Searched +hist:11 +hist:ef38af (Results 1 - 8 of 8) sorted by relevance

/linux-master/fs/xfs/
H A Dxfs_stats.hdiff 18a1e644 Thu Feb 22 01:43:40 MST 2024 Darrick J. Wong <djwong@kernel.org> xfs: define an in-memory btree for storing refcount bag info during repairs

Create a new in-memory btree type so that we can store refcount bag info
in a much more memory-efficient and performant format. Recall that the
refcount recordset regenerator computes the new recordset from browsing
the rmap records. Let's say that the rmap records are:

{agbno: 10, length: 40, ...}
{agbno: 11, length: 3, ...}
{agbno: 12, length: 20, ...}
{agbno: 15, length: 1, ...}

It is convenient to have a data structure that could quickly tell us the
refcount for an arbitrary agbno without wasting memory. An array or a
list could do that pretty easily. List suck because of the pointer
overhead. xfarrays are a lot more compact, but we want to minimize
sparse holes in the xfarray to constrain memory usage. Maintaining any
kind of record order isn't needed for correctness, so I created the
"rcbag", which is shorthand for an unordered list of (excerpted) reverse
mappings.

So we add the first rmap to the rcbag, and it looks like:

0: {agbno: 10, length: 40}

The refcount for agbno 10 is 1. Then we move on to block 11, so we add
the second rmap:

0: {agbno: 10, length: 40}
1: {agbno: 11, length: 3}

The refcount for agbno 11 is 2. We move on to block 12, so we add the
third:

0: {agbno: 10, length: 40}
1: {agbno: 11, length: 3}
2: {agbno: 12, length: 20}

The refcount for agbno 12 and 13 is 3. We move on to block 14, and
remove the second rmap:

0: {agbno: 10, length: 40}
1: NULL
2: {agbno: 12, length: 20}

The refcount for agbno 14 is 2. We move on to block 15, and add the
last rmap. But we don't care where it is and we don't want to expand
the array so we put it in slot 1:

0: {agbno: 10, length: 40}
1: {agbno: 15, length: 1}
2: {agbno: 12, length: 20}

The refcount for block 15 is 3. Notice how order doesn't matter in this
list? That's why repair uses an unordered list, or "bag". The data
structure is not a set because it does not guarantee uniqueness.

That said, adding and removing specific items is now an O(n) operation
because we have no idea where that item might be in the list. Overall,
the runtime is O(n^2) which is bad.

I realized that I could easily refactor the btree code and reimplement
the refcount bag with an xfbtree. Adding and removing is now O(log2 n),
so the runtime is at least O(n log2 n), which is much faster. In the
end, the rcbag becomes a sorted list, but that's merely a detail of the
implementation. The repair code doesn't care.

(Note: That horrible xfs_db bmap_inflate command can be used to exercise
this sort of rcbag insanity by cranking up refcounts quickly.)

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff 18a1e644 Thu Feb 22 01:43:40 MST 2024 Darrick J. Wong <djwong@kernel.org> xfs: define an in-memory btree for storing refcount bag info during repairs

Create a new in-memory btree type so that we can store refcount bag info
in a much more memory-efficient and performant format. Recall that the
refcount recordset regenerator computes the new recordset from browsing
the rmap records. Let's say that the rmap records are:

{agbno: 10, length: 40, ...}
{agbno: 11, length: 3, ...}
{agbno: 12, length: 20, ...}
{agbno: 15, length: 1, ...}

It is convenient to have a data structure that could quickly tell us the
refcount for an arbitrary agbno without wasting memory. An array or a
list could do that pretty easily. List suck because of the pointer
overhead. xfarrays are a lot more compact, but we want to minimize
sparse holes in the xfarray to constrain memory usage. Maintaining any
kind of record order isn't needed for correctness, so I created the
"rcbag", which is shorthand for an unordered list of (excerpted) reverse
mappings.

So we add the first rmap to the rcbag, and it looks like:

0: {agbno: 10, length: 40}

The refcount for agbno 10 is 1. Then we move on to block 11, so we add
the second rmap:

0: {agbno: 10, length: 40}
1: {agbno: 11, length: 3}

The refcount for agbno 11 is 2. We move on to block 12, so we add the
third:

0: {agbno: 10, length: 40}
1: {agbno: 11, length: 3}
2: {agbno: 12, length: 20}

The refcount for agbno 12 and 13 is 3. We move on to block 14, and
remove the second rmap:

0: {agbno: 10, length: 40}
1: NULL
2: {agbno: 12, length: 20}

The refcount for agbno 14 is 2. We move on to block 15, and add the
last rmap. But we don't care where it is and we don't want to expand
the array so we put it in slot 1:

0: {agbno: 10, length: 40}
1: {agbno: 15, length: 1}
2: {agbno: 12, length: 20}

The refcount for block 15 is 3. Notice how order doesn't matter in this
list? That's why repair uses an unordered list, or "bag". The data
structure is not a set because it does not guarantee uniqueness.

That said, adding and removing specific items is now an O(n) operation
because we have no idea where that item might be in the list. Overall,
the runtime is O(n^2) which is bad.

I realized that I could easily refactor the btree code and reimplement
the refcount bag with an xfbtree. Adding and removing is now O(log2 n),
so the runtime is at least O(n log2 n), which is much faster. In the
end, the rcbag becomes a sorted list, but that's merely a detail of the
implementation. The repair code doesn't care.

(Note: That horrible xfs_db bmap_inflate command can be used to exercise
this sort of rcbag insanity by cranking up refcounts quickly.)

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff 18a1e644 Thu Feb 22 01:43:40 MST 2024 Darrick J. Wong <djwong@kernel.org> xfs: define an in-memory btree for storing refcount bag info during repairs

Create a new in-memory btree type so that we can store refcount bag info
in a much more memory-efficient and performant format. Recall that the
refcount recordset regenerator computes the new recordset from browsing
the rmap records. Let's say that the rmap records are:

{agbno: 10, length: 40, ...}
{agbno: 11, length: 3, ...}
{agbno: 12, length: 20, ...}
{agbno: 15, length: 1, ...}

It is convenient to have a data structure that could quickly tell us the
refcount for an arbitrary agbno without wasting memory. An array or a
list could do that pretty easily. List suck because of the pointer
overhead. xfarrays are a lot more compact, but we want to minimize
sparse holes in the xfarray to constrain memory usage. Maintaining any
kind of record order isn't needed for correctness, so I created the
"rcbag", which is shorthand for an unordered list of (excerpted) reverse
mappings.

So we add the first rmap to the rcbag, and it looks like:

0: {agbno: 10, length: 40}

The refcount for agbno 10 is 1. Then we move on to block 11, so we add
the second rmap:

0: {agbno: 10, length: 40}
1: {agbno: 11, length: 3}

The refcount for agbno 11 is 2. We move on to block 12, so we add the
third:

0: {agbno: 10, length: 40}
1: {agbno: 11, length: 3}
2: {agbno: 12, length: 20}

The refcount for agbno 12 and 13 is 3. We move on to block 14, and
remove the second rmap:

0: {agbno: 10, length: 40}
1: NULL
2: {agbno: 12, length: 20}

The refcount for agbno 14 is 2. We move on to block 15, and add the
last rmap. But we don't care where it is and we don't want to expand
the array so we put it in slot 1:

0: {agbno: 10, length: 40}
1: {agbno: 15, length: 1}
2: {agbno: 12, length: 20}

The refcount for block 15 is 3. Notice how order doesn't matter in this
list? That's why repair uses an unordered list, or "bag". The data
structure is not a set because it does not guarantee uniqueness.

That said, adding and removing specific items is now an O(n) operation
because we have no idea where that item might be in the list. Overall,
the runtime is O(n^2) which is bad.

I realized that I could easily refactor the btree code and reimplement
the refcount bag with an xfbtree. Adding and removing is now O(log2 n),
so the runtime is at least O(n log2 n), which is much faster. In the
end, the rcbag becomes a sorted list, but that's merely a detail of the
implementation. The repair code doesn't care.

(Note: That horrible xfs_db bmap_inflate command can be used to exercise
this sort of rcbag insanity by cranking up refcounts quickly.)

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff 18a1e644 Thu Feb 22 01:43:40 MST 2024 Darrick J. Wong <djwong@kernel.org> xfs: define an in-memory btree for storing refcount bag info during repairs

Create a new in-memory btree type so that we can store refcount bag info
in a much more memory-efficient and performant format. Recall that the
refcount recordset regenerator computes the new recordset from browsing
the rmap records. Let's say that the rmap records are:

{agbno: 10, length: 40, ...}
{agbno: 11, length: 3, ...}
{agbno: 12, length: 20, ...}
{agbno: 15, length: 1, ...}

It is convenient to have a data structure that could quickly tell us the
refcount for an arbitrary agbno without wasting memory. An array or a
list could do that pretty easily. List suck because of the pointer
overhead. xfarrays are a lot more compact, but we want to minimize
sparse holes in the xfarray to constrain memory usage. Maintaining any
kind of record order isn't needed for correctness, so I created the
"rcbag", which is shorthand for an unordered list of (excerpted) reverse
mappings.

So we add the first rmap to the rcbag, and it looks like:

0: {agbno: 10, length: 40}

The refcount for agbno 10 is 1. Then we move on to block 11, so we add
the second rmap:

0: {agbno: 10, length: 40}
1: {agbno: 11, length: 3}

The refcount for agbno 11 is 2. We move on to block 12, so we add the
third:

0: {agbno: 10, length: 40}
1: {agbno: 11, length: 3}
2: {agbno: 12, length: 20}

The refcount for agbno 12 and 13 is 3. We move on to block 14, and
remove the second rmap:

0: {agbno: 10, length: 40}
1: NULL
2: {agbno: 12, length: 20}

The refcount for agbno 14 is 2. We move on to block 15, and add the
last rmap. But we don't care where it is and we don't want to expand
the array so we put it in slot 1:

0: {agbno: 10, length: 40}
1: {agbno: 15, length: 1}
2: {agbno: 12, length: 20}

The refcount for block 15 is 3. Notice how order doesn't matter in this
list? That's why repair uses an unordered list, or "bag". The data
structure is not a set because it does not guarantee uniqueness.

That said, adding and removing specific items is now an O(n) operation
because we have no idea where that item might be in the list. Overall,
the runtime is O(n^2) which is bad.

I realized that I could easily refactor the btree code and reimplement
the refcount bag with an xfbtree. Adding and removing is now O(log2 n),
so the runtime is at least O(n log2 n), which is much faster. In the
end, the rcbag becomes a sorted list, but that's merely a detail of the
implementation. The repair code doesn't care.

(Note: That horrible xfs_db bmap_inflate command can be used to exercise
this sort of rcbag insanity by cranking up refcounts quickly.)

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff 18a1e644 Thu Feb 22 01:43:40 MST 2024 Darrick J. Wong <djwong@kernel.org> xfs: define an in-memory btree for storing refcount bag info during repairs

Create a new in-memory btree type so that we can store refcount bag info
in a much more memory-efficient and performant format. Recall that the
refcount recordset regenerator computes the new recordset from browsing
the rmap records. Let's say that the rmap records are:

{agbno: 10, length: 40, ...}
{agbno: 11, length: 3, ...}
{agbno: 12, length: 20, ...}
{agbno: 15, length: 1, ...}

It is convenient to have a data structure that could quickly tell us the
refcount for an arbitrary agbno without wasting memory. An array or a
list could do that pretty easily. List suck because of the pointer
overhead. xfarrays are a lot more compact, but we want to minimize
sparse holes in the xfarray to constrain memory usage. Maintaining any
kind of record order isn't needed for correctness, so I created the
"rcbag", which is shorthand for an unordered list of (excerpted) reverse
mappings.

So we add the first rmap to the rcbag, and it looks like:

0: {agbno: 10, length: 40}

The refcount for agbno 10 is 1. Then we move on to block 11, so we add
the second rmap:

0: {agbno: 10, length: 40}
1: {agbno: 11, length: 3}

The refcount for agbno 11 is 2. We move on to block 12, so we add the
third:

0: {agbno: 10, length: 40}
1: {agbno: 11, length: 3}
2: {agbno: 12, length: 20}

The refcount for agbno 12 and 13 is 3. We move on to block 14, and
remove the second rmap:

0: {agbno: 10, length: 40}
1: NULL
2: {agbno: 12, length: 20}

The refcount for agbno 14 is 2. We move on to block 15, and add the
last rmap. But we don't care where it is and we don't want to expand
the array so we put it in slot 1:

0: {agbno: 10, length: 40}
1: {agbno: 15, length: 1}
2: {agbno: 12, length: 20}

The refcount for block 15 is 3. Notice how order doesn't matter in this
list? That's why repair uses an unordered list, or "bag". The data
structure is not a set because it does not guarantee uniqueness.

That said, adding and removing specific items is now an O(n) operation
because we have no idea where that item might be in the list. Overall,
the runtime is O(n^2) which is bad.

I realized that I could easily refactor the btree code and reimplement
the refcount bag with an xfbtree. Adding and removing is now O(log2 n),
so the runtime is at least O(n log2 n), which is much faster. In the
end, the rcbag becomes a sorted list, but that's merely a detail of the
implementation. The repair code doesn't care.

(Note: That horrible xfs_db bmap_inflate command can be used to exercise
this sort of rcbag insanity by cranking up refcounts quickly.)

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff 11ef38af Sun Dec 04 20:38:58 MST 2016 Dave Chinner <dchinner@redhat.com> xfs: make xfs btree stats less huge

Embedding a switch statement in every btree stats inc/add adds a lot
of code overhead to the core btree infrastructure paths. Stats are
supposed to be small and lightweight, but the btree stats have
become big and bloated as we've added more btrees. It needs fixing
because the reflink code will just add more overhead again.

Convert the v2 btree stats to arrays instead of independent
variables, and instead use the type to index the specific btree
array via an enum. This allows us to use array based indexing
to update the stats, rather than having to derefence variables
specific to the btree type.

If we then wrap the xfsstats structure in a union and place uint32_t
array beside it, and calculate the correct btree stats array base
array index when creating a btree cursor, we can easily access
entries in the stats structure without having to switch names based
on the btree type.

We then replace with the switch statement with a simple set of stats
wrapper macros, resulting in a significant simplification of the
btree stats code, and:

text data bss dec hex filename
48905 144 8 49057 bfa1 fs/xfs/libxfs/xfs_btree.o.old
36793 144 8 36945 9051 fs/xfs/libxfs/xfs_btree.o

it reduces the core btree infrastructure code size by close to 25%!

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 11ef38af Sun Dec 04 20:38:58 MST 2016 Dave Chinner <dchinner@redhat.com> xfs: make xfs btree stats less huge

Embedding a switch statement in every btree stats inc/add adds a lot
of code overhead to the core btree infrastructure paths. Stats are
supposed to be small and lightweight, but the btree stats have
become big and bloated as we've added more btrees. It needs fixing
because the reflink code will just add more overhead again.

Convert the v2 btree stats to arrays instead of independent
variables, and instead use the type to index the specific btree
array via an enum. This allows us to use array based indexing
to update the stats, rather than having to derefence variables
specific to the btree type.

If we then wrap the xfsstats structure in a union and place uint32_t
array beside it, and calculate the correct btree stats array base
array index when creating a btree cursor, we can easily access
entries in the stats structure without having to switch names based
on the btree type.

We then replace with the switch statement with a simple set of stats
wrapper macros, resulting in a significant simplification of the
btree stats code, and:

text data bss dec hex filename
48905 144 8 49057 bfa1 fs/xfs/libxfs/xfs_btree.o.old
36793 144 8 36945 9051 fs/xfs/libxfs/xfs_btree.o

it reduces the core btree infrastructure code size by close to 25%!

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 46eeb521 Mon Oct 03 10:11:16 MDT 2016 Darrick J. Wong <darrick.wong@oracle.com> xfs: introduce refcount btree definitions

Add new per-AG refcount btree definitions to the per-AG structures.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff 00f4e4f9 Tue Aug 02 19:31:11 MDT 2016 Darrick J. Wong <darrick.wong@oracle.com> xfs: add rmap btree stats infrastructure

Originally-From: Dave Chinner <dchinner@redhat.com>

The rmap btree will require the same stats as all the other generic
btrees, so add all the code for that now.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 80529c45 Sun Oct 11 12:19:45 MDT 2015 Bill O'Donnell <billodo@redhat.com> xfs: pass xfsstats structures to handlers and macros

This patch is the next step toward per-fs xfs stats. The patch makes
the show and clear routines able to handle any stats structure
associated with a kobject.

Instead of a single global xfsstats structure, add kobject and a pointer
to a per-cpu struct xfsstats. Modify the macros that manipulate the stats
accordingly: XFS_STATS_INC, XFS_STATS_DEC, and XFS_STATS_ADD now access
xfsstats->xs_stats.

The sysfs functions need to get from the kobject back to the xfsstats
structure which contains it, and pass the pointer to the ->xs_stats
percpu structure into the show & clear routines.

Signed-off-by: Bill O'Donnell <billodo@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
H A Dxfs_stats.cdiff 18a1e644 Thu Feb 22 01:43:40 MST 2024 Darrick J. Wong <djwong@kernel.org> xfs: define an in-memory btree for storing refcount bag info during repairs

Create a new in-memory btree type so that we can store refcount bag info
in a much more memory-efficient and performant format. Recall that the
refcount recordset regenerator computes the new recordset from browsing
the rmap records. Let's say that the rmap records are:

{agbno: 10, length: 40, ...}
{agbno: 11, length: 3, ...}
{agbno: 12, length: 20, ...}
{agbno: 15, length: 1, ...}

It is convenient to have a data structure that could quickly tell us the
refcount for an arbitrary agbno without wasting memory. An array or a
list could do that pretty easily. List suck because of the pointer
overhead. xfarrays are a lot more compact, but we want to minimize
sparse holes in the xfarray to constrain memory usage. Maintaining any
kind of record order isn't needed for correctness, so I created the
"rcbag", which is shorthand for an unordered list of (excerpted) reverse
mappings.

So we add the first rmap to the rcbag, and it looks like:

0: {agbno: 10, length: 40}

The refcount for agbno 10 is 1. Then we move on to block 11, so we add
the second rmap:

0: {agbno: 10, length: 40}
1: {agbno: 11, length: 3}

The refcount for agbno 11 is 2. We move on to block 12, so we add the
third:

0: {agbno: 10, length: 40}
1: {agbno: 11, length: 3}
2: {agbno: 12, length: 20}

The refcount for agbno 12 and 13 is 3. We move on to block 14, and
remove the second rmap:

0: {agbno: 10, length: 40}
1: NULL
2: {agbno: 12, length: 20}

The refcount for agbno 14 is 2. We move on to block 15, and add the
last rmap. But we don't care where it is and we don't want to expand
the array so we put it in slot 1:

0: {agbno: 10, length: 40}
1: {agbno: 15, length: 1}
2: {agbno: 12, length: 20}

The refcount for block 15 is 3. Notice how order doesn't matter in this
list? That's why repair uses an unordered list, or "bag". The data
structure is not a set because it does not guarantee uniqueness.

That said, adding and removing specific items is now an O(n) operation
because we have no idea where that item might be in the list. Overall,
the runtime is O(n^2) which is bad.

I realized that I could easily refactor the btree code and reimplement
the refcount bag with an xfbtree. Adding and removing is now O(log2 n),
so the runtime is at least O(n log2 n), which is much faster. In the
end, the rcbag becomes a sorted list, but that's merely a detail of the
implementation. The repair code doesn't care.

(Note: That horrible xfs_db bmap_inflate command can be used to exercise
this sort of rcbag insanity by cranking up refcounts quickly.)

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff 18a1e644 Thu Feb 22 01:43:40 MST 2024 Darrick J. Wong <djwong@kernel.org> xfs: define an in-memory btree for storing refcount bag info during repairs

Create a new in-memory btree type so that we can store refcount bag info
in a much more memory-efficient and performant format. Recall that the
refcount recordset regenerator computes the new recordset from browsing
the rmap records. Let's say that the rmap records are:

{agbno: 10, length: 40, ...}
{agbno: 11, length: 3, ...}
{agbno: 12, length: 20, ...}
{agbno: 15, length: 1, ...}

It is convenient to have a data structure that could quickly tell us the
refcount for an arbitrary agbno without wasting memory. An array or a
list could do that pretty easily. List suck because of the pointer
overhead. xfarrays are a lot more compact, but we want to minimize
sparse holes in the xfarray to constrain memory usage. Maintaining any
kind of record order isn't needed for correctness, so I created the
"rcbag", which is shorthand for an unordered list of (excerpted) reverse
mappings.

So we add the first rmap to the rcbag, and it looks like:

0: {agbno: 10, length: 40}

The refcount for agbno 10 is 1. Then we move on to block 11, so we add
the second rmap:

0: {agbno: 10, length: 40}
1: {agbno: 11, length: 3}

The refcount for agbno 11 is 2. We move on to block 12, so we add the
third:

0: {agbno: 10, length: 40}
1: {agbno: 11, length: 3}
2: {agbno: 12, length: 20}

The refcount for agbno 12 and 13 is 3. We move on to block 14, and
remove the second rmap:

0: {agbno: 10, length: 40}
1: NULL
2: {agbno: 12, length: 20}

The refcount for agbno 14 is 2. We move on to block 15, and add the
last rmap. But we don't care where it is and we don't want to expand
the array so we put it in slot 1:

0: {agbno: 10, length: 40}
1: {agbno: 15, length: 1}
2: {agbno: 12, length: 20}

The refcount for block 15 is 3. Notice how order doesn't matter in this
list? That's why repair uses an unordered list, or "bag". The data
structure is not a set because it does not guarantee uniqueness.

That said, adding and removing specific items is now an O(n) operation
because we have no idea where that item might be in the list. Overall,
the runtime is O(n^2) which is bad.

I realized that I could easily refactor the btree code and reimplement
the refcount bag with an xfbtree. Adding and removing is now O(log2 n),
so the runtime is at least O(n log2 n), which is much faster. In the
end, the rcbag becomes a sorted list, but that's merely a detail of the
implementation. The repair code doesn't care.

(Note: That horrible xfs_db bmap_inflate command can be used to exercise
this sort of rcbag insanity by cranking up refcounts quickly.)

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff 18a1e644 Thu Feb 22 01:43:40 MST 2024 Darrick J. Wong <djwong@kernel.org> xfs: define an in-memory btree for storing refcount bag info during repairs

Create a new in-memory btree type so that we can store refcount bag info
in a much more memory-efficient and performant format. Recall that the
refcount recordset regenerator computes the new recordset from browsing
the rmap records. Let's say that the rmap records are:

{agbno: 10, length: 40, ...}
{agbno: 11, length: 3, ...}
{agbno: 12, length: 20, ...}
{agbno: 15, length: 1, ...}

It is convenient to have a data structure that could quickly tell us the
refcount for an arbitrary agbno without wasting memory. An array or a
list could do that pretty easily. List suck because of the pointer
overhead. xfarrays are a lot more compact, but we want to minimize
sparse holes in the xfarray to constrain memory usage. Maintaining any
kind of record order isn't needed for correctness, so I created the
"rcbag", which is shorthand for an unordered list of (excerpted) reverse
mappings.

So we add the first rmap to the rcbag, and it looks like:

0: {agbno: 10, length: 40}

The refcount for agbno 10 is 1. Then we move on to block 11, so we add
the second rmap:

0: {agbno: 10, length: 40}
1: {agbno: 11, length: 3}

The refcount for agbno 11 is 2. We move on to block 12, so we add the
third:

0: {agbno: 10, length: 40}
1: {agbno: 11, length: 3}
2: {agbno: 12, length: 20}

The refcount for agbno 12 and 13 is 3. We move on to block 14, and
remove the second rmap:

0: {agbno: 10, length: 40}
1: NULL
2: {agbno: 12, length: 20}

The refcount for agbno 14 is 2. We move on to block 15, and add the
last rmap. But we don't care where it is and we don't want to expand
the array so we put it in slot 1:

0: {agbno: 10, length: 40}
1: {agbno: 15, length: 1}
2: {agbno: 12, length: 20}

The refcount for block 15 is 3. Notice how order doesn't matter in this
list? That's why repair uses an unordered list, or "bag". The data
structure is not a set because it does not guarantee uniqueness.

That said, adding and removing specific items is now an O(n) operation
because we have no idea where that item might be in the list. Overall,
the runtime is O(n^2) which is bad.

I realized that I could easily refactor the btree code and reimplement
the refcount bag with an xfbtree. Adding and removing is now O(log2 n),
so the runtime is at least O(n log2 n), which is much faster. In the
end, the rcbag becomes a sorted list, but that's merely a detail of the
implementation. The repair code doesn't care.

(Note: That horrible xfs_db bmap_inflate command can be used to exercise
this sort of rcbag insanity by cranking up refcounts quickly.)

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff 18a1e644 Thu Feb 22 01:43:40 MST 2024 Darrick J. Wong <djwong@kernel.org> xfs: define an in-memory btree for storing refcount bag info during repairs

Create a new in-memory btree type so that we can store refcount bag info
in a much more memory-efficient and performant format. Recall that the
refcount recordset regenerator computes the new recordset from browsing
the rmap records. Let's say that the rmap records are:

{agbno: 10, length: 40, ...}
{agbno: 11, length: 3, ...}
{agbno: 12, length: 20, ...}
{agbno: 15, length: 1, ...}

It is convenient to have a data structure that could quickly tell us the
refcount for an arbitrary agbno without wasting memory. An array or a
list could do that pretty easily. List suck because of the pointer
overhead. xfarrays are a lot more compact, but we want to minimize
sparse holes in the xfarray to constrain memory usage. Maintaining any
kind of record order isn't needed for correctness, so I created the
"rcbag", which is shorthand for an unordered list of (excerpted) reverse
mappings.

So we add the first rmap to the rcbag, and it looks like:

0: {agbno: 10, length: 40}

The refcount for agbno 10 is 1. Then we move on to block 11, so we add
the second rmap:

0: {agbno: 10, length: 40}
1: {agbno: 11, length: 3}

The refcount for agbno 11 is 2. We move on to block 12, so we add the
third:

0: {agbno: 10, length: 40}
1: {agbno: 11, length: 3}
2: {agbno: 12, length: 20}

The refcount for agbno 12 and 13 is 3. We move on to block 14, and
remove the second rmap:

0: {agbno: 10, length: 40}
1: NULL
2: {agbno: 12, length: 20}

The refcount for agbno 14 is 2. We move on to block 15, and add the
last rmap. But we don't care where it is and we don't want to expand
the array so we put it in slot 1:

0: {agbno: 10, length: 40}
1: {agbno: 15, length: 1}
2: {agbno: 12, length: 20}

The refcount for block 15 is 3. Notice how order doesn't matter in this
list? That's why repair uses an unordered list, or "bag". The data
structure is not a set because it does not guarantee uniqueness.

That said, adding and removing specific items is now an O(n) operation
because we have no idea where that item might be in the list. Overall,
the runtime is O(n^2) which is bad.

I realized that I could easily refactor the btree code and reimplement
the refcount bag with an xfbtree. Adding and removing is now O(log2 n),
so the runtime is at least O(n log2 n), which is much faster. In the
end, the rcbag becomes a sorted list, but that's merely a detail of the
implementation. The repair code doesn't care.

(Note: That horrible xfs_db bmap_inflate command can be used to exercise
this sort of rcbag insanity by cranking up refcounts quickly.)

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff 18a1e644 Thu Feb 22 01:43:40 MST 2024 Darrick J. Wong <djwong@kernel.org> xfs: define an in-memory btree for storing refcount bag info during repairs

Create a new in-memory btree type so that we can store refcount bag info
in a much more memory-efficient and performant format. Recall that the
refcount recordset regenerator computes the new recordset from browsing
the rmap records. Let's say that the rmap records are:

{agbno: 10, length: 40, ...}
{agbno: 11, length: 3, ...}
{agbno: 12, length: 20, ...}
{agbno: 15, length: 1, ...}

It is convenient to have a data structure that could quickly tell us the
refcount for an arbitrary agbno without wasting memory. An array or a
list could do that pretty easily. List suck because of the pointer
overhead. xfarrays are a lot more compact, but we want to minimize
sparse holes in the xfarray to constrain memory usage. Maintaining any
kind of record order isn't needed for correctness, so I created the
"rcbag", which is shorthand for an unordered list of (excerpted) reverse
mappings.

So we add the first rmap to the rcbag, and it looks like:

0: {agbno: 10, length: 40}

The refcount for agbno 10 is 1. Then we move on to block 11, so we add
the second rmap:

0: {agbno: 10, length: 40}
1: {agbno: 11, length: 3}

The refcount for agbno 11 is 2. We move on to block 12, so we add the
third:

0: {agbno: 10, length: 40}
1: {agbno: 11, length: 3}
2: {agbno: 12, length: 20}

The refcount for agbno 12 and 13 is 3. We move on to block 14, and
remove the second rmap:

0: {agbno: 10, length: 40}
1: NULL
2: {agbno: 12, length: 20}

The refcount for agbno 14 is 2. We move on to block 15, and add the
last rmap. But we don't care where it is and we don't want to expand
the array so we put it in slot 1:

0: {agbno: 10, length: 40}
1: {agbno: 15, length: 1}
2: {agbno: 12, length: 20}

The refcount for block 15 is 3. Notice how order doesn't matter in this
list? That's why repair uses an unordered list, or "bag". The data
structure is not a set because it does not guarantee uniqueness.

That said, adding and removing specific items is now an O(n) operation
because we have no idea where that item might be in the list. Overall,
the runtime is O(n^2) which is bad.

I realized that I could easily refactor the btree code and reimplement
the refcount bag with an xfbtree. Adding and removing is now O(log2 n),
so the runtime is at least O(n log2 n), which is much faster. In the
end, the rcbag becomes a sorted list, but that's merely a detail of the
implementation. The repair code doesn't care.

(Note: That horrible xfs_db bmap_inflate command can be used to exercise
this sort of rcbag insanity by cranking up refcounts quickly.)

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff 17bb60b7 Wed Mar 11 12:15:35 MDT 2020 Takashi Iwai <tiwai@suse.de> xfs: Use scnprintf() for avoiding potential buffer overflow

Since snprintf() returns the would-be-output size instead of the
actual output size, the succeeding calls may go beyond the given
buffer limit. Fix it by replacing with scnprintf().

Signed-off-by: Takashi Iwai <tiwai@suse.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 11ef38af Sun Dec 04 20:38:58 MST 2016 Dave Chinner <dchinner@redhat.com> xfs: make xfs btree stats less huge

Embedding a switch statement in every btree stats inc/add adds a lot
of code overhead to the core btree infrastructure paths. Stats are
supposed to be small and lightweight, but the btree stats have
become big and bloated as we've added more btrees. It needs fixing
because the reflink code will just add more overhead again.

Convert the v2 btree stats to arrays instead of independent
variables, and instead use the type to index the specific btree
array via an enum. This allows us to use array based indexing
to update the stats, rather than having to derefence variables
specific to the btree type.

If we then wrap the xfsstats structure in a union and place uint32_t
array beside it, and calculate the correct btree stats array base
array index when creating a btree cursor, we can easily access
entries in the stats structure without having to switch names based
on the btree type.

We then replace with the switch statement with a simple set of stats
wrapper macros, resulting in a significant simplification of the
btree stats code, and:

text data bss dec hex filename
48905 144 8 49057 bfa1 fs/xfs/libxfs/xfs_btree.o.old
36793 144 8 36945 9051 fs/xfs/libxfs/xfs_btree.o

it reduces the core btree infrastructure code size by close to 25%!

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 11ef38af Sun Dec 04 20:38:58 MST 2016 Dave Chinner <dchinner@redhat.com> xfs: make xfs btree stats less huge

Embedding a switch statement in every btree stats inc/add adds a lot
of code overhead to the core btree infrastructure paths. Stats are
supposed to be small and lightweight, but the btree stats have
become big and bloated as we've added more btrees. It needs fixing
because the reflink code will just add more overhead again.

Convert the v2 btree stats to arrays instead of independent
variables, and instead use the type to index the specific btree
array via an enum. This allows us to use array based indexing
to update the stats, rather than having to derefence variables
specific to the btree type.

If we then wrap the xfsstats structure in a union and place uint32_t
array beside it, and calculate the correct btree stats array base
array index when creating a btree cursor, we can easily access
entries in the stats structure without having to switch names based
on the btree type.

We then replace with the switch statement with a simple set of stats
wrapper macros, resulting in a significant simplification of the
btree stats code, and:

text data bss dec hex filename
48905 144 8 49057 bfa1 fs/xfs/libxfs/xfs_btree.o.old
36793 144 8 36945 9051 fs/xfs/libxfs/xfs_btree.o

it reduces the core btree infrastructure code size by close to 25%!

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 46eeb521 Mon Oct 03 10:11:16 MDT 2016 Darrick J. Wong <darrick.wong@oracle.com> xfs: introduce refcount btree definitions

Add new per-AG refcount btree definitions to the per-AG structures.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff 00f4e4f9 Tue Aug 02 19:31:11 MDT 2016 Darrick J. Wong <darrick.wong@oracle.com> xfs: add rmap btree stats infrastructure

Originally-From: Dave Chinner <dchinner@redhat.com>

The rmap btree will require the same stats as all the other generic
btrees, so add all the code for that now.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
/linux-master/fs/xfs/libxfs/
H A Dxfs_refcount_btree.cdiff 9099cd38 Fri Dec 15 11:03:33 MST 2023 Darrick J. Wong <djwong@kernel.org> xfs: repair refcount btrees

Reconstruct the refcount data from the rmap btree.

Link: https://docs.kernel.org/filesystems/xfs-online-fsck-design.html#case-study-rebuilding-the-space-reference-counts
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff 4a200a09 Tue Apr 11 20:00:11 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: implement masked btree key comparisons for _has_records scans

For keyspace fullness scans, we want to be able to mask off the parts of
the key that we don't care about. For most btree types we /do/ want the
full keyspace, but for checking that a given space usage also has a full
complement of rmapbt records (even if different/multiple owners) we need
this masking so that we only track sparseness of rm_startblock, not the
whole keyspace (which is extremely sparse).

Augment the ->diff_two_keys and ->keys_contiguous helpers to take a
third union xfs_btree_key argument, and wire up xfs_rmap_has_records to
pass this through. This third "mask" argument should contain a nonzero
value in each structure field that should be used in the key comparisons
done during the scan.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 4a200a09 Tue Apr 11 20:00:11 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: implement masked btree key comparisons for _has_records scans

For keyspace fullness scans, we want to be able to mask off the parts of
the key that we don't care about. For most btree types we /do/ want the
full keyspace, but for checking that a given space usage also has a full
complement of rmapbt records (even if different/multiple owners) we need
this masking so that we only track sparseness of rm_startblock, not the
whole keyspace (which is extremely sparse).

Augment the ->diff_two_keys and ->keys_contiguous helpers to take a
third union xfs_btree_key argument, and wire up xfs_rmap_has_records to
pass this through. This third "mask" argument should contain a nonzero
value in each structure field that should be used in the key comparisons
done during the scan.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 6abc7aef Tue Apr 11 20:00:10 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: replace xfs_btree_has_record with a general keyspace scanner

The current implementation of xfs_btree_has_record returns true if it
finds /any/ record within the given range. Unfortunately, that's not
sufficient for scrub. We want to be able to tell if a range of keyspace
for a btree is devoid of records, is totally mapped to records, or is
somewhere in between. By forcing this to be a boolean, we conflated
sparseness and fullness, which caused scrub to return incorrect results.
Fix the API so that we can tell the caller which of those three is the
current state.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 9b2e5a23 Tue Apr 11 19:59:55 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: create traced helper to get extra perag references

There are a few places in the XFS codebase where a caller has either an
active or a passive reference to a perag structure and wants to give
a passive reference to some other piece of code. Btree cursor creation
and inode walks are good examples of this. Replace the open-coded logic
with a helper to do this.

The new function adds a few safeguards -- it checks that there's at
least one reference to the perag structure passed in, and it records the
refcount bump in the ftrace information. This makes it much easier to
debug perag refcounting problems.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff b2ccab31 Tue Apr 11 19:59:53 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: pass per-ag references to xfs_free_extent

Pass a reference to the per-AG structure to xfs_free_extent. Most
callers already have one, so we can eliminate unnecessary lookups. The
one exception to this is the EFI code, which the next patch will fix.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 0ed5f735 Thu Sep 23 11:32:06 MDT 2021 Darrick J. Wong <djwong@kernel.org> xfs: compute absolute maximum nlevels for each btree type

Add code for all five btree types so that we can compute the absolute
maximum possible btree height for each btree type. This is a setup for
the next patch, which makes every btree type have its own cursor cache.

The functions are exported so that we can have xfs_db report the
absolute maximum btree heights for each btree type, rather than making
everyone run their own ad-hoc computations.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 56e98164 Wed Mar 11 12:09:06 MDT 2020 Darrick J. Wong <darrick.wong@oracle.com> xfs: add support for refcount btree staging cursors

Add support for btree staging cursors for the refcount btrees. This
is needed both for online repair and also to convert xfs_repair to use
btree bulk loading.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff 39708c20 Thu Feb 07 11:45:48 MST 2019 Brian Foster <bfoster@redhat.com> xfs: miscellaneous verifier magic value fixups

Most buffer verifiers have hardcoded magic value checks
conditionalized on the version of the filesystem. The magic value
field of the verifier structure facilitates abstraction of some of
this code. Populate the ->magic field of various verifiers to take
advantage of this abstraction. No functional changes.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 64396ff2 Wed Jul 11 23:26:30 MDT 2018 Brian Foster <bfoster@redhat.com> xfs: remove xfs_alloc_arg firstblock field

The xfs_alloc_arg.firstblock field is used to control the starting
agno for an allocation. The structure already carries a pointer to
the transaction, which carries the current firstblock value.

Remove the field and access ->t_firstblock directly in the
allocation code.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
H A Dxfs_ialloc_btree.cdiff 4a200a09 Tue Apr 11 20:00:11 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: implement masked btree key comparisons for _has_records scans

For keyspace fullness scans, we want to be able to mask off the parts of
the key that we don't care about. For most btree types we /do/ want the
full keyspace, but for checking that a given space usage also has a full
complement of rmapbt records (even if different/multiple owners) we need
this masking so that we only track sparseness of rm_startblock, not the
whole keyspace (which is extremely sparse).

Augment the ->diff_two_keys and ->keys_contiguous helpers to take a
third union xfs_btree_key argument, and wire up xfs_rmap_has_records to
pass this through. This third "mask" argument should contain a nonzero
value in each structure field that should be used in the key comparisons
done during the scan.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 4a200a09 Tue Apr 11 20:00:11 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: implement masked btree key comparisons for _has_records scans

For keyspace fullness scans, we want to be able to mask off the parts of
the key that we don't care about. For most btree types we /do/ want the
full keyspace, but for checking that a given space usage also has a full
complement of rmapbt records (even if different/multiple owners) we need
this masking so that we only track sparseness of rm_startblock, not the
whole keyspace (which is extremely sparse).

Augment the ->diff_two_keys and ->keys_contiguous helpers to take a
third union xfs_btree_key argument, and wire up xfs_rmap_has_records to
pass this through. This third "mask" argument should contain a nonzero
value in each structure field that should be used in the key comparisons
done during the scan.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 6abc7aef Tue Apr 11 20:00:10 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: replace xfs_btree_has_record with a general keyspace scanner

The current implementation of xfs_btree_has_record returns true if it
finds /any/ record within the given range. Unfortunately, that's not
sufficient for scrub. We want to be able to tell if a range of keyspace
for a btree is devoid of records, is totally mapped to records, or is
somewhere in between. By forcing this to be a boolean, we conflated
sparseness and fullness, which caused scrub to return incorrect results.
Fix the API so that we can tell the caller which of those three is the
current state.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 366a0b8d Tue Apr 11 20:00:01 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: standardize ondisk to incore conversion for inode btrees

Create a xfs_inobt_check_irec function to detect corruption in btree
records. Fix all xfs_inobt_btrec_to_irec callsites to call the new
helper and bubble up corruption reports.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 9b2e5a23 Tue Apr 11 19:59:55 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: create traced helper to get extra perag references

There are a few places in the XFS codebase where a caller has either an
active or a passive reference to a perag structure and wants to give
a passive reference to some other piece of code. Btree cursor creation
and inode walks are good examples of this. Replace the open-coded logic
with a helper to do this.

The new function adds a few safeguards -- it checks that there's at
least one reference to the perag structure passed in, and it records the
refcount bump in the ftrace information. This makes it much easier to
debug perag refcounting problems.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff b2ccab31 Tue Apr 11 19:59:53 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: pass per-ag references to xfs_free_extent

Pass a reference to the per-AG structure to xfs_free_extent. Most
callers already have one, so we can eliminate unnecessary lookups. The
one exception to this is the EFI code, which the next patch will fix.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 0ed5f735 Thu Sep 23 11:32:06 MDT 2021 Darrick J. Wong <djwong@kernel.org> xfs: compute absolute maximum nlevels for each btree type

Add code for all five btree types so that we can compute the absolute
maximum possible btree height for each btree type. This is a setup for
the next patch, which makes every btree type have its own cursor cache.

The functions are exported so that we can have xfs_db report the
absolute maximum btree heights for each btree type, rather than making
everyone run their own ad-hoc computations.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 11f74423 Wed Aug 26 11:48:50 MDT 2020 Darrick J. Wong <darrick.wong@oracle.com> xfs: support inode btree blockcounts in online repair

Add the necessary bits to the online repair code to support logging the
inode btree counters when rebuilding the btrees, and to support fixing
the counters when rebuilding the AGI.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff 11f74423 Wed Aug 26 11:48:50 MDT 2020 Darrick J. Wong <darrick.wong@oracle.com> xfs: support inode btree blockcounts in online repair

Add the necessary bits to the online repair code to support logging the
inode btree counters when rebuilding the btrees, and to support fixing
the counters when rebuilding the AGI.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff 1ac35f06 Wed Aug 26 11:54:27 MDT 2020 Darrick J. Wong <darrick.wong@oracle.com> xfs: use the finobt block counts to speed up mount times

Now that we have reliable finobt block counts, use them to speed up the
per-AG block reservation calculations at mount time.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
H A Dxfs_alloc_btree.cdiff 4bdfd7d1 Fri Dec 15 11:03:32 MST 2023 Darrick J. Wong <djwong@kernel.org> xfs: repair free space btrees

Rebuild the free space btrees from the gaps in the rmap btree. Refer to
the case study in Documentation/filesystems/xfs-online-fsck-design.rst
for more details.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff 4a200a09 Tue Apr 11 20:00:11 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: implement masked btree key comparisons for _has_records scans

For keyspace fullness scans, we want to be able to mask off the parts of
the key that we don't care about. For most btree types we /do/ want the
full keyspace, but for checking that a given space usage also has a full
complement of rmapbt records (even if different/multiple owners) we need
this masking so that we only track sparseness of rm_startblock, not the
whole keyspace (which is extremely sparse).

Augment the ->diff_two_keys and ->keys_contiguous helpers to take a
third union xfs_btree_key argument, and wire up xfs_rmap_has_records to
pass this through. This third "mask" argument should contain a nonzero
value in each structure field that should be used in the key comparisons
done during the scan.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 4a200a09 Tue Apr 11 20:00:11 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: implement masked btree key comparisons for _has_records scans

For keyspace fullness scans, we want to be able to mask off the parts of
the key that we don't care about. For most btree types we /do/ want the
full keyspace, but for checking that a given space usage also has a full
complement of rmapbt records (even if different/multiple owners) we need
this masking so that we only track sparseness of rm_startblock, not the
whole keyspace (which is extremely sparse).

Augment the ->diff_two_keys and ->keys_contiguous helpers to take a
third union xfs_btree_key argument, and wire up xfs_rmap_has_records to
pass this through. This third "mask" argument should contain a nonzero
value in each structure field that should be used in the key comparisons
done during the scan.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 6abc7aef Tue Apr 11 20:00:10 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: replace xfs_btree_has_record with a general keyspace scanner

The current implementation of xfs_btree_has_record returns true if it
finds /any/ record within the given range. Unfortunately, that's not
sufficient for scrub. We want to be able to tell if a range of keyspace
for a btree is devoid of records, is totally mapped to records, or is
somewhere in between. By forcing this to be a boolean, we conflated
sparseness and fullness, which caused scrub to return incorrect results.
Fix the API so that we can tell the caller which of those three is the
current state.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 9b2e5a23 Tue Apr 11 19:59:55 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: create traced helper to get extra perag references

There are a few places in the XFS codebase where a caller has either an
active or a passive reference to a perag structure and wants to give
a passive reference to some other piece of code. Btree cursor creation
and inode walks are good examples of this. Replace the open-coded logic
with a helper to do this.

The new function adds a few safeguards -- it checks that there's at
least one reference to the perag structure passed in, and it records the
refcount bump in the ftrace information. This makes it much easier to
debug perag refcounting problems.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 0ed5f735 Thu Sep 23 11:32:06 MDT 2021 Darrick J. Wong <djwong@kernel.org> xfs: compute absolute maximum nlevels for each btree type

Add code for all five btree types so that we can compute the absolute
maximum possible btree height for each btree type. This is a setup for
the next patch, which makes every btree type have its own cursor cache.

The functions are exported so that we can have xfs_db report the
absolute maximum btree heights for each btree type, rather than making
everyone run their own ad-hoc computations.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 7cb3efb4 Wed Oct 13 11:02:19 MDT 2021 Darrick J. Wong <djwong@kernel.org> xfs: rename m_ag_maxlevels to m_allocbt_maxlevels

Years ago when XFS was thought to be much more simple, we introduced
m_ag_maxlevels to specify the maximum btree height of per-AG btrees for
a given filesystem mount. Then we observed that inode btrees don't
actually have the same height and split that off; and now we have rmap
and refcount btrees with much different geometries and separate
maxlevels variables.

The 'ag' part of the name doesn't make much sense anymore, so rename
this to m_alloc_maxlevels to reinforce that this is the maximum height
of the *free space* btrees. This sets us up for the next patch, which
will add a variable to track the maximum height of all AG btrees.

(Also take the opportunity to improve adjacent comments and fix minor
style problems.)

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff e6eb33d9 Wed Mar 11 11:52:49 MDT 2020 Darrick J. Wong <darrick.wong@oracle.com> xfs: add support for free space btree staging cursors

Add support for btree staging cursors for the free space btrees. This
is needed both for online repair and also to convert xfs_repair to use
btree bulk loading.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff e6eb33d9 Wed Mar 11 11:52:49 MDT 2020 Darrick J. Wong <darrick.wong@oracle.com> xfs: add support for free space btree staging cursors

Add support for btree staging cursors for the free space btrees. This
is needed both for online repair and also to convert xfs_repair to use
btree bulk loading.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff b8f89801 Thu Feb 07 11:45:47 MST 2019 Brian Foster <bfoster@redhat.com> xfs: distinguish between bnobt and cntbt magic values

The allocation btree verifiers share code that is unable to detect
cross-tree magic value corruptions such as a bnobt block with a
cntbt magic value. Populate the b_ops->magic field of the associated
verifier structures such that the structure verifier can check the
magic value against the expected value based on tree type.

The btree level check requires knowledge of the tree type to
determine the appropriate maximum value. This was previously part of
the hardcoded magic value checks. With that code removed, peek at
the first magic value in the verifier to determine the expected tree
type of the current block.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
H A Dxfs_rmap_btree.cdiff 4a200a09 Tue Apr 11 20:00:11 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: implement masked btree key comparisons for _has_records scans

For keyspace fullness scans, we want to be able to mask off the parts of
the key that we don't care about. For most btree types we /do/ want the
full keyspace, but for checking that a given space usage also has a full
complement of rmapbt records (even if different/multiple owners) we need
this masking so that we only track sparseness of rm_startblock, not the
whole keyspace (which is extremely sparse).

Augment the ->diff_two_keys and ->keys_contiguous helpers to take a
third union xfs_btree_key argument, and wire up xfs_rmap_has_records to
pass this through. This third "mask" argument should contain a nonzero
value in each structure field that should be used in the key comparisons
done during the scan.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 4a200a09 Tue Apr 11 20:00:11 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: implement masked btree key comparisons for _has_records scans

For keyspace fullness scans, we want to be able to mask off the parts of
the key that we don't care about. For most btree types we /do/ want the
full keyspace, but for checking that a given space usage also has a full
complement of rmapbt records (even if different/multiple owners) we need
this masking so that we only track sparseness of rm_startblock, not the
whole keyspace (which is extremely sparse).

Augment the ->diff_two_keys and ->keys_contiguous helpers to take a
third union xfs_btree_key argument, and wire up xfs_rmap_has_records to
pass this through. This third "mask" argument should contain a nonzero
value in each structure field that should be used in the key comparisons
done during the scan.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 6abc7aef Tue Apr 11 20:00:10 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: replace xfs_btree_has_record with a general keyspace scanner

The current implementation of xfs_btree_has_record returns true if it
finds /any/ record within the given range. Unfortunately, that's not
sufficient for scrub. We want to be able to tell if a range of keyspace
for a btree is devoid of records, is totally mapped to records, or is
somewhere in between. By forcing this to be a boolean, we conflated
sparseness and fullness, which caused scrub to return incorrect results.
Fix the API so that we can tell the caller which of those three is the
current state.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 08c987de Tue Apr 11 20:00:07 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: fix rm_offset flag handling in rmap keys

Keys for extent interval records in the reverse mapping btree are
supposed to be computed as follows:

(physical block, owner, fork, is_btree, offset)

This provides users the ability to look up a reverse mapping from a file
block mapping record -- start with the physical block; then if there are
multiple records for the same block, move on to the owner; then the
inode fork type; and so on to the file offset.

Unfortunately, the code that creates rmap lookup keys from rmap records
forgot to mask off the record attribute flags, leading to ondisk keys
that look like this:

(physical block, owner, fork, is_btree, unwritten state, offset)

Fortunately, this has all worked ok for the past six years because the
key comparison functions incorrectly ignore the fork/bmbt/unwritten
information that's encoded in the on-disk offset. This means that
lookup comparisons are only done with:

(physical block, owner, offset)

Queries can (theoretically) return incorrect results because of this
omission. On consistent filesystems this isn't an issue because xattr
and bmbt blocks cannot be shared and hence the comparisons succeed
purely on the contents of the rm_startblock field. For the one case
where we support sharing (written data fork blocks) all flag bits are
zero, so the omission in the comparison has no ill effects.

Unfortunately, this bug prevents scrub from detecting incorrect fork and
bmbt flag bits in the rmap btree, so we really do need to fix the
compare code. Old filesystems with the unwritten bit erroneously set in
the rmap key struct will work fine on new kernels since we still ignore
the unwritten bit. New filesystems on older kernels will work fine
since the old kernels never paid attention to the unwritten bit.

A previous version of this patch forgot to keep the (un)written state
flag masked during the comparison and caused a major regression in
5.9.x since unwritten extent conversion can update an rmap record
without requiring key updates.

Note that blocks cannot go directly from data fork to attr fork without
being deallocated and reallocated, nor can they be added to or removed
from a bmbt without a free/alloc cycle, so this should not cause any
regressions.

Found by fuzzing keys[1].attrfork = ones on xfs/371.

Fixes: 4b8ed67794fe ("xfs: add rmap btree operations")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 9b2e5a23 Tue Apr 11 19:59:55 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: create traced helper to get extra perag references

There are a few places in the XFS codebase where a caller has either an
active or a passive reference to a perag structure and wants to give
a passive reference to some other piece of code. Btree cursor creation
and inode walks are good examples of this. Replace the open-coded logic
with a helper to do this.

The new function adds a few safeguards -- it checks that there's at
least one reference to the perag structure passed in, and it records the
refcount bump in the ftrace information. This makes it much easier to
debug perag refcounting problems.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 0ed5f735 Thu Sep 23 11:32:06 MDT 2021 Darrick J. Wong <djwong@kernel.org> xfs: compute absolute maximum nlevels for each btree type

Add code for all five btree types so that we can compute the absolute
maximum possible btree height for each btree type. This is a setup for
the next patch, which makes every btree type have its own cursor cache.

The functions are exported so that we can have xfs_db report the
absolute maximum btree heights for each btree type, rather than making
everyone run their own ad-hoc computations.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 59d67712 Wed Mar 11 12:11:42 MDT 2020 Darrick J. Wong <darrick.wong@oracle.com> xfs: add support for rmap btree staging cursors

Add support for btree staging cursors for the rmap btrees. This is
needed both for online repair and also to convert xfs_repair to use
btree bulk loading.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff 59d67712 Wed Mar 11 12:11:42 MDT 2020 Darrick J. Wong <darrick.wong@oracle.com> xfs: add support for rmap btree staging cursors

Add support for btree staging cursors for the rmap btrees. This is
needed both for online repair and also to convert xfs_repair to use
btree bulk loading.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff 39708c20 Thu Feb 07 11:45:48 MST 2019 Brian Foster <bfoster@redhat.com> xfs: miscellaneous verifier magic value fixups

Most buffer verifiers have hardcoded magic value checks
conditionalized on the version of the filesystem. The magic value
field of the verifier structure facilitates abstraction of some of
this code. Populate the ->magic field of various verifiers to take
advantage of this abstraction. No functional changes.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff a1f69417 Fri Apr 06 11:09:42 MDT 2018 Eric Sandeen <sandeen@sandeen.net> xfs: non-scrub - remove unused function parameters

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
H A Dxfs_bmap_btree.cdiff 8f71bede Fri Dec 15 11:03:39 MST 2023 Darrick J. Wong <djwong@kernel.org> xfs: repair inode fork block mapping data structures

Use the reverse-mapping btree information to rebuild an inode block map.
Update the btree bulk loading code as necessary to support inode rooted
btrees and fix some bitrot problems.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff 4a200a09 Tue Apr 11 20:00:11 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: implement masked btree key comparisons for _has_records scans

For keyspace fullness scans, we want to be able to mask off the parts of
the key that we don't care about. For most btree types we /do/ want the
full keyspace, but for checking that a given space usage also has a full
complement of rmapbt records (even if different/multiple owners) we need
this masking so that we only track sparseness of rm_startblock, not the
whole keyspace (which is extremely sparse).

Augment the ->diff_two_keys and ->keys_contiguous helpers to take a
third union xfs_btree_key argument, and wire up xfs_rmap_has_records to
pass this through. This third "mask" argument should contain a nonzero
value in each structure field that should be used in the key comparisons
done during the scan.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 4a200a09 Tue Apr 11 20:00:11 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: implement masked btree key comparisons for _has_records scans

For keyspace fullness scans, we want to be able to mask off the parts of
the key that we don't care about. For most btree types we /do/ want the
full keyspace, but for checking that a given space usage also has a full
complement of rmapbt records (even if different/multiple owners) we need
this masking so that we only track sparseness of rm_startblock, not the
whole keyspace (which is extremely sparse).

Augment the ->diff_two_keys and ->keys_contiguous helpers to take a
third union xfs_btree_key argument, and wire up xfs_rmap_has_records to
pass this through. This third "mask" argument should contain a nonzero
value in each structure field that should be used in the key comparisons
done during the scan.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 6abc7aef Tue Apr 11 20:00:10 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: replace xfs_btree_has_record with a general keyspace scanner

The current implementation of xfs_btree_has_record returns true if it
finds /any/ record within the given range. Unfortunately, that's not
sufficient for scrub. We want to be able to tell if a range of keyspace
for a btree is devoid of records, is totally mapped to records, or is
somewhere in between. By forcing this to be a boolean, we conflated
sparseness and fullness, which caused scrub to return incorrect results.
Fix the API so that we can tell the caller which of those three is the
current state.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 692b6cdd Fri Feb 10 10:11:06 MST 2023 Dave Chinner <dchinner@redhat.com> xfs: t_firstblock is tracking AGs not blocks

The tp->t_firstblock field is now raelly tracking the highest AG we
have locked, not the block number of the highest allocation we've
made. It's purpose is to prevent AGF locking deadlocks, so rename it
to "highest AG" and simplify the implementation to just track the
agno rather than a fsbno.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
diff c01147d9 Sat Jul 09 11:56:07 MDT 2022 Darrick J. Wong <djwong@kernel.org> xfs: replace inode fork size macros with functions

Replace the shouty macros here with typechecked helper functions.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 732436ef Sat Jul 09 11:56:05 MDT 2022 Darrick J. Wong <djwong@kernel.org> xfs: convert XFS_IFORK_PTR to a static inline helper

We're about to make this logic do a bit more, so convert the macro to a
static inline function for better typechecking and fewer shouty macros.
No functional changes here.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 0ed5f735 Thu Sep 23 11:32:06 MDT 2021 Darrick J. Wong <djwong@kernel.org> xfs: compute absolute maximum nlevels for each btree type

Add code for all five btree types so that we can compute the absolute
maximum possible btree height for each btree type. This is a setup for
the next patch, which makes every btree type have its own cursor cache.

The functions are exported so that we can have xfs_db report the
absolute maximum btree heights for each btree type, rather than making
everyone run their own ad-hoc computations.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff db07349d Mon Mar 29 12:11:44 MDT 2021 Christoph Hellwig <hch@lst.de> xfs: move the di_flags field to struct xfs_inode

In preparation of removing the historic icinode struct, move the flags
field into the containing xfs_inode structure.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
diff 6e73a545 Mon Mar 29 12:11:40 MDT 2021 Christoph Hellwig <hch@lst.de> xfs: move the di_nblocks field to struct xfs_inode

In preparation of removing the historic icinode struct, move the nblocks
field into the containing xfs_inode structure.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
H A Dxfs_btree.hdiff 9099cd38 Fri Dec 15 11:03:33 MST 2023 Darrick J. Wong <djwong@kernel.org> xfs: repair refcount btrees

Reconstruct the refcount data from the rmap btree.

Link: https://docs.kernel.org/filesystems/xfs-online-fsck-design.html#case-study-rebuilding-the-space-reference-counts
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff 26de6462 Fri Dec 15 11:03:28 MST 2023 Darrick J. Wong <djwong@kernel.org> xfs: read leaf blocks when computing keys for bulkloading into node blocks

When constructing a new btree, xfs_btree_bload_node needs to read the
btree blocks for level N to compute the keyptrs for the blocks that will
be loaded into level N+1. The level N blocks must be formatted at that
point.

A subsequent patch will change the btree bulkloader to write new btree
blocks in 256K chunks to moderate memory consumption if the new btree is
very large. As a consequence of that, it's possible that the buffers
for lower level blocks might have been reclaimed by the time the node
builder comes back to the block.

Therefore, change xfs_btree_bload_node to read the lower level blocks
to handle the reclaimed buffer case. As a side effect, the read will
increase the LRU refs, which will bias towards keeping new btree buffers
in memory after the new btree commits.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff 4a200a09 Tue Apr 11 20:00:11 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: implement masked btree key comparisons for _has_records scans

For keyspace fullness scans, we want to be able to mask off the parts of
the key that we don't care about. For most btree types we /do/ want the
full keyspace, but for checking that a given space usage also has a full
complement of rmapbt records (even if different/multiple owners) we need
this masking so that we only track sparseness of rm_startblock, not the
whole keyspace (which is extremely sparse).

Augment the ->diff_two_keys and ->keys_contiguous helpers to take a
third union xfs_btree_key argument, and wire up xfs_rmap_has_records to
pass this through. This third "mask" argument should contain a nonzero
value in each structure field that should be used in the key comparisons
done during the scan.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 4a200a09 Tue Apr 11 20:00:11 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: implement masked btree key comparisons for _has_records scans

For keyspace fullness scans, we want to be able to mask off the parts of
the key that we don't care about. For most btree types we /do/ want the
full keyspace, but for checking that a given space usage also has a full
complement of rmapbt records (even if different/multiple owners) we need
this masking so that we only track sparseness of rm_startblock, not the
whole keyspace (which is extremely sparse).

Augment the ->diff_two_keys and ->keys_contiguous helpers to take a
third union xfs_btree_key argument, and wire up xfs_rmap_has_records to
pass this through. This third "mask" argument should contain a nonzero
value in each structure field that should be used in the key comparisons
done during the scan.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 6abc7aef Tue Apr 11 20:00:10 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: replace xfs_btree_has_record with a general keyspace scanner

The current implementation of xfs_btree_has_record returns true if it
finds /any/ record within the given range. Unfortunately, that's not
sufficient for scrub. We want to be able to tell if a range of keyspace
for a btree is devoid of records, is totally mapped to records, or is
somewhere in between. By forcing this to be a boolean, we conflated
sparseness and fullness, which caused scrub to return incorrect results.
Fix the API so that we can tell the caller which of those three is the
current state.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff bd7e7951 Tue Apr 11 20:00:10 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: refactor ->diff_two_keys callsites

Create wrapper functions around ->diff_two_keys so that we don't have to
remember what the return values mean, and adjust some of the code
comments to reflect the longtime code behavior. We're going to
introduce more uses of ->diff_two_keys in the next patch, so reduce the
cognitive load for readers by doing this refactoring now.

Suggested-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 32816fd7 Thu Aug 12 11:10:44 MDT 2021 Darrick J. Wong <djwong@kernel.org> xfs: constify btree function parameters that are not modified

Constify the rest of the btree functions that take structure and union
pointers and are not supposed to modify them.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff 60e3d707 Wed Mar 11 11:51:50 MDT 2020 Darrick J. Wong <darrick.wong@oracle.com> xfs: support bulk loading of staged btrees

Add a new btree function that enables us to bulk load a btree cursor.
This will be used by the upcoming online repair patches to generate new
btrees. This avoids the programmatic inefficiency of calling
xfs_btree_insert in a loop (which generates a lot of log traffic) in
favor of stamping out new btree blocks with ordered buffers, and then
committing both the new root and scheduling the removal of the old btree
blocks in a single transaction commit.

The design of this new generic code is based off the btree rebuilding
code in xfs_repair's phase 5 code, with the explicit goal of enabling us
to share that code between scrub and repair. It has the additional
feature of being able to control btree block loading factors.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff 60e3d707 Wed Mar 11 11:51:50 MDT 2020 Darrick J. Wong <darrick.wong@oracle.com> xfs: support bulk loading of staged btrees

Add a new btree function that enables us to bulk load a btree cursor.
This will be used by the upcoming online repair patches to generate new
btrees. This avoids the programmatic inefficiency of calling
xfs_btree_insert in a loop (which generates a lot of log traffic) in
favor of stamping out new btree blocks with ordered buffers, and then
committing both the new root and scheduling the removal of the old btree
blocks in a single transaction commit.

The design of this new generic code is based off the btree rebuilding
code in xfs_repair's phase 5 code, with the explicit goal of enabling us
to share that code between scrub and repair. It has the additional
feature of being able to control btree block loading factors.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff 349e1c03 Wed Mar 11 11:42:34 MDT 2020 Darrick J. Wong <darrick.wong@oracle.com> xfs: introduce fake roots for inode-rooted btrees

Create an in-core fake root for inode-rooted btree types so that callers
can generate a whole new btree using the upcoming btree bulk load
function without making the new tree accessible from the rest of the
filesystem. It is up to the individual btree type to provide a function
to create a staged cursor (presumably with the appropriate callouts to
update the fakeroot) and then commit the staged root back into the
filesystem.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff 349e1c03 Wed Mar 11 11:42:34 MDT 2020 Darrick J. Wong <darrick.wong@oracle.com> xfs: introduce fake roots for inode-rooted btrees

Create an in-core fake root for inode-rooted btree types so that callers
can generate a whole new btree using the upcoming btree bulk load
function without making the new tree accessible from the rest of the
filesystem. It is up to the individual btree type to provide a function
to create a staged cursor (presumably with the appropriate callouts to
update the fakeroot) and then commit the staged root back into the
filesystem.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>

Completed in 390 milliseconds