-george@broadcom.com>
Link: https://lore.kernel.org/r/20240202182339.1725466-1-nadav.amit@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
diff 2d880bfa Mon Dec 04 02:37:15 MST 2023 Jiri Kosina <jikos@kernel.org> mailmap: add address mapping for Jiri Kosina

Since I switched the MAINTAINERS entry to @kernel.org some time
ago, let's canonicalize my addressess to it.

Signed-off-by: Jiri Kosina <jikos@kernel.org>
Signed-off-by: Jiri Kosina <jkosina@suse.com>
diff 4aa8f278 Mon Oct 30 19:40:00 MDT 2023 Bagas Sanjaya <bagasdotme@gmail.com> .mailmap: add address mapping for Tomeu Vizoso

He's no longer working in Collabora (and his email address there bounces).
Map it to his personal address.

Link: https://lkml.kernel.org/r/20231031014009.22765-2-bagasdotme@gmail.com
Signed-off-by: Bagas Sanjaya <bagasdotme@gmail.com>
Acked-by: Tomeu Vizoso <tomeu@tomeuvizoso.net>
Cc: Bjorn Andersson <quic_bjorande@quicinc.com>
Cc: Heiko Stuebner <heiko@sntech.de>
Cc: Jakub Kicinski <kuba@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Konrad Dybcio <konrad.dybcio@linaro.org>
Cc: Stephen Hemminger <stephen@networkplumber.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
diff 90723a82 Mon Oct 30 08:24:55 MDT 2023 Bagas Sanjaya <bagasdotme@gmail.com> .mailmap: map Benjamin Poirier's address

Map out to his gmail address as he had left SUSE some time ago.

Link: https://lkml.kernel.org/r/20231030142454.22127-2-bagasdotme@gmail.com
Signed-off-by: Bagas Sanjaya <bagasdotme@gmail.com>
Acked-by: Benjamin Poirier <benjamin.poirier@gmail.com>
Cc: Bjorn Andersson <quic_bjorande@quicinc.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Heiko Stuebner <heiko@sntech.de>
Cc: Jakub Kicinski <kuba@kernel.org>
Cc: Konrad Dybcio <konrad.dybcio@linaro.org>
Cc: Oleksij Rempel <o.rempel@pengutronix.de>
Cc: Stephen Hemminger <stephen@networkplumber.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
diff 54ccc875 Sat Jul 08 13:53:09 MDT 2023 Jonas Gorski <jonas.gorski@gmail.com> mailmap: add entry for Jonas Gorski

The openwrt.org email address is long defunct, but still pop ups from
time to time when asking get_maintainer.pl. So add an entry to my
currently used address.

Signed-off-by: Jonas Gorski <jonas.gorski@gmail.com>
Link: https://lore.kernel.org/r/20230708195309.72767-2-jonas.gorski@gmail.com
Signed-off-by: Mark Brown <broonie@kernel.org>
diff ddcd91f4 Tue Jul 04 10:39:18 MDT 2023 Heiko Stuebner <heiko@sntech.de> mailmap: update manpage link

Patch series "Update .mailmap for my work address and fix manpage".

While updating mailmap for the going-away address, I also found that on
current systems the manpage linked from the header comment changed.

And in fact it looks like the git mailmap feature got its own manpage.


This patch (of 2):

On recent systems the git-shortlog manpage only tells people to
See gitmailmap(5)

So instead of sending people on a scavenger hunt, put that info into the
header directly. Though keep the old reference around for older systems.

Link: https://lkml.kernel.org/r/20230704163919.1136784-1-heiko@sntech.de
Link: https://lkml.kernel.org/r/20230704163919.1136784-2-heiko@sntech.de
Signed-off-by: Heiko Stuebner <heiko.stuebner@vrull.eu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
diff ddcd91f4 Tue Jul 04 10:39:18 MDT 2023 Heiko Stuebner <heiko@sntech.de> mailmap: update manpage link

Patch series "Update .mailmap for my work address and fix manpage".

While updating mailmap for the going-away address, I also found that on
current systems the manpage linked from the header comment changed.

And in fact it looks like the git mailmap feature got its own manpage.


This patch (of 2):

On recent systems the git-shortlog manpage only tells people to
See gitmailmap(5)

So instead of sending people on a scavenger hunt, put that info into the
header directly. Though keep the old reference around for older systems.

Link: https://lkml.kernel.org/r/20230704163919.1136784-1-heiko@sntech.de
Link: https://lkml.kernel.org/r/20230704163919.1136784-2-heiko@sntech.de
Signed-off-by: Heiko Stuebner <heiko.stuebner@vrull.eu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
diff ecf1d926 Tue Feb 28 08:33:34 MST 2023 Konrad Dybcio <konrad.dybcio@linaro.org> mailmap: map Dikshita Agarwal's old address to his current one

Dikshita's old email is still picked up by the likes of get_maintainer.pl
and keeps bouncing. Map it to his current one.

Link: https://lkml.kernel.org/r/20230228153335.907164-2-konrad.dybcio@linaro.org
Signed-off-by: Konrad Dybcio <konrad.dybcio@linaro.org>
Cc: Dikshita Agarwal <dikshita@qti.qualcomm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
diff f1ab2e0d Tue Nov 16 06:58:03 MST 2021 Christian Borntraeger <borntraeger@linux.ibm.com> MAINTAINERS: update email address of Christian Borntraeger

My borntraeger@de.ibm.com email is just a forwarder to the
linux.ibm.com address. Let us remove the extra hop to avoid
a potential source of errors.

While at it, add the relevant email addresses to mailmap.

Signed-off-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Link: https://lore.kernel.org/r/20211116135803.119489-2-borntraeger@linux.ibm.com
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
diff 72a461ad Thu Jun 24 19:40:13 MDT 2021 Marek Behún <kabel@kernel.org> mailmap: add Marek's other e-mail address and identity without diacritics

Some of my commits were sent with identities
Marek Behun <marek.behun@nic.cz>
Marek Behún <marek.behun@nic.cz>
while the correct one is
Marek Behún <kabel@kernel.org>

Put this into mailmap so that git shortlog prints all my commits under
one identity.

Link: https://lkml.kernel.org/r/20210616113624.19351-2-kabel@kernel.org
Signed-off-by: Marek Behún <kabel@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
H A DMAINTAINERSdiff 71cfc131 Fri Feb 02 11:23:39 MST 2024 Nadav Amit <nadav.amit@gmail.com> vmw_balloon: change maintainership

Jerrin will be the new maintainer of the VMware balloon driver following
Broadcom's acquisition and Nadav's departure.

Update accordingly:
1. Update the maintainer name and email.
2. Update the reviewer list to Broadcom's, which acquired VMware.
3. Add .mailmap entries for Nadav.

Cc: Jerrin Shaji George <jerrin.shaji-george@broadcom.com>
Signed-off-by: Nadav Amit <nadav.amit@gmail.com>
Acked-by: Jerrin Shaji George <jerrin.shaji-george@broadcom.com>
Link: https://lore.kernel.org/r/20240202182339.1725466-1-nadav.amit@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
diff 5659785a Tue Jan 23 01:10:59 MST 2024 Kim Seer Paller <kimseer.paller@analog.com> iio: frequency: admfm2000: New driver

Dual microwave down converter module with input RF and LO frequency
ranges from 0.5 to 32 GHz and an output IF frequency range from 0.1 to
8 GHz. It consists of a LNA, mixer, IF filter, DSA, and IF amplifier
for each down conversion path.

Signed-off-by: Kim Seer Paller <kimseer.paller@analog.com>
Link: https://lore.kernel.org/r/20240123081059.5746-2-kimseer.paller@analog.com
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
diff d6cfd177 Wed Jan 31 07:49:33 MST 2024 Andrea Parri <parri.andrea@gmail.com> membarrier: riscv: Add full memory barrier in switch_mm()

The membarrier system call requires a full memory barrier after storing
to rq->curr, before going back to user-space. The barrier is only
needed when switching between processes: the barrier is implied by
mmdrop() when switching from kernel to userspace, and it's not needed
when switching from userspace to kernel.

Rely on the feature/mechanism ARCH_HAS_MEMBARRIER_CALLBACKS and on the
primitive membarrier_arch_switch_mm(), already adopted by the PowerPC
architecture, to insert the required barrier.

Fixes: fab957c11efe2f ("RISC-V: Atomic and Locking Code")
Signed-off-by: Andrea Parri <parri.andrea@gmail.com>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/r/20240131144936.29190-2-parri.andrea@gmail.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
diff c5839535 Thu Feb 22 10:43:42 MST 2024 Rob Herring <robh@kernel.org> dt-bindings: i2c: Remove obsolete i2c.txt

Everything in i2c.txt is covered by schemas/i2c/i2c-controller.yaml in
dtschema project, so remove i2c.txt and update links to it in the tree.

Reviewed-by: Wolfram Sang <wsa+renesas@sang-engineering.com>
Acked-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20240222174343.3482354-2-robh@kernel.org
Signed-off-by: Rob Herring <robh@kernel.org>
diff 701ab935 Tue Feb 20 04:50:55 MST 2024 Ankit Agrawal <ankita@nvidia.com> vfio/nvgrace-gpu: Add vfio pci variant module for grace hopper

NVIDIA's upcoming Grace Hopper Superchip provides a PCI-like device
for the on-chip GPU that is the logical OS representation of the
internal proprietary chip-to-chip cache coherent interconnect.

The device is peculiar compared to a real PCI device in that whilst
there is a real 64b PCI BAR1 (comprising region 2 & region 3) on the
device, it is not used to access device memory once the faster
chip-to-chip interconnect is initialized (occurs at the time of host
system boot). The device memory is accessed instead using the chip-to-chip
interconnect that is exposed as a contiguous physically addressable
region on the host. This device memory aperture can be obtained from host
ACPI table using device_property_read_u64(), according to the FW
specification. Since the device memory is cache coherent with the CPU,
it can be mmap into the user VMA with a cacheable mapping using
remap_pfn_range() and used like a regular RAM. The device memory
is not added to the host kernel, but mapped directly as this reduces
memory wastage due to struct pages.

There is also a requirement of a minimum reserved 1G uncached region
(termed as resmem) to support the Multi-Instance GPU (MIG) feature [1].
This is to work around a HW defect. Based on [2], the requisite properties
(uncached, unaligned access) can be achieved through a VM mapping (S1)
of NORMAL_NC and host (S2) mapping with MemAttr[2:0]=0b101. To provide
a different non-cached property to the reserved 1G region, it needs to
be carved out from the device memory and mapped as a separate region
in Qemu VMA with pgprot_writecombine(). pgprot_writecombine() sets the
Qemu VMA page properties (pgprot) as NORMAL_NC.

Provide a VFIO PCI variant driver that adapts the unique device memory
representation into a more standard PCI representation facing userspace.

The variant driver exposes these two regions - the non-cached reserved
(resmem) and the cached rest of the device memory (termed as usemem) as
separate VFIO 64b BAR regions. This is divergent from the baremetal
approach, where the device memory is exposed as a device memory region.
The decision for a different approach was taken in view of the fact that
it would necessiate additional code in Qemu to discover and insert those
regions in the VM IPA, along with the additional VM ACPI DSDT changes to
communicate the device memory region IPA to the VM workloads. Moreover,
this behavior would have to be added to a variety of emulators (beyond
top of tree Qemu) out there desiring grace hopper support.

Since the device implements 64-bit BAR0, the VFIO PCI variant driver
maps the uncached carved out region to the next available PCI BAR (i.e.
comprising of region 2 and 3). The cached device memory aperture is
assigned BAR region 4 and 5. Qemu will then naturally generate a PCI
device in the VM with the uncached aperture reported as BAR2 region,
the cacheable as BAR4. The variant driver provides emulation for these
fake BARs' PCI config space offset registers.

The hardware ensures that the system does not crash when the memory
is accessed with the memory enable turned off. It synthesis ~0 reads
and dropped writes on such access. So there is no need to support the
disablement/enablement of BAR through PCI_COMMAND config space register.

The memory layout on the host looks like the following:
devmem (memlength)
|--------------------------------------------------|
|-------------cached------------------------|--NC--|
| |
usemem.memphys resmem.memphys

PCI BARs need to be aligned to the power-of-2, but the actual memory on the
device may not. A read or write access to the physical address from the
last device PFN up to the next power-of-2 aligned physical address
results in reading ~0 and dropped writes. Note that the GPU device
driver [6] is capable of knowing the exact device memory size through
separate means. The device memory size is primarily kept in the system
ACPI tables for use by the VFIO PCI variant module.

Note that the usemem memory is added by the VM Nvidia device driver [5]
to the VM kernel as memblocks. Hence make the usable memory size memblock
(MEMBLK_SIZE) aligned. This is a hardwired ABI value between the GPU FW and
VFIO driver. The VM device driver make use of the same value for its
calculation to determine USEMEM size.

Currently there is no provision in KVM for a S2 mapping with
MemAttr[2:0]=0b101, but there is an ongoing effort to provide the same [3].
As previously mentioned, resmem is mapped pgprot_writecombine(), that
sets the Qemu VMA page properties (pgprot) as NORMAL_NC. Using the
proposed changes in [3] and [4], KVM marks the region with
MemAttr[2:0]=0b101 in S2.

If the device memory properties are not present, the driver registers the
vfio-pci-core function pointers. Since there are no ACPI memory properties
generated for the VM, the variant driver inside the VM will only use
the vfio-pci-core ops and hence try to map the BARs as non cached. This
is not a problem as the CPUs have FWB enabled which blocks the VM
mapping's ability to override the cacheability set by the host mapping.

This goes along with a qemu series [6] to provides the necessary
implementation of the Grace Hopper Superchip firmware specification so
that the guest operating system can see the correct ACPI modeling for
the coherent GPU device. Verified with the CUDA workload in the VM.

[1] https://www.nvidia.com/en-in/technologies/multi-instance-gpu/
[2] section D8.5.5 of https://developer.arm.com/documentation/ddi0487/latest/
[3] https://lore.kernel.org/all/20240211174705.31992-1-ankita@nvidia.com/
[4] https://lore.kernel.org/all/20230907181459.18145-2-ankita@nvidia.com/
[5] https://github.com/NVIDIA/open-gpu-kernel-modules
[6] https://lore.kernel.org/all/20231203060245.31593-1-ankita@nvidia.com/

Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Yishai Hadas <yishaih@nvidia.com>
Reviewed-by: Zhi Wang <zhi.wang.linux@gmail.com>
Signed-off-by: Aniket Agashe <aniketa@nvidia.com>
Signed-off-by: Ankit Agrawal <ankita@nvidia.com>
Link: https://lore.kernel.org/r/20240220115055.23546-4-ankita@nvidia.com
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
diff 701ab935 Tue Feb 20 04:50:55 MST 2024 Ankit Agrawal <ankita@nvidia.com> vfio/nvgrace-gpu: Add vfio pci variant module for grace hopper

NVIDIA's upcoming Grace Hopper Superchip provides a PCI-like device
for the on-chip GPU that is the logical OS representation of the
internal proprietary chip-to-chip cache coherent interconnect.

The device is peculiar compared to a real PCI device in that whilst
there is a real 64b PCI BAR1 (comprising region 2 & region 3) on the
device, it is not used to access device memory once the faster
chip-to-chip interconnect is initialized (occurs at the time of host
system boot). The device memory is accessed instead using the chip-to-chip
interconnect that is exposed as a contiguous physically addressable
region on the host. This device memory aperture can be obtained from host
ACPI table using device_property_read_u64(), according to the FW
specification. Since the device memory is cache coherent with the CPU,
it can be mmap into the user VMA with a cacheable mapping using
remap_pfn_range() and used like a regular RAM. The device memory
is not added to the host kernel, but mapped directly as this reduces
memory wastage due to struct pages.

There is also a requirement of a minimum reserved 1G uncached region
(termed as resmem) to support the Multi-Instance GPU (MIG) feature [1].
This is to work around a HW defect. Based on [2], the requisite properties
(uncached, unaligned access) can be achieved through a VM mapping (S1)
of NORMAL_NC and host (S2) mapping with MemAttr[2:0]=0b101. To provide
a different non-cached property to the reserved 1G region, it needs to
be carved out from the device memory and mapped as a separate region
in Qemu VMA with pgprot_writecombine(). pgprot_writecombine() sets the
Qemu VMA page properties (pgprot) as NORMAL_NC.

Provide a VFIO PCI variant driver that adapts the unique device memory
representation into a more standard PCI representation facing userspace.

The variant driver exposes these two regions - the non-cached reserved
(resmem) and the cached rest of the device memory (termed as usemem) as
separate VFIO 64b BAR regions. This is divergent from the baremetal
approach, where the device memory is exposed as a device memory region.
The decision for a different approach was taken in view of the fact that
it would necessiate additional code in Qemu to discover and insert those
regions in the VM IPA, along with the additional VM ACPI DSDT changes to
communicate the device memory region IPA to the VM workloads. Moreover,
this behavior would have to be added to a variety of emulators (beyond
top of tree Qemu) out there desiring grace hopper support.

Since the device implements 64-bit BAR0, the VFIO PCI variant driver
maps the uncached carved out region to the next available PCI BAR (i.e.
comprising of region 2 and 3). The cached device memory aperture is
assigned BAR region 4 and 5. Qemu will then naturally generate a PCI
device in the VM with the uncached aperture reported as BAR2 region,
the cacheable as BAR4. The variant driver provides emulation for these
fake BARs' PCI config space offset registers.

The hardware ensures that the system does not crash when the memory
is accessed with the memory enable turned off. It synthesis ~0 reads
and dropped writes on such access. So there is no need to support the
disablement/enablement of BAR through PCI_COMMAND config space register.

The memory layout on the host looks like the following:
devmem (memlength)
|--------------------------------------------------|
|-------------cached------------------------|--NC--|
| |
usemem.memphys resmem.memphys

PCI BARs need to be aligned to the power-of-2, but the actual memory on the
device may not. A read or write access to the physical address from the
last device PFN up to the next power-of-2 aligned physical address
results in reading ~0 and dropped writes. Note that the GPU device
driver [6] is capable of knowing the exact device memory size through
separate means. The device memory size is primarily kept in the system
ACPI tables for use by the VFIO PCI variant module.

Note that the usemem memory is added by the VM Nvidia device driver [5]
to the VM kernel as memblocks. Hence make the usable memory size memblock
(MEMBLK_SIZE) aligned. This is a hardwired ABI value between the GPU FW and
VFIO driver. The VM device driver make use of the same value for its
calculation to determine USEMEM size.

Currently there is no provision in KVM for a S2 mapping with
MemAttr[2:0]=0b101, but there is an ongoing effort to provide the same [3].
As previously mentioned, resmem is mapped pgprot_writecombine(), that
sets the Qemu VMA page properties (pgprot) as NORMAL_NC. Using the
proposed changes in [3] and [4], KVM marks the region with
MemAttr[2:0]=0b101 in S2.

If the device memory properties are not present, the driver registers the
vfio-pci-core function pointers. Since there are no ACPI memory properties
generated for the VM, the variant driver inside the VM will only use
the vfio-pci-core ops and hence try to map the BARs as non cached. This
is not a problem as the CPUs have FWB enabled which blocks the VM
mapping's ability to override the cacheability set by the host mapping.

This goes along with a qemu series [6] to provides the necessary
implementation of the Grace Hopper Superchip firmware specification so
that the guest operating system can see the correct ACPI modeling for
the coherent GPU device. Verified with the CUDA workload in the VM.

[1] https://www.nvidia.com/en-in/technologies/multi-instance-gpu/
[2] section D8.5.5 of https://developer.arm.com/documentation/ddi0487/latest/
[3] https://lore.kernel.org/all/20240211174705.31992-1-ankita@nvidia.com/
[4] https://lore.kernel.org/all/20230907181459.18145-2-ankita@nvidia.com/
[5] https://github.com/NVIDIA/open-gpu-kernel-modules
[6] https://lore.kernel.org/all/20231203060245.31593-1-ankita@nvidia.com/

Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Yishai Hadas <yishaih@nvidia.com>
Reviewed-by: Zhi Wang <zhi.wang.linux@gmail.com>
Signed-off-by: Aniket Agashe <aniketa@nvidia.com>
Signed-off-by: Ankit Agrawal <ankita@nvidia.com>
Link: https://lore.kernel.org/r/20240220115055.23546-4-ankita@nvidia.com
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
diff 701ab935 Tue Feb 20 04:50:55 MST 2024 Ankit Agrawal <ankita@nvidia.com> vfio/nvgrace-gpu: Add vfio pci variant module for grace hopper

NVIDIA's upcoming Grace Hopper Superchip provides a PCI-like device
for the on-chip GPU that is the logical OS representation of the
internal proprietary chip-to-chip cache coherent interconnect.

The device is peculiar compared to a real PCI device in that whilst
there is a real 64b PCI BAR1 (comprising region 2 & region 3) on the
device, it is not used to access device memory once the faster
chip-to-chip interconnect is initialized (occurs at the time of host
system boot). The device memory is accessed instead using the chip-to-chip
interconnect that is exposed as a contiguous physically addressable
region on the host. This device memory aperture can be obtained from host
ACPI table using device_property_read_u64(), according to the FW
specification. Since the device memory is cache coherent with the CPU,
it can be mmap into the user VMA with a cacheable mapping using
remap_pfn_range() and used like a regular RAM. The device memory
is not added to the host kernel, but mapped directly as this reduces
memory wastage due to struct pages.

There is also a requirement of a minimum reserved 1G uncached region
(termed as resmem) to support the Multi-Instance GPU (MIG) feature [1].
This is to work around a HW defect. Based on [2], the requisite properties
(uncached, unaligned access) can be achieved through a VM mapping (S1)
of NORMAL_NC and host (S2) mapping with MemAttr[2:0]=0b101. To provide
a different non-cached property to the reserved 1G region, it needs to
be carved out from the device memory and mapped as a separate region
in Qemu VMA with pgprot_writecombine(). pgprot_writecombine() sets the
Qemu VMA page properties (pgprot) as NORMAL_NC.

Provide a VFIO PCI variant driver that adapts the unique device memory
representation into a more standard PCI representation facing userspace.

The variant driver exposes these two regions - the non-cached reserved
(resmem) and the cached rest of the device memory (termed as usemem) as
separate VFIO 64b BAR regions. This is divergent from the baremetal
approach, where the device memory is exposed as a device memory region.
The decision for a different approach was taken in view of the fact that
it would necessiate additional code in Qemu to discover and insert those
regions in the VM IPA, along with the additional VM ACPI DSDT changes to
communicate the device memory region IPA to the VM workloads. Moreover,
this behavior would have to be added to a variety of emulators (beyond
top of tree Qemu) out there desiring grace hopper support.

Since the device implements 64-bit BAR0, the VFIO PCI variant driver
maps the uncached carved out region to the next available PCI BAR (i.e.
comprising of region 2 and 3). The cached device memory aperture is
assigned BAR region 4 and 5. Qemu will then naturally generate a PCI
device in the VM with the uncached aperture reported as BAR2 region,
the cacheable as BAR4. The variant driver provides emulation for these
fake BARs' PCI config space offset registers.

The hardware ensures that the system does not crash when the memory
is accessed with the memory enable turned off. It synthesis ~0 reads
and dropped writes on such access. So there is no need to support the
disablement/enablement of BAR through PCI_COMMAND config space register.

The memory layout on the host looks like the following:
devmem (memlength)
|--------------------------------------------------|
|-------------cached------------------------|--NC--|
| |
usemem.memphys resmem.memphys

PCI BARs need to be aligned to the power-of-2, but the actual memory on the
device may not. A read or write access to the physical address from the
last device PFN up to the next power-of-2 aligned physical address
results in reading ~0 and dropped writes. Note that the GPU device
driver [6] is capable of knowing the exact device memory size through
separate means. The device memory size is primarily kept in the system
ACPI tables for use by the VFIO PCI variant module.

Note that the usemem memory is added by the VM Nvidia device driver [5]
to the VM kernel as memblocks. Hence make the usable memory size memblock
(MEMBLK_SIZE) aligned. This is a hardwired ABI value between the GPU FW and
VFIO driver. The VM device driver make use of the same value for its
calculation to determine USEMEM size.

Currently there is no provision in KVM for a S2 mapping with
MemAttr[2:0]=0b101, but there is an ongoing effort to provide the same [3].
As previously mentioned, resmem is mapped pgprot_writecombine(), that
sets the Qemu VMA page properties (pgprot) as NORMAL_NC. Using the
proposed changes in [3] and [4], KVM marks the region with
MemAttr[2:0]=0b101 in S2.

If the device memory properties are not present, the driver registers the
vfio-pci-core function pointers. Since there are no ACPI memory properties
generated for the VM, the variant driver inside the VM will only use
the vfio-pci-core ops and hence try to map the BARs as non cached. This
is not a problem as the CPUs have FWB enabled which blocks the VM
mapping's ability to override the cacheability set by the host mapping.

This goes along with a qemu series [6] to provides the necessary
implementation of the Grace Hopper Superchip firmware specification so
that the guest operating system can see the correct ACPI modeling for
the coherent GPU device. Verified with the CUDA workload in the VM.

[1] https://www.nvidia.com/en-in/technologies/multi-instance-gpu/
[2] section D8.5.5 of https://developer.arm.com/documentation/ddi0487/latest/
[3] https://lore.kernel.org/all/20240211174705.31992-1-ankita@nvidia.com/
[4] https://lore.kernel.org/all/20230907181459.18145-2-ankita@nvidia.com/
[5] https://github.com/NVIDIA/open-gpu-kernel-modules
[6] https://lore.kernel.org/all/20231203060245.31593-1-ankita@nvidia.com/

Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Yishai Hadas <yishaih@nvidia.com>
Reviewed-by: Zhi Wang <zhi.wang.linux@gmail.com>
Signed-off-by: Aniket Agashe <aniketa@nvidia.com>
Signed-off-by: Ankit Agrawal <ankita@nvidia.com>
Link: https://lore.kernel.org/r/20240220115055.23546-4-ankita@nvidia.com
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
diff 701ab935 Tue Feb 20 04:50:55 MST 2024 Ankit Agrawal <ankita@nvidia.com> vfio/nvgrace-gpu: Add vfio pci variant module for grace hopper

NVIDIA's upcoming Grace Hopper Superchip provides a PCI-like device
for the on-chip GPU that is the logical OS representation of the
internal proprietary chip-to-chip cache coherent interconnect.

The device is peculiar compared to a real PCI device in that whilst
there is a real 64b PCI BAR1 (comprising region 2 & region 3) on the
device, it is not used to access device memory once the faster
chip-to-chip interconnect is initialized (occurs at the time of host
system boot). The device memory is accessed instead using the chip-to-chip
interconnect that is exposed as a contiguous physically addressable
region on the host. This device memory aperture can be obtained from host
ACPI table using device_property_read_u64(), according to the FW
specification. Since the device memory is cache coherent with the CPU,
it can be mmap into the user VMA with a cacheable mapping using
remap_pfn_range() and used like a regular RAM. The device memory
is not added to the host kernel, but mapped directly as this reduces
memory wastage due to struct pages.

There is also a requirement of a minimum reserved 1G uncached region
(termed as resmem) to support the Multi-Instance GPU (MIG) feature [1].
This is to work around a HW defect. Based on [2], the requisite properties
(uncached, unaligned access) can be achieved through a VM mapping (S1)
of NORMAL_NC and host (S2) mapping with MemAttr[2:0]=0b101. To provide
a different non-cached property to the reserved 1G region, it needs to
be carved out from the device memory and mapped as a separate region
in Qemu VMA with pgprot_writecombine(). pgprot_writecombine() sets the
Qemu VMA page properties (pgprot) as NORMAL_NC.

Provide a VFIO PCI variant driver that adapts the unique device memory
representation into a more standard PCI representation facing userspace.

The variant driver exposes these two regions - the non-cached reserved
(resmem) and the cached rest of the device memory (termed as usemem) as
separate VFIO 64b BAR regions. This is divergent from the baremetal
approach, where the device memory is exposed as a device memory region.
The decision for a different approach was taken in view of the fact that
it would necessiate additional code in Qemu to discover and insert those
regions in the VM IPA, along with the additional VM ACPI DSDT changes to
communicate the device memory region IPA to the VM workloads. Moreover,
this behavior would have to be added to a variety of emulators (beyond
top of tree Qemu) out there desiring grace hopper support.

Since the device implements 64-bit BAR0, the VFIO PCI variant driver
maps the uncached carved out region to the next available PCI BAR (i.e.
comprising of region 2 and 3). The cached device memory aperture is
assigned BAR region 4 and 5. Qemu will then naturally generate a PCI
device in the VM with the uncached aperture reported as BAR2 region,
the cacheable as BAR4. The variant driver provides emulation for these
fake BARs' PCI config space offset registers.

The hardware ensures that the system does not crash when the memory
is accessed with the memory enable turned off. It synthesis ~0 reads
and dropped writes on such access. So there is no need to support the
disablement/enablement of BAR through PCI_COMMAND config space register.

The memory layout on the host looks like the following:
devmem (memlength)
|--------------------------------------------------|
|-------------cached------------------------|--NC--|
| |
usemem.memphys resmem.memphys

PCI BARs need to be aligned to the power-of-2, but the actual memory on the
device may not. A read or write access to the physical address from the
last device PFN up to the next power-of-2 aligned physical address
results in reading ~0 and dropped writes. Note that the GPU device
driver [6] is capable of knowing the exact device memory size through
separate means. The device memory size is primarily kept in the system
ACPI tables for use by the VFIO PCI variant module.

Note that the usemem memory is added by the VM Nvidia device driver [5]
to the VM kernel as memblocks. Hence make the usable memory size memblock
(MEMBLK_SIZE) aligned. This is a hardwired ABI value between the GPU FW and
VFIO driver. The VM device driver make use of the same value for its
calculation to determine USEMEM size.

Currently there is no provision in KVM for a S2 mapping with
MemAttr[2:0]=0b101, but there is an ongoing effort to provide the same [3].
As previously mentioned, resmem is mapped pgprot_writecombine(), that
sets the Qemu VMA page properties (pgprot) as NORMAL_NC. Using the
proposed changes in [3] and [4], KVM marks the region with
MemAttr[2:0]=0b101 in S2.

If the device memory properties are not present, the driver registers the
vfio-pci-core function pointers. Since there are no ACPI memory properties
generated for the VM, the variant driver inside the VM will only use
the vfio-pci-core ops and hence try to map the BARs as non cached. This
is not a problem as the CPUs have FWB enabled which blocks the VM
mapping's ability to override the cacheability set by the host mapping.

This goes along with a qemu series [6] to provides the necessary
implementation of the Grace Hopper Superchip firmware specification so
that the guest operating system can see the correct ACPI modeling for
the coherent GPU device. Verified with the CUDA workload in the VM.

[1] https://www.nvidia.com/en-in/technologies/multi-instance-gpu/
[2] section D8.5.5 of https://developer.arm.com/documentation/ddi0487/latest/
[3] https://lore.kernel.org/all/20240211174705.31992-1-ankita@nvidia.com/
[4] https://lore.kernel.org/all/20230907181459.18145-2-ankita@nvidia.com/
[5] https://github.com/NVIDIA/open-gpu-kernel-modules
[6] https://lore.kernel.org/all/20231203060245.31593-1-ankita@nvidia.com/

Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Yishai Hadas <yishaih@nvidia.com>
Reviewed-by: Zhi Wang <zhi.wang.linux@gmail.com>
Signed-off-by: Aniket Agashe <aniketa@nvidia.com>
Signed-off-by: Ankit Agrawal <ankita@nvidia.com>
Link: https://lore.kernel.org/r/20240220115055.23546-4-ankita@nvidia.com
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
diff 701ab935 Tue Feb 20 04:50:55 MST 2024 Ankit Agrawal <ankita@nvidia.com> vfio/nvgrace-gpu: Add vfio pci variant module for grace hopper

NVIDIA's upcoming Grace Hopper Superchip provides a PCI-like device
for the on-chip GPU that is the logical OS representation of the
internal proprietary chip-to-chip cache coherent interconnect.

The device is peculiar compared to a real PCI device in that whilst
there is a real 64b PCI BAR1 (comprising region 2 & region 3) on the
device, it is not used to access device memory once the faster
chip-to-chip interconnect is initialized (occurs at the time of host
system boot). The device memory is accessed instead using the chip-to-chip
interconnect that is exposed as a contiguous physically addressable
region on the host. This device memory aperture can be obtained from host
ACPI table using device_property_read_u64(), according to the FW
specification. Since the device memory is cache coherent with the CPU,
it can be mmap into the user VMA with a cacheable mapping using
remap_pfn_range() and used like a regular RAM. The device memory
is not added to the host kernel, but mapped directly as this reduces
memory wastage due to struct pages.

There is also a requirement of a minimum reserved 1G uncached region
(termed as resmem) to support the Multi-Instance GPU (MIG) feature [1].
This is to work around a HW defect. Based on [2], the requisite properties
(uncached, unaligned access) can be achieved through a VM mapping (S1)
of NORMAL_NC and host (S2) mapping with MemAttr[2:0]=0b101. To provide
a different non-cached property to the reserved 1G region, it needs to
be carved out from the device memory and mapped as a separate region
in Qemu VMA with pgprot_writecombine(). pgprot_writecombine() sets the
Qemu VMA page properties (pgprot) as NORMAL_NC.

Provide a VFIO PCI variant driver that adapts the unique device memory
representation into a more standard PCI representation facing userspace.

The variant driver exposes these two regions - the non-cached reserved
(resmem) and the cached rest of the device memory (termed as usemem) as
separate VFIO 64b BAR regions. This is divergent from the baremetal
approach, where the device memory is exposed as a device memory region.
The decision for a different approach was taken in view of the fact that
it would necessiate additional code in Qemu to discover and insert those
regions in the VM IPA, along with the additional VM ACPI DSDT changes to
communicate the device memory region IPA to the VM workloads. Moreover,
this behavior would have to be added to a variety of emulators (beyond
top of tree Qemu) out there desiring grace hopper support.

Since the device implements 64-bit BAR0, the VFIO PCI variant driver
maps the uncached carved out region to the next available PCI BAR (i.e.
comprising of region 2 and 3). The cached device memory aperture is
assigned BAR region 4 and 5. Qemu will then naturally generate a PCI
device in the VM with the uncached aperture reported as BAR2 region,
the cacheable as BAR4. The variant driver provides emulation for these
fake BARs' PCI config space offset registers.

The hardware ensures that the system does not crash when the memory
is accessed with the memory enable turned off. It synthesis ~0 reads
and dropped writes on such access. So there is no need to support the
disablement/enablement of BAR through PCI_COMMAND config space register.

The memory layout on the host looks like the following:
devmem (memlength)
|--------------------------------------------------|
|-------------cached------------------------|--NC--|
| |
usemem.memphys resmem.memphys

PCI BARs need to be aligned to the power-of-2, but the actual memory on the
device may not. A read or write access to the physical address from the
last device PFN up to the next power-of-2 aligned physical address
results in reading ~0 and dropped writes. Note that the GPU device
driver [6] is capable of knowing the exact device memory size through
separate means. The device memory size is primarily kept in the system
ACPI tables for use by the VFIO PCI variant module.

Note that the usemem memory is added by the VM Nvidia device driver [5]
to the VM kernel as memblocks. Hence make the usable memory size memblock
(MEMBLK_SIZE) aligned. This is a hardwired ABI value between the GPU FW and
VFIO driver. The VM device driver make use of the same value for its
calculation to determine USEMEM size.

Currently there is no provision in KVM for a S2 mapping with
MemAttr[2:0]=0b101, but there is an ongoing effort to provide the same [3].
As previously mentioned, resmem is mapped pgprot_writecombine(), that
sets the Qemu VMA page properties (pgprot) as NORMAL_NC. Using the
proposed changes in [3] and [4], KVM marks the region with
MemAttr[2:0]=0b101 in S2.

If the device memory properties are not present, the driver registers the
vfio-pci-core function pointers. Since there are no ACPI memory properties
generated for the VM, the variant driver inside the VM will only use
the vfio-pci-core ops and hence try to map the BARs as non cached. This
is not a problem as the CPUs have FWB enabled which blocks the VM
mapping's ability to override the cacheability set by the host mapping.

This goes along with a qemu series [6] to provides the necessary
implementation of the Grace Hopper Superchip firmware specification so
that the guest operating system can see the correct ACPI modeling for
the coherent GPU device. Verified with the CUDA workload in the VM.

[1] https://www.nvidia.com/en-in/technologies/multi-instance-gpu/
[2] section D8.5.5 of https://developer.arm.com/documentation/ddi0487/latest/
[3] https://lore.kernel.org/all/20240211174705.31992-1-ankita@nvidia.com/
[4] https://lore.kernel.org/all/20230907181459.18145-2-ankita@nvidia.com/
[5] https://github.com/NVIDIA/open-gpu-kernel-modules
[6] https://lore.kernel.org/all/20231203060245.31593-1-ankita@nvidia.com/

Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Yishai Hadas <yishaih@nvidia.com>
Reviewed-by: Zhi Wang <zhi.wang.linux@gmail.com>
Signed-off-by: Aniket Agashe <aniketa@nvidia.com>
Signed-off-by: Ankit Agrawal <ankita@nvidia.com>
Link: https://lore.kernel.org/r/20240220115055.23546-4-ankita@nvidia.com
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
diff 701ab935 Tue Feb 20 04:50:55 MST 2024 Ankit Agrawal <ankita@nvidia.com> vfio/nvgrace-gpu: Add vfio pci variant module for grace hopper

NVIDIA's upcoming Grace Hopper Superchip provides a PCI-like device
for the on-chip GPU that is the logical OS representation of the
internal proprietary chip-to-chip cache coherent interconnect.

The device is peculiar compared to a real PCI device in that whilst
there is a real 64b PCI BAR1 (comprising region 2 & region 3) on the
device, it is not used to access device memory once the faster
chip-to-chip interconnect is initialized (occurs at the time of host
system boot). The device memory is accessed instead using the chip-to-chip
interconnect that is exposed as a contiguous physically addressable
region on the host. This device memory aperture can be obtained from host
ACPI table using device_property_read_u64(), according to the FW
specification. Since the device memory is cache coherent with the CPU,
it can be mmap into the user VMA with a cacheable mapping using
remap_pfn_range() and used like a regular RAM. The device memory
is not added to the host kernel, but mapped directly as this reduces
memory wastage due to struct pages.

There is also a requirement of a minimum reserved 1G uncached region
(termed as resmem) to support the Multi-Instance GPU (MIG) feature [1].
This is to work around a HW defect. Based on [2], the requisite properties
(uncached, unaligned access) can be achieved through a VM mapping (S1)
of NORMAL_NC and host (S2) mapping with MemAttr[2:0]=0b101. To provide
a different non-cached property to the reserved 1G region, it needs to
be carved out from the device memory and mapped as a separate region
in Qemu VMA with pgprot_writecombine(). pgprot_writecombine() sets the
Qemu VMA page properties (pgprot) as NORMAL_NC.

Provide a VFIO PCI variant driver that adapts the unique device memory
representation into a more standard PCI representation facing userspace.

The variant driver exposes these two regions - the non-cached reserved
(resmem) and the cached rest of the device memory (termed as usemem) as
separate VFIO 64b BAR regions. This is divergent from the baremetal
approach, where the device memory is exposed as a device memory region.
The decision for a different approach was taken in view of the fact that
it would necessiate additional code in Qemu to discover and insert those
regions in the VM IPA, along with the additional VM ACPI DSDT changes to
communicate the device memory region IPA to the VM workloads. Moreover,
this behavior would have to be added to a variety of emulators (beyond
top of tree Qemu) out there desiring grace hopper support.

Since the device implements 64-bit BAR0, the VFIO PCI variant driver
maps the uncached carved out region to the next available PCI BAR (i.e.
comprising of region 2 and 3). The cached device memory aperture is
assigned BAR region 4 and 5. Qemu will then naturally generate a PCI
device in the VM with the uncached aperture reported as BAR2 region,
the cacheable as BAR4. The variant driver provides emulation for these
fake BARs' PCI config space offset registers.

The hardware ensures that the system does not crash when the memory
is accessed with the memory enable turned off. It synthesis ~0 reads
and dropped writes on such access. So there is no need to support the
disablement/enablement of BAR through PCI_COMMAND config space register.

The memory layout on the host looks like the following:
devmem (memlength)
|--------------------------------------------------|
|-------------cached------------------------|--NC--|
| |
usemem.memphys resmem.memphys

PCI BARs need to be aligned to the power-of-2, but the actual memory on the
device may not. A read or write access to the physical address from the
last device PFN up to the next power-of-2 aligned physical address
results in reading ~0 and dropped writes. Note that the GPU device
driver [6] is capable of knowing the exact device memory size through
separate means. The device memory size is primarily kept in the system
ACPI tables for use by the VFIO PCI variant module.

Note that the usemem memory is added by the VM Nvidia device driver [5]
to the VM kernel as memblocks. Hence make the usable memory size memblock
(MEMBLK_SIZE) aligned. This is a hardwired ABI value between the GPU FW and
VFIO driver. The VM device driver make use of the same value for its
calculation to determine USEMEM size.

Currently there is no provision in KVM for a S2 mapping with
MemAttr[2:0]=0b101, but there is an ongoing effort to provide the same [3].
As previously mentioned, resmem is mapped pgprot_writecombine(), that
sets the Qemu VMA page properties (pgprot) as NORMAL_NC. Using the
proposed changes in [3] and [4], KVM marks the region with
MemAttr[2:0]=0b101 in S2.

If the device memory properties are not present, the driver registers the
vfio-pci-core function pointers. Since there are no ACPI memory properties
generated for the VM, the variant driver inside the VM will only use
the vfio-pci-core ops and hence try to map the BARs as non cached. This
is not a problem as the CPUs have FWB enabled which blocks the VM
mapping's ability to override the cacheability set by the host mapping.

This goes along with a qemu series [6] to provides the necessary
implementation of the Grace Hopper Superchip firmware specification so
that the guest operating system can see the correct ACPI modeling for
the coherent GPU device. Verified with the CUDA workload in the VM.

[1] https://www.nvidia.com/en-in/technologies/multi-instance-gpu/
[2] section D8.5.5 of https://developer.arm.com/documentation/ddi0487/latest/
[3] https://lore.kernel.org/all/20240211174705.31992-1-ankita@nvidia.com/
[4] https://lore.kernel.org/all/20230907181459.18145-2-ankita@nvidia.com/
[5] https://github.com/NVIDIA/open-gpu-kernel-modules
[6] https://lore.kernel.org/all/20231203060245.31593-1-ankita@nvidia.com/

Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Yishai Hadas <yishaih@nvidia.com>
Reviewed-by: Zhi Wang <zhi.wang.linux@gmail.com>
Signed-off-by: Aniket Agashe <aniketa@nvidia.com>
Signed-off-by: Ankit Agrawal <ankita@nvidia.com>
Link: https://lore.kernel.org/r/20240220115055.23546-4-ankita@nvidia.com
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
diff 701ab935 Tue Feb 20 04:50:55 MST 2024 Ankit Agrawal <ankita@nvidia.com> vfio/nvgrace-gpu: Add vfio pci variant module for grace hopper

NVIDIA's upcoming Grace Hopper Superchip provides a PCI-like device
for the on-chip GPU that is the logical OS representation of the
internal proprietary chip-to-chip cache coherent interconnect.

The device is peculiar compared to a real PCI device in that whilst
there is a real 64b PCI BAR1 (comprising region 2 & region 3) on the
device, it is not used to access device memory once the faster
chip-to-chip interconnect is initialized (occurs at the time of host
system boot). The device memory is accessed instead using the chip-to-chip
interconnect that is exposed as a contiguous physically addressable
region on the host. This device memory aperture can be obtained from host
ACPI table using device_property_read_u64(), according to the FW
specification. Since the device memory is cache coherent with the CPU,
it can be mmap into the user VMA with a cacheable mapping using
remap_pfn_range() and used like a regular RAM. The device memory
is not added to the host kernel, but mapped directly as this reduces
memory wastage due to struct pages.

There is also a requirement of a minimum reserved 1G uncached region
(termed as resmem) to support the Multi-Instance GPU (MIG) feature [1].
This is to work around a HW defect. Based on [2], the requisite properties
(uncached, unaligned access) can be achieved through a VM mapping (S1)
of NORMAL_NC and host (S2) mapping with MemAttr[2:0]=0b101. To provide
a different non-cached property to the reserved 1G region, it needs to
be carved out from the device memory and mapped as a separate region
in Qemu VMA with pgprot_writecombine(). pgprot_writecombine() sets the
Qemu VMA page properties (pgprot) as NORMAL_NC.

Provide a VFIO PCI variant driver that adapts the unique device memory
representation into a more standard PCI representation facing userspace.

The variant driver exposes these two regions - the non-cached reserved
(resmem) and the cached rest of the device memory (termed as usemem) as
separate VFIO 64b BAR regions. This is divergent from the baremetal
approach, where the device memory is exposed as a device memory region.
The decision for a different approach was taken in view of the fact that
it would necessiate additional code in Qemu to discover and insert those
regions in the VM IPA, along with the additional VM ACPI DSDT changes to
communicate the device memory region IPA to the VM workloads. Moreover,
this behavior would have to be added to a variety of emulators (beyond
top of tree Qemu) out there desiring grace hopper support.

Since the device implements 64-bit BAR0, the VFIO PCI variant driver
maps the uncached carved out region to the next available PCI BAR (i.e.
comprising of region 2 and 3). The cached device memory aperture is
assigned BAR region 4 and 5. Qemu will then naturally generate a PCI
device in the VM with the uncached aperture reported as BAR2 region,
the cacheable as BAR4. The variant driver provides emulation for these
fake BARs' PCI config space offset registers.

The hardware ensures that the system does not crash when the memory
is accessed with the memory enable turned off. It synthesis ~0 reads
and dropped writes on such access. So there is no need to support the
disablement/enablement of BAR through PCI_COMMAND config space register.

The memory layout on the host looks like the following:
devmem (memlength)
|--------------------------------------------------|
|-------------cached------------------------|--NC--|
| |
usemem.memphys resmem.memphys

PCI BARs need to be aligned to the power-of-2, but the actual memory on the
device may not. A read or write access to the physical address from the
last device PFN up to the next power-of-2 aligned physical address
results in reading ~0 and dropped writes. Note that the GPU device
driver [6] is capable of knowing the exact device memory size through
separate means. The device memory size is primarily kept in the system
ACPI tables for use by the VFIO PCI variant module.

Note that the usemem memory is added by the VM Nvidia device driver [5]
to the VM kernel as memblocks. Hence make the usable memory size memblock
(MEMBLK_SIZE) aligned. This is a hardwired ABI value between the GPU FW and
VFIO driver. The VM device driver make use of the same value for its
calculation to determine USEMEM size.

Currently there is no provision in KVM for a S2 mapping with
MemAttr[2:0]=0b101, but there is an ongoing effort to provide the same [3].
As previously mentioned, resmem is mapped pgprot_writecombine(), that
sets the Qemu VMA page properties (pgprot) as NORMAL_NC. Using the
proposed changes in [3] and [4], KVM marks the region with
MemAttr[2:0]=0b101 in S2.

If the device memory properties are not present, the driver registers the
vfio-pci-core function pointers. Since there are no ACPI memory properties
generated for the VM, the variant driver inside the VM will only use
the vfio-pci-core ops and hence try to map the BARs as non cached. This
is not a problem as the CPUs have FWB enabled which blocks the VM
mapping's ability to override the cacheability set by the host mapping.

This goes along with a qemu series [6] to provides the necessary
implementation of the Grace Hopper Superchip firmware specification so
that the guest operating system can see the correct ACPI modeling for
the coherent GPU device. Verified with the CUDA workload in the VM.

[1] https://www.nvidia.com/en-in/technologies/multi-instance-gpu/
[2] section D8.5.5 of https://developer.arm.com/documentation/ddi0487/latest/
[3] https://lore.kernel.org/all/20240211174705.31992-1-ankita@nvidia.com/
[4] https://lore.kernel.org/all/20230907181459.18145-2-ankita@nvidia.com/
[5] https://github.com/NVIDIA/open-gpu-kernel-modules
[6] https://lore.kernel.org/all/20231203060245.31593-1-ankita@nvidia.com/

Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Yishai Hadas <yishaih@nvidia.com>
Reviewed-by: Zhi Wang <zhi.wang.linux@gmail.com>
Signed-off-by: Aniket Agashe <aniketa@nvidia.com>
Signed-off-by: Ankit Agrawal <ankita@nvidia.com>
Link: https://lore.kernel.org/r/20240220115055.23546-4-ankita@nvidia.com
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
diff 701ab935 Tue Feb 20 04:50:55 MST 2024 Ankit Agrawal <ankita@nvidia.com> vfio/nvgrace-gpu: Add vfio pci variant module for grace hopper

NVIDIA's upcoming Grace Hopper Superchip provides a PCI-like device
for the on-chip GPU that is the logical OS representation of the
internal proprietary chip-to-chip cache coherent interconnect.

The device is peculiar compared to a real PCI device in that whilst
there is a real 64b PCI BAR1 (comprising region 2 & region 3) on the
device, it is not used to access device memory once the faster
chip-to-chip interconnect is initialized (occurs at the time of host
system boot). The device memory is accessed instead using the chip-to-chip
interconnect that is exposed as a contiguous physically addressable
region on the host. This device memory aperture can be obtained from host
ACPI table using device_property_read_u64(), according to the FW
specification. Since the device memory is cache coherent with the CPU,
it can be mmap into the user VMA with a cacheable mapping using
remap_pfn_range() and used like a regular RAM. The device memory
is not added to the host kernel, but mapped directly as this reduces
memory wastage due to struct pages.

There is also a requirement of a minimum reserved 1G uncached region
(termed as resmem) to support the Multi-Instance GPU (MIG) feature [1].
This is to work around a HW defect. Based on [2], the requisite properties
(uncached, unaligned access) can be achieved through a VM mapping (S1)
of NORMAL_NC and host (S2) mapping with MemAttr[2:0]=0b101. To provide
a different non-cached property to the reserved 1G region, it needs to
be carved out from the device memory and mapped as a separate region
in Qemu VMA with pgprot_writecombine(). pgprot_writecombine() sets the
Qemu VMA page properties (pgprot) as NORMAL_NC.

Provide a VFIO PCI variant driver that adapts the unique device memory
representation into a more standard PCI representation facing userspace.

The variant driver exposes these two regions - the non-cached reserved
(resmem) and the cached rest of the device memory (termed as usemem) as
separate VFIO 64b BAR regions. This is divergent from the baremetal
approach, where the device memory is exposed as a device memory region.
The decision for a different approach was taken in view of the fact that
it would necessiate additional code in Qemu to discover and insert those
regions in the VM IPA, along with the additional VM ACPI DSDT changes to
communicate the device memory region IPA to the VM workloads. Moreover,
this behavior would have to be added to a variety of emulators (beyond
top of tree Qemu) out there desiring grace hopper support.

Since the device implements 64-bit BAR0, the VFIO PCI variant driver
maps the uncached carved out region to the next available PCI BAR (i.e.
comprising of region 2 and 3). The cached device memory aperture is
assigned BAR region 4 and 5. Qemu will then naturally generate a PCI
device in the VM with the uncached aperture reported as BAR2 region,
the cacheable as BAR4. The variant driver provides emulation for these
fake BARs' PCI config space offset registers.

The hardware ensures that the system does not crash when the memory
is accessed with the memory enable turned off. It synthesis ~0 reads
and dropped writes on such access. So there is no need to support the
disablement/enablement of BAR through PCI_COMMAND config space register.

The memory layout on the host looks like the following:
devmem (memlength)
|--------------------------------------------------|
|-------------cached------------------------|--NC--|
| |
usemem.memphys resmem.memphys

PCI BARs need to be aligned to the power-of-2, but the actual memory on the
device may not. A read or write access to the physical address from the
last device PFN up to the next power-of-2 aligned physical address
results in reading ~0 and dropped writes. Note that the GPU device
driver [6] is capable of knowing the exact device memory size through
separate means. The device memory size is primarily kept in the system
ACPI tables for use by the VFIO PCI variant module.

Note that the usemem memory is added by the VM Nvidia device driver [5]
to the VM kernel as memblocks. Hence make the usable memory size memblock
(MEMBLK_SIZE) aligned. This is a hardwired ABI value between the GPU FW and
VFIO driver. The VM device driver make use of the same value for its
calculation to determine USEMEM size.

Currently there is no provision in KVM for a S2 mapping with
MemAttr[2:0]=0b101, but there is an ongoing effort to provide the same [3].
As previously mentioned, resmem is mapped pgprot_writecombine(), that
sets the Qemu VMA page properties (pgprot) as NORMAL_NC. Using the
proposed changes in [3] and [4], KVM marks the region with
MemAttr[2:0]=0b101 in S2.

If the device memory properties are not present, the driver registers the
vfio-pci-core function pointers. Since there are no ACPI memory properties
generated for the VM, the variant driver inside the VM will only use
the vfio-pci-core ops and hence try to map the BARs as non cached. This
is not a problem as the CPUs have FWB enabled which blocks the VM
mapping's ability to override the cacheability set by the host mapping.

This goes along with a qemu series [6] to provides the necessary
implementation of the Grace Hopper Superchip firmware specification so
that the guest operating system can see the correct ACPI modeling for
the coherent GPU device. Verified with the CUDA workload in the VM.

[1] https://www.nvidia.com/en-in/technologies/multi-instance-gpu/
[2] section D8.5.5 of https://developer.arm.com/documentation/ddi0487/latest/
[3] https://lore.kernel.org/all/20240211174705.31992-1-ankita@nvidia.com/
[4] https://lore.kernel.org/all/20230907181459.18145-2-ankita@nvidia.com/
[5] https://github.com/NVIDIA/open-gpu-kernel-modules
[6] https://lore.kernel.org/all/20231203060245.31593-1-ankita@nvidia.com/

Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Yishai Hadas <yishaih@nvidia.com>
Reviewed-by: Zhi Wang <zhi.wang.linux@gmail.com>
Signed-off-by: Aniket Agashe <aniketa@nvidia.com>
Signed-off-by: Ankit Agrawal <ankita@nvidia.com>
Link: https://lore.kernel.org/r/20240220115055.23546-4-ankita@nvidia.com
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
diff 701ab935 Tue Feb 20 04:50:55 MST 2024 Ankit Agrawal <ankita@nvidia.com> vfio/nvgrace-gpu: Add vfio pci variant module for grace hopper

NVIDIA's upcoming Grace Hopper Superchip provides a PCI-like device
for the on-chip GPU that is the logical OS representation of the
internal proprietary chip-to-chip cache coherent interconnect.

The device is peculiar compared to a real PCI device in that whilst
there is a real 64b PCI BAR1 (comprising region 2 & region 3) on the
device, it is not used to access device memory once the faster
chip-to-chip interconnect is initialized (occurs at the time of host
system boot). The device memory is accessed instead using the chip-to-chip
interconnect that is exposed as a contiguous physically addressable
region on the host. This device memory aperture can be obtained from host
ACPI table using device_property_read_u64(), according to the FW
specification. Since the device memory is cache coherent with the CPU,
it can be mmap into the user VMA with a cacheable mapping using
remap_pfn_range() and used like a regular RAM. The device memory
is not added to the host kernel, but mapped directly as this reduces
memory wastage due to struct pages.

There is also a requirement of a minimum reserved 1G uncached region
(termed as resmem) to support the Multi-Instance GPU (MIG) feature [1].
This is to work around a HW defect. Based on [2], the requisite properties
(uncached, unaligned access) can be achieved through a VM mapping (S1)
of NORMAL_NC and host (S2) mapping with MemAttr[2:0]=0b101. To provide
a different non-cached property to the reserved 1G region, it needs to
be carved out from the device memory and mapped as a separate region
in Qemu VMA with pgprot_writecombine(). pgprot_writecombine() sets the
Qemu VMA page properties (pgprot) as NORMAL_NC.

Provide a VFIO PCI variant driver that adapts the unique device memory
representation into a more standard PCI representation facing userspace.

The variant driver exposes these two regions - the non-cached reserved
(resmem) and the cached rest of the device memory (termed as usemem) as
separate VFIO 64b BAR regions. This is divergent from the baremetal
approach, where the device memory is exposed as a device memory region.
The decision for a different approach was taken in view of the fact that
it would necessiate additional code in Qemu to discover and insert those
regions in the VM IPA, along with the additional VM ACPI DSDT changes to
communicate the device memory region IPA to the VM workloads. Moreover,
this behavior would have to be added to a variety of emulators (beyond
top of tree Qemu) out there desiring grace hopper support.

Since the device implements 64-bit BAR0, the VFIO PCI variant driver
maps the uncached carved out region to the next available PCI BAR (i.e.
comprising of region 2 and 3). The cached device memory aperture is
assigned BAR region 4 and 5. Qemu will then naturally generate a PCI
device in the VM with the uncached aperture reported as BAR2 region,
the cacheable as BAR4. The variant driver provides emulation for these
fake BARs' PCI config space offset registers.

The hardware ensures that the system does not crash when the memory
is accessed with the memory enable turned off. It synthesis ~0 reads
and dropped writes on such access. So there is no need to support the
disablement/enablement of BAR through PCI_COMMAND config space register.

The memory layout on the host looks like the following:
devmem (memlength)
|--------------------------------------------------|
|-------------cached------------------------|--NC--|
| |
usemem.memphys resmem.memphys

PCI BARs need to be aligned to the power-of-2, but the actual memory on the
device may not. A read or write access to the physical address from the
last device PFN up to the next power-of-2 aligned physical address
results in reading ~0 and dropped writes. Note that the GPU device
driver [6] is capable of knowing the exact device memory size through
separate means. The device memory size is primarily kept in the system
ACPI tables for use by the VFIO PCI variant module.

Note that the usemem memory is added by the VM Nvidia device driver [5]
to the VM kernel as memblocks. Hence make the usable memory size memblock
(MEMBLK_SIZE) aligned. This is a hardwired ABI value between the GPU FW and
VFIO driver. The VM device driver make use of the same value for its
calculation to determine USEMEM size.

Currently there is no provision in KVM for a S2 mapping with
MemAttr[2:0]=0b101, but there is an ongoing effort to provide the same [3].
As previously mentioned, resmem is mapped pgprot_writecombine(), that
sets the Qemu VMA page properties (pgprot) as NORMAL_NC. Using the
proposed changes in [3] and [4], KVM marks the region with
MemAttr[2:0]=0b101 in S2.

If the device memory properties are not present, the driver registers the
vfio-pci-core function pointers. Since there are no ACPI memory properties
generated for the VM, the variant driver inside the VM will only use
the vfio-pci-core ops and hence try to map the BARs as non cached. This
is not a problem as the CPUs have FWB enabled which blocks the VM
mapping's ability to override the cacheability set by the host mapping.

This goes along with a qemu series [6] to provides the necessary
implementation of the Grace Hopper Superchip firmware specification so
that the guest operating system can see the correct ACPI modeling for
the coherent GPU device. Verified with the CUDA workload in the VM.

[1] https://www.nvidia.com/en-in/technologies/multi-instance-gpu/
[2] section D8.5.5 of https://developer.arm.com/documentation/ddi0487/latest/
[3] https://lore.kernel.org/all/20240211174705.31992-1-ankita@nvidia.com/
[4] https://lore.kernel.org/all/20230907181459.18145-2-ankita@nvidia.com/
[5] https://github.com/NVIDIA/open-gpu-kernel-modules
[6] https://lore.kernel.org/all/20231203060245.31593-1-ankita@nvidia.com/

Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Yishai Hadas <yishaih@nvidia.com>
Reviewed-by: Zhi Wang <zhi.wang.linux@gmail.com>
Signed-off-by: Aniket Agashe <aniketa@nvidia.com>
Signed-off-by: Ankit Agrawal <ankita@nvidia.com>
Link: https://lore.kernel.org/r/20240220115055.23546-4-ankita@nvidia.com
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
diff 701ab935 Tue Feb 20 04:50:55 MST 2024 Ankit Agrawal <ankita@nvidia.com> vfio/nvgrace-gpu: Add vfio pci variant module for grace hopper

NVIDIA's upcoming Grace Hopper Superchip provides a PCI-like device
for the on-chip GPU that is the logical OS representation of the
internal proprietary chip-to-chip cache coherent interconnect.

The device is peculiar compared to a real PCI device in that whilst
there is a real 64b PCI BAR1 (comprising region 2 & region 3) on the
device, it is not used to access device memory once the faster
chip-to-chip interconnect is initialized (occurs at the time of host
system boot). The device memory is accessed instead using the chip-to-chip
interconnect that is exposed as a contiguous physically addressable
region on the host. This device memory aperture can be obtained from host
ACPI table using device_property_read_u64(), according to the FW
specification. Since the device memory is cache coherent with the CPU,
it can be mmap into the user VMA with a cacheable mapping using
remap_pfn_range() and used like a regular RAM. The device memory
is not added to the host kernel, but mapped directly as this reduces
memory wastage due to struct pages.

There is also a requirement of a minimum reserved 1G uncached region
(termed as resmem) to support the Multi-Instance GPU (MIG) feature [1].
This is to work around a HW defect. Based on [2], the requisite properties
(uncached, unaligned access) can be achieved through a VM mapping (S1)
of NORMAL_NC and host (S2) mapping with MemAttr[2:0]=0b101. To provide
a different non-cached property to the reserved 1G region, it needs to
be carved out from the device memory and mapped as a separate region
in Qemu VMA with pgprot_writecombine(). pgprot_writecombine() sets the
Qemu VMA page properties (pgprot) as NORMAL_NC.

Provide a VFIO PCI variant driver that adapts the unique device memory
representation into a more standard PCI representation facing userspace.

The variant driver exposes these two regions - the non-cached reserved
(resmem) and the cached rest of the device memory (termed as usemem) as
separate VFIO 64b BAR regions. This is divergent from the baremetal
approach, where the device memory is exposed as a device memory region.
The decision for a different approach was taken in view of the fact that
it would necessiate additional code in Qemu to discover and insert those
regions in the VM IPA, along with the additional VM ACPI DSDT changes to
communicate the device memory region IPA to the VM workloads. Moreover,
this behavior would have to be added to a variety of emulators (beyond
top of tree Qemu) out there desiring grace hopper support.

Since the device implements 64-bit BAR0, the VFIO PCI variant driver
maps the uncached carved out region to the next available PCI BAR (i.e.
comprising of region 2 and 3). The cached device memory aperture is
assigned BAR region 4 and 5. Qemu will then naturally generate a PCI
device in the VM with the uncached aperture reported as BAR2 region,
the cacheable as BAR4. The variant driver provides emulation for these
fake BARs' PCI config space offset registers.

The hardware ensures that the system does not crash when the memory
is accessed with the memory enable turned off. It synthesis ~0 reads
and dropped writes on such access. So there is no need to support the
disablement/enablement of BAR through PCI_COMMAND config space register.

The memory layout on the host looks like the following:
devmem (memlength)
|--------------------------------------------------|
|-------------cached------------------------|--NC--|
| |
usemem.memphys resmem.memphys

PCI BARs need to be aligned to the power-of-2, but the actual memory on the
device may not. A read or write access to the physical address from the
last device PFN up to the next power-of-2 aligned physical address
results in reading ~0 and dropped writes. Note that the GPU device
driver [6] is capable of knowing the exact device memory size through
separate means. The device memory size is primarily kept in the system
ACPI tables for use by the VFIO PCI variant module.

Note that the usemem memory is added by the VM Nvidia device driver [5]
to the VM kernel as memblocks. Hence make the usable memory size memblock
(MEMBLK_SIZE) aligned. This is a hardwired ABI value between the GPU FW and
VFIO driver. The VM device driver make use of the same value for its
calculation to determine USEMEM size.

Currently there is no provision in KVM for a S2 mapping with
MemAttr[2:0]=0b101, but there is an ongoing effort to provide the same [3].
As previously mentioned, resmem is mapped pgprot_writecombine(), that
sets the Qemu VMA page properties (pgprot) as NORMAL_NC. Using the
proposed changes in [3] and [4], KVM marks the region with
MemAttr[2:0]=0b101 in S2.

If the device memory properties are not present, the driver registers the
vfio-pci-core function pointers. Since there are no ACPI memory properties
generated for the VM, the variant driver inside the VM will only use
the vfio-pci-core ops and hence try to map the BARs as non cached. This
is not a problem as the CPUs have FWB enabled which blocks the VM
mapping's ability to override the cacheability set by the host mapping.

This goes along with a qemu series [6] to provides the necessary
implementation of the Grace Hopper Superchip firmware specification so
that the guest operating system can see the correct ACPI modeling for
the coherent GPU device. Verified with the CUDA workload in the VM.

[1] https://www.nvidia.com/en-in/technologies/multi-instance-gpu/
[2] section D8.5.5 of https://developer.arm.com/documentation/ddi0487/latest/
[3] https://lore.kernel.org/all/20240211174705.31992-1-ankita@nvidia.com/
[4] https://lore.kernel.org/all/20230907181459.18145-2-ankita@nvidia.com/
[5] https://github.com/NVIDIA/open-gpu-kernel-modules
[6] https://lore.kernel.org/all/20231203060245.31593-1-ankita@nvidia.com/

Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Yishai Hadas <yishaih@nvidia.com>
Reviewed-by: Zhi Wang <zhi.wang.linux@gmail.com>
Signed-off-by: Aniket Agashe <aniketa@nvidia.com>
Signed-off-by: Ankit Agrawal <ankita@nvidia.com>
Link: https://lore.kernel.org/r/20240220115055.23546-4-ankita@nvidia.com
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>

Completed in 2692 milliseconds