#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MAX(A, B) ((A) < (B) ? (B) : (A)) typedef struct { mach_msg_header_t header; mach_msg_trailer_t trailer; // subtract this when sending } ipc_trivial_message; typedef struct { mach_msg_header_t header; u_int32_t numbers[0]; mach_msg_trailer_t trailer; // subtract this when sending } ipc_inline_message; typedef struct { mach_msg_header_t header; mach_msg_body_t body; mach_msg_ool_descriptor_t descriptor; mach_msg_trailer_t trailer; // subtract this when sending } ipc_complex_message; enum { msg_type_trivial = 0, msg_type_inline = 1, msg_type_complex = 2 }; struct port_args { int server_num; int req_size; mach_msg_header_t *req_msg; int reply_size; mach_msg_header_t *reply_msg; mach_port_t port; mach_port_t pset; }; typedef union { pid_t pid; pthread_t tid; } thread_id_t; /* Global options */ static boolean_t verbose = FALSE; static boolean_t affinity = FALSE; static boolean_t timeshare = FALSE; static boolean_t threaded = FALSE; static boolean_t oneway = FALSE; static boolean_t do_select = FALSE; int msg_type; int num_ints; int num_msgs; int num_clients; int num_servers; int client_delay; int client_spin; int client_pages; char **server_port_name; void signal_handler(int sig) { } void usage(const char *progname) { fprintf(stderr, "usage: %s [options]\n", progname); fprintf(stderr, "where options are:\n"); fprintf(stderr, " -affinity\t\tthreads use affinity\n"); fprintf(stderr, " -timeshare\t\tthreads use timeshare\n"); fprintf(stderr, " -threaded\t\tuse (p)threads\n"); fprintf(stderr, " -verbose\t\tbe verbose\n"); fprintf(stderr, " -oneway\t\tdo not request return reply\n"); fprintf(stderr, " -count num\t\tnumber of messages to send\n"); fprintf(stderr, " -type trivial|inline|complex\ttype of messages to send\n"); fprintf(stderr, " -numints num\tnumber of 32-bit ints to send in messages\n"); fprintf(stderr, " -servers num\tnumber of servers threads to run\n"); fprintf(stderr, " -clients num\tnumber of clients per server\n"); fprintf(stderr, " -delay num\t\tmicroseconds to sleep clients between messages\n"); fprintf(stderr, " -work num\t\tmicroseconds of client work\n"); fprintf(stderr, " -pages num\t\tpages of memory touched by client work\n"); fprintf(stderr, " -select \t\tselect prior to calling kevent().\n"); fprintf(stderr, "default values are:\n"); fprintf(stderr, " . no affinity\n"); fprintf(stderr, " . not timeshare\n"); fprintf(stderr, " . not verbose\n"); fprintf(stderr, " . not oneway\n"); fprintf(stderr, " . client sends 100000 messages\n"); fprintf(stderr, " . inline message type\n"); fprintf(stderr, " . 64 32-bit integers in inline/complex messages\n"); fprintf(stderr, " . (num_available_processors+1)%%2 servers\n"); fprintf(stderr, " . 4 clients per server\n"); fprintf(stderr, " . no delay\n"); exit(1); } void parse_args(int argc, char *argv[]) { host_basic_info_data_t info; mach_msg_type_number_t count; kern_return_t result; /* Initialize defaults */ msg_type = msg_type_trivial; num_ints = 64; num_msgs = 100000; client_delay = 0; num_clients = 4; count = HOST_BASIC_INFO_COUNT; result = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &count); if (result == KERN_SUCCESS && info.avail_cpus > 1) num_servers = info.avail_cpus / 2; else num_servers = 1; const char *progname = argv[0]; argc--; argv++; while (0 < argc) { if (0 == strcmp("-verbose", argv[0])) { verbose = TRUE; argc--; argv++; } else if (0 == strcmp("-affinity", argv[0])) { affinity = TRUE; argc--; argv++; } else if (0 == strcmp("-timeshare", argv[0])) { timeshare = TRUE; argc--; argv++; } else if (0 == strcmp("-threaded", argv[0])) { threaded = TRUE; argc--; argv++; } else if (0 == strcmp("-oneway", argv[0])) { oneway = TRUE; argc--; argv++; } else if (0 == strcmp("-type", argv[0])) { if (argc < 2) usage(progname); if (0 == strcmp("trivial", argv[1])) { msg_type = msg_type_trivial; } else if (0 == strcmp("inline", argv[1])) { msg_type = msg_type_inline; } else if (0 == strcmp("complex", argv[1])) { msg_type = msg_type_complex; } else usage(progname); argc -= 2; argv += 2; } else if (0 == strcmp("-numints", argv[0])) { if (argc < 2) usage(progname); num_ints = strtoul(argv[1], NULL, 0); argc -= 2; argv += 2; } else if (0 == strcmp("-count", argv[0])) { if (argc < 2) usage(progname); num_msgs = strtoul(argv[1], NULL, 0); argc -= 2; argv += 2; } else if (0 == strcmp("-clients", argv[0])) { if (argc < 2) usage(progname); num_clients = strtoul(argv[1], NULL, 0); argc -= 2; argv += 2; } else if (0 == strcmp("-servers", argv[0])) { if (argc < 2) usage(progname); num_servers = strtoul(argv[1], NULL, 0); argc -= 2; argv += 2; } else if (0 == strcmp("-delay", argv[0])) { if (argc < 2) usage(progname); client_delay = strtoul(argv[1], NULL, 0); argc -= 2; argv += 2; } else if (0 == strcmp("-spin", argv[0])) { if (argc < 2) usage(progname); client_spin = strtoul(argv[1], NULL, 0); argc -= 2; argv += 2; } else if (0 == strcmp("-pages", argv[0])) { if (argc < 2) usage(progname); client_pages = strtoul(argv[1], NULL, 0); argc -= 2; argv += 2; } else if (0 == strcmp("-select", argv[0])) { do_select = TRUE; argc--; argv++; } else usage(progname); } } void setup_server_ports(struct port_args *ports) { kern_return_t ret = 0; mach_port_t bsport; ports->req_size = MAX(sizeof(ipc_inline_message) + sizeof(u_int32_t) * num_ints, sizeof(ipc_complex_message)); ports->reply_size = sizeof(ipc_trivial_message) - sizeof(mach_msg_trailer_t); ports->req_msg = malloc(ports->req_size); ports->reply_msg = malloc(ports->reply_size); ret = mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_RECEIVE, &(ports->port)); if (KERN_SUCCESS != ret) { mach_error("mach_port_allocate(): ", ret); exit(1); } ret = mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_PORT_SET, &(ports->pset)); if (KERN_SUCCESS != ret) { mach_error("mach_port_allocate(): ", ret); exit(1); } ret = mach_port_insert_member(mach_task_self(), ports->port, ports->pset); if (KERN_SUCCESS != ret) { mach_error("mach_port_insert_member(): ", ret); exit(1); } ret = mach_port_insert_right(mach_task_self(), ports->port, ports->port, MACH_MSG_TYPE_MAKE_SEND); if (KERN_SUCCESS != ret) { mach_error("mach_port_insert_right(): ", ret); exit(1); } ret = task_get_bootstrap_port(mach_task_self(), &bsport); if (KERN_SUCCESS != ret) { mach_error("task_get_bootstrap_port(): ", ret); exit(1); } if (verbose) { printf("server waiting for IPC messages from client on port '%s'.\n", server_port_name[ports->server_num]); } ret = bootstrap_register(bsport, server_port_name[ports->server_num], ports->port); if (KERN_SUCCESS != ret) { mach_error("bootstrap_register(): ", ret); exit(1); } } void setup_client_ports(struct port_args *ports) { kern_return_t ret = 0; switch(msg_type) { case msg_type_trivial: ports->req_size = sizeof(ipc_trivial_message); break; case msg_type_inline: ports->req_size = sizeof(ipc_inline_message) + sizeof(u_int32_t) * num_ints; break; case msg_type_complex: ports->req_size = sizeof(ipc_complex_message); break; } ports->req_size -= sizeof(mach_msg_trailer_t); ports->reply_size = sizeof(ipc_trivial_message); ports->req_msg = malloc(ports->req_size); ports->reply_msg = malloc(ports->reply_size); ret = mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_RECEIVE, &(ports->port)); if (KERN_SUCCESS != ret) { mach_error("mach_port_allocate(): ", ret); exit(1); } if (verbose) { printf("Client sending %d %s IPC messages to port '%s' in %s mode.\n", num_msgs, (msg_type == msg_type_inline) ? "inline" : ((msg_type == msg_type_complex) ? "complex" : "trivial"), server_port_name[ports->server_num], (oneway ? "oneway" : "rpc")); } } static void thread_setup(int tag) { kern_return_t ret; thread_extended_policy_data_t epolicy; thread_affinity_policy_data_t policy; if (!timeshare) { epolicy.timeshare = FALSE; ret = thread_policy_set( mach_thread_self(), THREAD_EXTENDED_POLICY, (thread_policy_t) &epolicy, THREAD_EXTENDED_POLICY_COUNT); if (ret != KERN_SUCCESS) printf("thread_policy_set(THREAD_EXTENDED_POLICY) returned %d\n", ret); } if (affinity) { policy.affinity_tag = tag; ret = thread_policy_set( mach_thread_self(), THREAD_AFFINITY_POLICY, (thread_policy_t) &policy, THREAD_AFFINITY_POLICY_COUNT); if (ret != KERN_SUCCESS) printf("thread_policy_set(THREAD_AFFINITY_POLICY) returned %d\n", ret); } } void * server(void *serverarg) { int kq; struct kevent64_s kev[1]; int err; int count; struct port_args args; int idx; kern_return_t ret; int totalmsg = num_msgs * num_clients; fd_set readfds; args.server_num = (int) (long) serverarg; setup_server_ports(&args); thread_setup(args.server_num + 1); kq = kqueue(); if (kq == -1) { perror("kqueue"); exit(1); } EV_SET64(&kev[0], args.pset, EVFILT_MACHPORT, (EV_ADD | EV_CLEAR | EV_DISPATCH), #if DIRECT_MSG_RCV MACH_RCV_MSG|MACH_RCV_LARGE, 0, 0, (mach_vm_address_t)args.req_msg, args.req_size); #else 0, 0, 0, 0, 0); #endif err = kevent64(kq, kev, 1, NULL, 0, 0, NULL); if (err == -1) { perror("kevent"); exit(1); } for (idx = 0; idx < totalmsg; idx++) { if (verbose) printf("server awaiting message %d\n", idx); retry: if (do_select) { FD_ZERO(&readfds); FD_SET(kq, &readfds); if (verbose) printf("Calling select() prior to kevent64().\n"); count = select(kq + 1, &readfds, NULL, NULL, NULL); if (count == -1) { perror("select"); exit(1); } } EV_SET64(&kev[0], args.pset, EVFILT_MACHPORT, EV_ENABLE, #if DIRECT_MSG_RCV MACH_RCV_MSG|MACH_RCV_LARGE, 0, 0, (mach_vm_address_t)args.req_msg, args.req_size); #else 0, 0, 0, 0, 0); #endif err = kevent64(kq, kev, 1, kev, 1, 0, NULL); if (err == -1) { perror("kevent64"); exit(1); } if (err == 0) { // printf("kevent64: returned zero\n"); goto retry; } #if DIRECT_MSG_RCV ret = kev[0].fflags; if (MACH_MSG_SUCCESS != ret) { if (verbose) printf("kevent64() mach_msg_return=%d", ret); mach_error("kevent64 (msg receive): ", ret); exit(1); } #else if (kev[0].data != args.port) printf("kevent64(MACH_PORT_NULL) port name (%lld) != expected (0x%x)\n", kev[0].data, args.port); args.req_msg->msgh_bits = 0; args.req_msg->msgh_size = args.req_size; args.req_msg->msgh_local_port = args.port; ret = mach_msg(args.req_msg, MACH_RCV_MSG|MACH_RCV_INTERRUPT|MACH_RCV_LARGE, 0, args.req_size, args.pset, MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL); if (MACH_RCV_INTERRUPTED == ret) break; if (MACH_MSG_SUCCESS != ret) { if (verbose) printf("mach_msg() ret=%d", ret); mach_error("mach_msg (receive): ", ret); exit(1); } #endif if (verbose) printf("server received message %d\n", idx); if (args.req_msg->msgh_bits & MACH_MSGH_BITS_COMPLEX) { ret = vm_deallocate(mach_task_self(), (vm_address_t)((ipc_complex_message *)args.req_msg)->descriptor.address, ((ipc_complex_message *)args.req_msg)->descriptor.size); } if (1 == args.req_msg->msgh_id) { if (verbose) printf("server sending reply %d\n", idx); args.reply_msg->msgh_bits = MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND, MACH_MSG_TYPE_MAKE_SEND); args.reply_msg->msgh_size = args.reply_size; args.reply_msg->msgh_remote_port = args.req_msg->msgh_remote_port; args.reply_msg->msgh_local_port = args.req_msg->msgh_local_port; args.reply_msg->msgh_id = 2; ret = mach_msg(args.reply_msg, MACH_SEND_MSG, args.reply_size, 0, MACH_PORT_NULL, MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL); if (MACH_MSG_SUCCESS != ret) { mach_error("mach_msg (send): ", ret); exit(1); } } } return NULL; } static inline void client_spin_loop(unsigned count, void (fn)(void)) { while (count--) fn(); } static long dummy_memory; static long *client_memory = &dummy_memory; static void client_work_atom(void) { static int i; if (++i > client_pages * PAGE_SIZE / sizeof(long)) i = 0; client_memory[i] = 0; } static int calibration_count = 10000; static int calibration_usec; static void * calibrate_client_work(void) { long dummy; struct timeval nowtv; struct timeval warmuptv = { 0, 100 * 1000 }; /* 100ms */ struct timeval starttv; struct timeval endtv; if (client_spin) { /* Warm-up the stepper first... */ gettimeofday(&nowtv, NULL); timeradd(&nowtv, &warmuptv, &endtv); do { client_spin_loop(calibration_count, client_work_atom); gettimeofday(&nowtv, NULL); } while (timercmp(&nowtv, &endtv, < )); /* Now do the calibration */ while (TRUE) { gettimeofday(&starttv, NULL); client_spin_loop(calibration_count, client_work_atom); gettimeofday(&endtv, NULL); if (endtv.tv_sec - starttv.tv_sec > 1) { calibration_count /= 10; continue; } calibration_usec = endtv.tv_usec - starttv.tv_usec; if (endtv.tv_usec < starttv.tv_usec) { calibration_usec += 1000000; } if (calibration_usec < 1000) { calibration_count *= 10; continue; } calibration_count /= calibration_usec; break; } if (verbose) printf("calibration_count=%d calibration_usec=%d\n", calibration_count, calibration_usec); } return NULL; } static void * client_work(void) { if (client_spin) { client_spin_loop(calibration_count*client_spin, client_work_atom); } if (client_delay) { usleep(client_delay); } return NULL; } void *client(void *threadarg) { struct port_args args; int idx; mach_msg_header_t *req, *reply; mach_port_t bsport, servport; kern_return_t ret; int server_num = (int) threadarg; void *ints = malloc(sizeof(u_int32_t) * num_ints); if (verbose) printf("client(%d) started, server port name %s\n", server_num, server_port_name[server_num]); args.server_num = server_num; thread_setup(server_num + 1); /* find server port */ ret = task_get_bootstrap_port(mach_task_self(), &bsport); if (KERN_SUCCESS != ret) { mach_error("task_get_bootstrap_port(): ", ret); exit(1); } ret = bootstrap_look_up(bsport, server_port_name[server_num], &servport); if (KERN_SUCCESS != ret) { mach_error("bootstrap_look_up(): ", ret); exit(1); } setup_client_ports(&args); /* Allocate and touch memory */ if (client_pages) { unsigned i; client_memory = (long *) malloc(client_pages * PAGE_SIZE); for (i = 0; i < client_pages; i++) client_memory[i * PAGE_SIZE / sizeof(long)] = 0; } /* start message loop */ for (idx = 0; idx < num_msgs; idx++) { req = args.req_msg; reply = args.reply_msg; req->msgh_bits = MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND, MACH_MSG_TYPE_MAKE_SEND); req->msgh_size = args.req_size; req->msgh_remote_port = servport; req->msgh_local_port = args.port; req->msgh_id = oneway ? 0 : 1; if (msg_type == msg_type_complex) { (req)->msgh_bits |= MACH_MSGH_BITS_COMPLEX; ((ipc_complex_message *)req)->body.msgh_descriptor_count = 1; ((ipc_complex_message *)req)->descriptor.address = ints; ((ipc_complex_message *)req)->descriptor.size = num_ints * sizeof(u_int32_t); ((ipc_complex_message *)req)->descriptor.deallocate = FALSE; ((ipc_complex_message *)req)->descriptor.copy = MACH_MSG_VIRTUAL_COPY; ((ipc_complex_message *)req)->descriptor.type = MACH_MSG_OOL_DESCRIPTOR; } if (verbose) printf("client sending message %d\n", idx); ret = mach_msg(req, MACH_SEND_MSG, args.req_size, 0, MACH_PORT_NULL, MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL); if (MACH_MSG_SUCCESS != ret) { mach_error("mach_msg (send): ", ret); fprintf(stderr, "bailing after %u iterations\n", idx); exit(1); break; } if (!oneway) { if (verbose) printf("client awaiting reply %d\n", idx); reply->msgh_bits = 0; reply->msgh_size = args.reply_size; reply->msgh_local_port = args.port; ret = mach_msg(args.reply_msg, MACH_RCV_MSG|MACH_RCV_INTERRUPT, 0, args.reply_size, args.port, MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL); if (MACH_MSG_SUCCESS != ret) { mach_error("mach_msg (receive): ", ret); fprintf(stderr, "bailing after %u iterations\n", idx); exit(1); } if (verbose) printf("client received reply %d\n", idx); } client_work(); } free(ints); return NULL; } static void thread_spawn(thread_id_t *thread, void *(fn)(void *), void *arg) { if (threaded) { kern_return_t ret; ret = pthread_create( &thread->tid, NULL, fn, arg); if (ret != 0) err(1, "pthread_create()"); if (verbose) printf("created pthread %p\n", thread->tid); } else { thread->pid = fork(); if (thread->pid == 0) { if (verbose) printf("calling %p(%p)\n", fn, arg); fn(arg); exit(0); } if (verbose) printf("forked pid %d\n", thread->pid); } } static void thread_join(thread_id_t *thread) { if (threaded) { kern_return_t ret; if (verbose) printf("joining thread %p\n", thread->tid); ret = pthread_join(thread->tid, NULL); if (ret != KERN_SUCCESS) err(1, "pthread_join(%p)", thread->tid); } else { int stat; if (verbose) printf("waiting for pid %d\n", thread->pid); waitpid(thread->pid, &stat, 0); } } static void wait_for_servers(void) { int i; int retry_count = 10; mach_port_t bsport, servport; kern_return_t ret; /* find server port */ ret = task_get_bootstrap_port(mach_task_self(), &bsport); if (KERN_SUCCESS != ret) { mach_error("task_get_bootstrap_port(): ", ret); exit(1); } while (retry_count-- > 0) { for (i = 0; i < num_servers; i++) { ret = bootstrap_look_up(bsport, server_port_name[i], &servport); if (ret != KERN_SUCCESS) { break; } } if (ret == KERN_SUCCESS) return; usleep(100 * 1000); /* 100ms */ } fprintf(stderr, "Server(s) failed to register\n"); exit(1); } int main(int argc, char *argv[]) { int i; int j; thread_id_t *client_id; thread_id_t *server_id; signal(SIGINT, signal_handler); parse_args(argc, argv); calibrate_client_work(); /* * If we're using affinity create an empty namespace now * so this is shared by all our offspring. */ if (affinity) thread_setup(0); server_id = (thread_id_t *) malloc(num_servers * sizeof(thread_id_t)); server_port_name = (char **) malloc(num_servers * sizeof(char *)); if (verbose) printf("creating %d servers\n", num_servers); for (i = 0; i < num_servers; i++) { server_port_name[i] = (char *) malloc(sizeof("PORT.pppppp.xx")); /* PORT names include pid of main process for disambiguation */ sprintf(server_port_name[i], "PORT.%06d.%02d", getpid(), i); thread_spawn(&server_id[i], server, (void *) (long) i); } int totalclients = num_servers * num_clients; int totalmsg = num_msgs * totalclients; struct timeval starttv, endtv, deltatv; /* * Wait for all servers to have registered all ports before starting * the clients and the clock. */ wait_for_servers(); printf("%d server%s, %d client%s per server (%d total) %u messages...", num_servers, (num_servers > 1)? "s" : "", num_clients, (num_clients > 1)? "s" : "", totalclients, totalmsg); fflush(stdout); /* Call gettimeofday() once and throw away result; some implementations * (like Mach's) cache some time zone info on first call. */ gettimeofday(&starttv, NULL); gettimeofday(&starttv, NULL); client_id = (thread_id_t *) malloc(totalclients * sizeof(thread_id_t)); if (verbose) printf("creating %d clients\n", totalclients); for (i = 0; i < num_servers; i++) { for (j = 0; j < num_clients; j++) { thread_spawn( &client_id[(i*num_clients) + j], client, (void *) (long) i); } } /* Wait for servers to complete */ for (i = 0; i < num_servers; i++) { thread_join(&server_id[i]); } gettimeofday(&endtv, NULL); for (i = 0; i < totalclients; i++) { thread_join(&client_id[i]); } /* report results */ deltatv.tv_sec = endtv.tv_sec - starttv.tv_sec; deltatv.tv_usec = endtv.tv_usec - starttv.tv_usec; if (endtv.tv_usec < starttv.tv_usec) { deltatv.tv_sec--; deltatv.tv_usec += 1000000; } double dsecs = (double) deltatv.tv_sec + 1.0E-6 * (double) deltatv.tv_usec; printf(" in %ld.%03u seconds\n", (long)deltatv.tv_sec, deltatv.tv_usec/1000); printf(" throughput in messages/sec: %g\n", (double)totalmsg / dsecs); printf(" average message latency (usec): %2.3g\n", dsecs * 1.0E6 / (double) totalmsg); return (0); }