/* * Copyright (c) 2013 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SFI_DEBUG 0 #if SFI_DEBUG #define dprintf(...) kprintf(__VA_ARGS__) #else #define dprintf(...) do { } while(0) #endif #ifdef MACH_BSD extern sched_call_t workqueue_get_sched_callback(void); #endif /* MACH_BSD */ /* * SFI (Selective Forced Idle) operates by enabling a global * timer on the SFI window interval. When it fires, all processors * running a thread that should be SFI-ed are sent an AST. * As threads become runnable while in their "off phase", they * are placed on a deferred ready queue. When a per-class * "on timer" fires, the ready threads for that class are * re-enqueued for running. As an optimization to avoid spurious * wakeups, the timer may be lazily programmed. */ /* * The "sfi_lock" simple lock guards access to static configuration * parameters (as specified by userspace), dynamic state changes * (as updated by the timer event routine), and timer data structures. * Since it can be taken with interrupts disabled in some cases, all * uses should be taken with interrupts disabled at splsched(). The * "sfi_lock" also guards the "sfi_wait_class" field of thread_t, and * must only be accessed with it held. * * When an "on timer" fires, we must deterministically be able to drain * the wait queue, since if any threads are added to the queue afterwards, * they may never get woken out of SFI wait. So sfi_lock must be * taken before the wait queue's own spinlock. * * The wait queue will take the thread's scheduling lock. We may also take * the thread_lock directly to update the "sfi_class" field and determine * if the thread should block in the wait queue, but the lock will be * released before doing so. * * The pset lock may also be taken, but not while any other locks are held. * * splsched ---> sfi_lock ---> wait_queue ---> thread_lock * \ \ \__ thread_lock (*) * \ \__ pset_lock * \ * \__ thread_lock */ decl_simple_lock_data(static,sfi_lock); static timer_call_data_t sfi_timer_call_entry; volatile boolean_t sfi_is_enabled; boolean_t sfi_window_is_set; uint64_t sfi_window_usecs; uint64_t sfi_window_interval; uint64_t sfi_next_off_deadline; typedef struct { sfi_class_id_t class_id; thread_continue_t class_continuation; const char * class_name; const char * class_ledger_name; } sfi_class_registration_t; /* * To add a new SFI class: * * 1) Raise MAX_SFI_CLASS_ID in mach/sfi_class.h * 2) Add a #define for it to mach/sfi_class.h. It need not be inserted in order of restrictiveness. * 3) Add a call to SFI_CLASS_REGISTER below * 4) Augment sfi_thread_classify to categorize threads as early as possible for as restrictive as possible. * 5) Modify thermald to use the SFI class */ static inline void _sfi_wait_cleanup(sched_call_t callback); #define SFI_CLASS_REGISTER(class_id, ledger_name) \ extern char compile_time_assert_ ## class_id[SFI_CLASS_ ## class_id < MAX_SFI_CLASS_ID ? 1 : -1]; \ void __attribute__((noinline,noreturn)) SFI_ ## class_id ## _THREAD_IS_WAITING(void *callback, wait_result_t wret __unused); \ void SFI_ ## class_id ## _THREAD_IS_WAITING(void *callback, wait_result_t wret __unused) \ { \ _sfi_wait_cleanup(callback); \ thread_exception_return(); \ } \ \ sfi_class_registration_t SFI_ ## class_id ## _registration __attribute__((section("__DATA,__sfi_class_reg"),used)) = { SFI_CLASS_ ## class_id, SFI_ ## class_id ## _THREAD_IS_WAITING, "SFI_CLASS_" # class_id, "SFI_CLASS_" # ledger_name }; /* SFI_CLASS_UNSPECIFIED not included here */ SFI_CLASS_REGISTER(MAINTENANCE, MAINTENANCE) SFI_CLASS_REGISTER(DARWIN_BG, DARWIN_BG) SFI_CLASS_REGISTER(APP_NAP, APP_NAP) SFI_CLASS_REGISTER(MANAGED_FOCAL, MANAGED) SFI_CLASS_REGISTER(MANAGED_NONFOCAL, MANAGED) SFI_CLASS_REGISTER(UTILITY, UTILITY) SFI_CLASS_REGISTER(DEFAULT_FOCAL, DEFAULT) SFI_CLASS_REGISTER(DEFAULT_NONFOCAL, DEFAULT) SFI_CLASS_REGISTER(LEGACY_FOCAL, LEGACY) SFI_CLASS_REGISTER(LEGACY_NONFOCAL, LEGACY) SFI_CLASS_REGISTER(USER_INITIATED_FOCAL, USER_INITIATED) SFI_CLASS_REGISTER(USER_INITIATED_NONFOCAL, USER_INITIATED) SFI_CLASS_REGISTER(USER_INTERACTIVE_FOCAL, USER_INTERACTIVE) SFI_CLASS_REGISTER(USER_INTERACTIVE_NONFOCAL, USER_INTERACTIVE) SFI_CLASS_REGISTER(KERNEL, OPTED_OUT) SFI_CLASS_REGISTER(OPTED_OUT, OPTED_OUT) struct sfi_class_state { uint64_t off_time_usecs; uint64_t off_time_interval; timer_call_data_t on_timer; boolean_t on_timer_programmed; boolean_t class_sfi_is_enabled; volatile boolean_t class_in_on_phase; struct wait_queue wait_queue; /* threads in ready state */ thread_continue_t continuation; const char * class_name; const char * class_ledger_name; }; /* Static configuration performed in sfi_early_init() */ struct sfi_class_state sfi_classes[MAX_SFI_CLASS_ID]; int sfi_enabled_class_count; static void sfi_timer_global_off( timer_call_param_t param0, timer_call_param_t param1); static void sfi_timer_per_class_on( timer_call_param_t param0, timer_call_param_t param1); static sfi_class_registration_t * sfi_get_registration_data(unsigned long *count) { unsigned long sectlen = 0; void *sectdata; sectdata = getsectdatafromheader(&_mh_execute_header, "__DATA", "__sfi_class_reg", §len); if (sectdata) { if (sectlen % sizeof(sfi_class_registration_t) != 0) { /* corrupt data? */ panic("__sfi_class_reg section has invalid size %lu", sectlen); __builtin_unreachable(); } *count = sectlen / sizeof(sfi_class_registration_t); return (sfi_class_registration_t *)sectdata; } else { panic("__sfi_class_reg section not found"); __builtin_unreachable(); } } /* Called early in boot, when kernel is single-threaded */ void sfi_early_init(void) { unsigned long i, count; sfi_class_registration_t *registrations; registrations = sfi_get_registration_data(&count); for (i=0; i < count; i++) { sfi_class_id_t class_id = registrations[i].class_id; assert(class_id < MAX_SFI_CLASS_ID); /* should be caught at compile-time */ if (class_id < MAX_SFI_CLASS_ID) { if (sfi_classes[class_id].continuation != NULL) { panic("Duplicate SFI registration for class 0x%x", class_id); } sfi_classes[class_id].class_sfi_is_enabled = FALSE; sfi_classes[class_id].class_in_on_phase = TRUE; sfi_classes[class_id].continuation = registrations[i].class_continuation; sfi_classes[class_id].class_name = registrations[i].class_name; sfi_classes[class_id].class_ledger_name = registrations[i].class_ledger_name; } } } void sfi_init(void) { sfi_class_id_t i; kern_return_t kret; simple_lock_init(&sfi_lock, 0); timer_call_setup(&sfi_timer_call_entry, sfi_timer_global_off, NULL); sfi_window_is_set = FALSE; sfi_enabled_class_count = 0; sfi_is_enabled = FALSE; for (i = 0; i < MAX_SFI_CLASS_ID; i++) { /* If the class was set up in sfi_early_init(), initialize remaining fields */ if (sfi_classes[i].continuation) { timer_call_setup(&sfi_classes[i].on_timer, sfi_timer_per_class_on, (void *)(uintptr_t)i); sfi_classes[i].on_timer_programmed = FALSE; kret = wait_queue_init(&sfi_classes[i].wait_queue, SYNC_POLICY_FIFO); assert(kret == KERN_SUCCESS); } else { /* The only allowed gap is for SFI_CLASS_UNSPECIFIED */ if(i != SFI_CLASS_UNSPECIFIED) { panic("Gap in registered SFI classes"); } } } } /* Can be called before sfi_init() by task initialization, but after sfi_early_init() */ sfi_class_id_t sfi_get_ledger_alias_for_class(sfi_class_id_t class_id) { sfi_class_id_t i; const char *ledger_name = NULL; ledger_name = sfi_classes[class_id].class_ledger_name; /* Find the first class in the registration table with this ledger name */ if (ledger_name) { for (i = SFI_CLASS_UNSPECIFIED + 1; i < class_id; i++) { if (0 == strcmp(sfi_classes[i].class_ledger_name, ledger_name)) { dprintf("sfi_get_ledger_alias_for_class(0x%x) -> 0x%x\n", class_id, i); return i; } } /* This class is the primary one for the ledger, so there is no alias */ dprintf("sfi_get_ledger_alias_for_class(0x%x) -> 0x%x\n", class_id, SFI_CLASS_UNSPECIFIED); return SFI_CLASS_UNSPECIFIED; } /* We are permissive on SFI class lookup failures. In sfi_init(), we assert more */ return SFI_CLASS_UNSPECIFIED; } int sfi_ledger_entry_add(ledger_template_t template, sfi_class_id_t class_id) { const char *ledger_name = NULL; ledger_name = sfi_classes[class_id].class_ledger_name; dprintf("sfi_ledger_entry_add(%p, 0x%x) -> %s\n", template, class_id, ledger_name); return ledger_entry_add(template, ledger_name, "sfi", "MATUs"); } static void sfi_timer_global_off( timer_call_param_t param0 __unused, timer_call_param_t param1 __unused) { uint64_t now = mach_absolute_time(); sfi_class_id_t i; processor_set_t pset, nset; processor_t processor; uint32_t needs_cause_ast_mask = 0x0; spl_t s; s = splsched(); simple_lock(&sfi_lock); if (!sfi_is_enabled) { /* If SFI has been disabled, let all "on" timers drain naturally */ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_OFF_TIMER) | DBG_FUNC_NONE, 1, 0, 0, 0, 0); simple_unlock(&sfi_lock); splx(s); return; } KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_OFF_TIMER) | DBG_FUNC_START, 0, 0, 0, 0, 0); /* First set all configured classes into the off state, and program their "on" timer */ for (i = 0; i < MAX_SFI_CLASS_ID; i++) { if (sfi_classes[i].class_sfi_is_enabled) { uint64_t on_timer_deadline; sfi_classes[i].class_in_on_phase = FALSE; sfi_classes[i].on_timer_programmed = TRUE; /* Push out on-timer */ on_timer_deadline = now + sfi_classes[i].off_time_interval; timer_call_enter1(&sfi_classes[i].on_timer, NULL, on_timer_deadline, TIMER_CALL_SYS_CRITICAL); } else { /* If this class no longer needs SFI, make sure the timer is cancelled */ sfi_classes[i].class_in_on_phase = TRUE; if (sfi_classes[i].on_timer_programmed) { sfi_classes[i].on_timer_programmed = FALSE; timer_call_cancel(&sfi_classes[i].on_timer); } } } simple_unlock(&sfi_lock); /* Iterate over processors, call cause_ast_check() on ones running a thread that should be in an off phase */ processor = processor_list; pset = processor->processor_set; pset_lock(pset); do { nset = processor->processor_set; if (nset != pset) { pset_unlock(pset); pset = nset; pset_lock(pset); } /* "processor" and its pset are locked */ if (processor->state == PROCESSOR_RUNNING) { if (AST_NONE != sfi_processor_needs_ast(processor)) { needs_cause_ast_mask |= (1U << processor->cpu_id); } } } while ((processor = processor->processor_list) != NULL); pset_unlock(pset); processor = processor_list; do { if (needs_cause_ast_mask & (1U << processor->cpu_id)) { if (processor == current_processor()) ast_on(AST_SFI); else cause_ast_check(processor); } } while ((processor = processor->processor_list) != NULL); /* Re-arm timer if still enabled */ simple_lock(&sfi_lock); if (sfi_is_enabled) { clock_deadline_for_periodic_event(sfi_window_interval, now, &sfi_next_off_deadline); timer_call_enter1(&sfi_timer_call_entry, NULL, sfi_next_off_deadline, TIMER_CALL_SYS_CRITICAL); } KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_OFF_TIMER) | DBG_FUNC_END, 0, 0, 0, 0, 0); simple_unlock(&sfi_lock); splx(s); } static void sfi_timer_per_class_on( timer_call_param_t param0, timer_call_param_t param1 __unused) { sfi_class_id_t sfi_class_id = (sfi_class_id_t)(uintptr_t)param0; struct sfi_class_state *sfi_class = &sfi_classes[sfi_class_id]; kern_return_t kret; spl_t s; s = splsched(); simple_lock(&sfi_lock); KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_ON_TIMER) | DBG_FUNC_START, sfi_class_id, 0, 0, 0, 0); /* * Any threads that may have accumulated in the ready queue for this class should get re-enqueued. * Since we have the sfi_lock held and have changed "class_in_on_phase", we expect * no new threads to be put on this wait queue until the global "off timer" has fired. */ sfi_class->class_in_on_phase = TRUE; kret = wait_queue_wakeup64_all(&sfi_class->wait_queue, CAST_EVENT64_T(sfi_class_id), THREAD_AWAKENED); assert(kret == KERN_SUCCESS || kret == KERN_NOT_WAITING); KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_ON_TIMER) | DBG_FUNC_END, 0, 0, 0, 0, 0); simple_unlock(&sfi_lock); splx(s); } kern_return_t sfi_set_window(uint64_t window_usecs) { uint64_t interval, deadline; uint64_t now = mach_absolute_time(); sfi_class_id_t i; spl_t s; uint64_t largest_class_off_interval = 0; if (window_usecs < MIN_SFI_WINDOW_USEC) window_usecs = MIN_SFI_WINDOW_USEC; if (window_usecs > UINT32_MAX) return (KERN_INVALID_ARGUMENT); KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_SET_WINDOW), window_usecs, 0, 0, 0, 0); clock_interval_to_absolutetime_interval((uint32_t)window_usecs, NSEC_PER_USEC, &interval); deadline = now + interval; s = splsched(); simple_lock(&sfi_lock); /* Check that we are not bringing in the SFI window smaller than any class */ for (i = 0; i < MAX_SFI_CLASS_ID; i++) { if (sfi_classes[i].class_sfi_is_enabled) { largest_class_off_interval = MAX(largest_class_off_interval, sfi_classes[i].off_time_interval); } } /* * Off window must be strictly greater than all enabled classes, * otherwise threads would build up on ready queue and never be able to run. */ if (interval <= largest_class_off_interval) { simple_unlock(&sfi_lock); splx(s); return (KERN_INVALID_ARGUMENT); } /* * If the new "off" deadline is further out than the current programmed timer, * just let the current one expire (and the new cadence will be established thereafter). * If the new "off" deadline is nearer than the current one, bring it in, so we * can start the new behavior sooner. Note that this may cause the "off" timer to * fire before some of the class "on" timers have fired. */ sfi_window_usecs = window_usecs; sfi_window_interval = interval; sfi_window_is_set = TRUE; if (sfi_enabled_class_count == 0) { /* Can't program timer yet */ } else if (!sfi_is_enabled) { sfi_is_enabled = TRUE; sfi_next_off_deadline = deadline; timer_call_enter1(&sfi_timer_call_entry, NULL, sfi_next_off_deadline, TIMER_CALL_SYS_CRITICAL); } else if (deadline >= sfi_next_off_deadline) { sfi_next_off_deadline = deadline; } else { sfi_next_off_deadline = deadline; timer_call_enter1(&sfi_timer_call_entry, NULL, sfi_next_off_deadline, TIMER_CALL_SYS_CRITICAL); } simple_unlock(&sfi_lock); splx(s); return (KERN_SUCCESS); } kern_return_t sfi_window_cancel(void) { spl_t s; s = splsched(); KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_CANCEL_WINDOW), 0, 0, 0, 0, 0); /* Disable globals so that global "off-timer" is not re-armed */ simple_lock(&sfi_lock); sfi_window_is_set = FALSE; sfi_window_usecs = 0; sfi_window_interval = 0; sfi_next_off_deadline = 0; sfi_is_enabled = FALSE; simple_unlock(&sfi_lock); splx(s); return (KERN_SUCCESS); } kern_return_t sfi_get_window(uint64_t *window_usecs) { spl_t s; uint64_t off_window_us; s = splsched(); simple_lock(&sfi_lock); off_window_us = sfi_window_usecs; simple_unlock(&sfi_lock); splx(s); *window_usecs = off_window_us; return (KERN_SUCCESS); } kern_return_t sfi_set_class_offtime(sfi_class_id_t class_id, uint64_t offtime_usecs) { uint64_t interval; spl_t s; uint64_t off_window_interval; if (offtime_usecs < MIN_SFI_WINDOW_USEC) offtime_usecs = MIN_SFI_WINDOW_USEC; if (class_id == SFI_CLASS_UNSPECIFIED || class_id >= MAX_SFI_CLASS_ID) return (KERN_INVALID_ARGUMENT); if (offtime_usecs > UINT32_MAX) return (KERN_INVALID_ARGUMENT); KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_SET_CLASS_OFFTIME), offtime_usecs, class_id, 0, 0, 0); clock_interval_to_absolutetime_interval((uint32_t)offtime_usecs, NSEC_PER_USEC, &interval); s = splsched(); simple_lock(&sfi_lock); off_window_interval = sfi_window_interval; /* Check that we are not bringing in class off-time larger than the SFI window */ if (off_window_interval && (interval >= off_window_interval)) { simple_unlock(&sfi_lock); splx(s); return (KERN_INVALID_ARGUMENT); } /* We never re-program the per-class on-timer, but rather just let it expire naturally */ if (!sfi_classes[class_id].class_sfi_is_enabled) { sfi_enabled_class_count++; } sfi_classes[class_id].off_time_usecs = offtime_usecs; sfi_classes[class_id].off_time_interval = interval; sfi_classes[class_id].class_sfi_is_enabled = TRUE; if (sfi_window_is_set && !sfi_is_enabled) { /* start global off timer */ sfi_is_enabled = TRUE; sfi_next_off_deadline = mach_absolute_time() + sfi_window_interval; timer_call_enter1(&sfi_timer_call_entry, NULL, sfi_next_off_deadline, TIMER_CALL_SYS_CRITICAL); } simple_unlock(&sfi_lock); splx(s); return (KERN_SUCCESS); } kern_return_t sfi_class_offtime_cancel(sfi_class_id_t class_id) { spl_t s; if (class_id == SFI_CLASS_UNSPECIFIED || class_id >= MAX_SFI_CLASS_ID) return (KERN_INVALID_ARGUMENT); s = splsched(); KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_CANCEL_CLASS_OFFTIME), class_id, 0, 0, 0, 0); simple_lock(&sfi_lock); /* We never re-program the per-class on-timer, but rather just let it expire naturally */ if (sfi_classes[class_id].class_sfi_is_enabled) { sfi_enabled_class_count--; } sfi_classes[class_id].off_time_usecs = 0; sfi_classes[class_id].off_time_interval = 0; sfi_classes[class_id].class_sfi_is_enabled = FALSE; if (sfi_enabled_class_count == 0) { sfi_is_enabled = FALSE; } simple_unlock(&sfi_lock); splx(s); return (KERN_SUCCESS); } kern_return_t sfi_get_class_offtime(sfi_class_id_t class_id, uint64_t *offtime_usecs) { uint64_t off_time_us; spl_t s; if (class_id == SFI_CLASS_UNSPECIFIED || class_id >= MAX_SFI_CLASS_ID) return (0); s = splsched(); simple_lock(&sfi_lock); off_time_us = sfi_classes[class_id].off_time_usecs; simple_unlock(&sfi_lock); splx(s); *offtime_usecs = off_time_us; return (KERN_SUCCESS); } /* * sfi_thread_classify and sfi_processor_active_thread_classify perform the critical * role of quickly categorizing a thread into its SFI class so that an AST_SFI can be * set. As the thread is unwinding to userspace, sfi_ast() performs full locking * and determines whether the thread should enter an SFI wait state. Because of * the inherent races between the time the AST is set and when it is evaluated, * thread classification can be inaccurate (but should always be safe). This is * especially the case for sfi_processor_active_thread_classify, which must * classify the active thread on a remote processor without taking the thread lock. * When in doubt, classification should err on the side of *not* classifying a * thread at all, and wait for the thread itself to either hit a quantum expiration * or block inside the kernel. */ /* * Thread must be locked. Ultimately, the real decision to enter * SFI wait happens at the AST boundary. */ sfi_class_id_t sfi_thread_classify(thread_t thread) { task_t task = thread->task; boolean_t is_kernel_thread = (task == kernel_task); sched_mode_t thmode = thread->sched_mode; int latency_qos = proc_get_effective_task_policy(task, TASK_POLICY_LATENCY_QOS); int task_role = proc_get_effective_task_policy(task, TASK_POLICY_ROLE); int thread_bg = proc_get_effective_thread_policy(thread, TASK_POLICY_DARWIN_BG); int managed_task = proc_get_effective_task_policy(task, TASK_POLICY_SFI_MANAGED); int thread_qos = proc_get_effective_thread_policy(thread, TASK_POLICY_QOS); /* kernel threads never reach the user AST boundary, and are in a separate world for SFI */ if (is_kernel_thread) { return SFI_CLASS_KERNEL; } if (thread_qos == THREAD_QOS_MAINTENANCE) return SFI_CLASS_MAINTENANCE; if (thread_bg || thread_qos == THREAD_QOS_BACKGROUND) { return SFI_CLASS_DARWIN_BG; } if (latency_qos != 0) { int latency_qos_wtf = latency_qos - 1; if ((latency_qos_wtf >= 4) && (latency_qos_wtf <= 5)) { return SFI_CLASS_APP_NAP; } } /* * Realtime and fixed priority threads express their duty cycle constraints * via other mechanisms, and are opted out of (most) forms of SFI */ if (thmode == TH_MODE_REALTIME || thmode == TH_MODE_FIXED || task_role == TASK_GRAPHICS_SERVER) { return SFI_CLASS_OPTED_OUT; } /* * Threads with unspecified or legacy QOS class can be individually managed */ if (managed_task && (thread_qos == THREAD_QOS_UNSPECIFIED || thread_qos == THREAD_QOS_LEGACY)) { if (task_role == TASK_FOREGROUND_APPLICATION || task_role == TASK_CONTROL_APPLICATION) return SFI_CLASS_MANAGED_FOCAL; else return SFI_CLASS_MANAGED_NONFOCAL; } if (thread_qos == THREAD_QOS_UTILITY) return SFI_CLASS_UTILITY; if (task_role == TASK_FOREGROUND_APPLICATION || task_role == TASK_CONTROL_APPLICATION) { switch (thread_qos) { case THREAD_QOS_USER_INTERACTIVE: return SFI_CLASS_USER_INTERACTIVE_FOCAL; case THREAD_QOS_USER_INITIATED: return SFI_CLASS_USER_INITIATED_FOCAL; case THREAD_QOS_LEGACY: return SFI_CLASS_LEGACY_FOCAL; default: return SFI_CLASS_DEFAULT_FOCAL; } } else { switch (thread_qos) { case THREAD_QOS_USER_INTERACTIVE: return SFI_CLASS_USER_INTERACTIVE_NONFOCAL; case THREAD_QOS_USER_INITIATED: return SFI_CLASS_USER_INITIATED_NONFOCAL; case THREAD_QOS_LEGACY: return SFI_CLASS_LEGACY_NONFOCAL; default: return SFI_CLASS_DEFAULT_NONFOCAL; } } } /* * pset must be locked. */ sfi_class_id_t sfi_processor_active_thread_classify(processor_t processor) { return processor->current_sfi_class; } /* * thread must be locked. This is inherently racy, with the intent that * at the AST boundary, it will be fully evaluated whether we need to * perform an AST wait */ ast_t sfi_thread_needs_ast(thread_t thread, sfi_class_id_t *out_class) { sfi_class_id_t class_id; class_id = sfi_thread_classify(thread); if (out_class) *out_class = class_id; /* No lock taken, so a stale value may be used. */ if (!sfi_classes[class_id].class_in_on_phase) return AST_SFI; else return AST_NONE; } /* * pset must be locked. We take the SFI class for * the currently running thread which is cached on * the processor_t, and assume it is accurate. In the * worst case, the processor will get an IPI and be asked * to evaluate if the current running thread at that * later point in time should be in an SFI wait. */ ast_t sfi_processor_needs_ast(processor_t processor) { sfi_class_id_t class_id; class_id = sfi_processor_active_thread_classify(processor); /* No lock taken, so a stale value may be used. */ if (!sfi_classes[class_id].class_in_on_phase) return AST_SFI; else return AST_NONE; } static inline void _sfi_wait_cleanup(sched_call_t callback) { thread_t self = current_thread(); sfi_class_id_t current_sfi_wait_class = SFI_CLASS_UNSPECIFIED; int64_t sfi_wait_time, sfi_wait_begin = 0; spl_t s = splsched(); thread_lock(self); if (callback) { thread_sched_call(self, callback); } sfi_wait_begin = self->wait_sfi_begin_time; thread_unlock(self); simple_lock(&sfi_lock); sfi_wait_time = mach_absolute_time() - sfi_wait_begin; current_sfi_wait_class = self->sfi_wait_class; self->sfi_wait_class = SFI_CLASS_UNSPECIFIED; simple_unlock(&sfi_lock); splx(s); assert(SFI_CLASS_UNSPECIFIED < current_sfi_wait_class < MAX_SFI_CLASS_ID); ledger_credit(self->task->ledger, task_ledgers.sfi_wait_times[current_sfi_wait_class], sfi_wait_time); } /* * Called at AST context to fully evaluate if the current thread * (which is obviously running) should instead block in an SFI wait. * We must take the sfi_lock to check whether we are in the "off" period * for the class, and if so, block. */ void sfi_ast(thread_t thread) { sfi_class_id_t class_id; spl_t s; struct sfi_class_state *sfi_class; wait_result_t waitret; boolean_t did_wait = FALSE; uint64_t tid; thread_continue_t continuation; sched_call_t workq_callback = workqueue_get_sched_callback(); boolean_t did_clear_wq = FALSE; s = splsched(); simple_lock(&sfi_lock); if (!sfi_is_enabled) { /* * SFI is not enabled, or has recently been disabled. * There is no point putting this thread on a deferred ready * queue, even if it were classified as needing it, since * SFI will truly be off at the next global off timer */ simple_unlock(&sfi_lock); splx(s); return; } thread_lock(thread); thread->sfi_class = class_id = sfi_thread_classify(thread); tid = thread_tid(thread); /* * Once the sfi_lock is taken and the thread's ->sfi_class field is updated, we * are committed to transitioning to whatever state is indicated by "->class_in_on_phase". * If another thread tries to call sfi_reevaluate() after this point, it will take the * sfi_lock and see the thread in this wait state. If another thread calls * sfi_reevaluate() before this point, it would see a runnable thread and at most * attempt to send an AST to this processor, but we would have the most accurate * classification. */ /* Optimistically clear workq callback while thread is already locked */ if (workq_callback && (thread->sched_call == workq_callback)) { thread_sched_call(thread, NULL); did_clear_wq = TRUE; } thread_unlock(thread); sfi_class = &sfi_classes[class_id]; if (!sfi_class->class_in_on_phase) { /* Need to block thread in wait queue */ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_THREAD_DEFER), tid, class_id, 0, 0, 0); waitret = wait_queue_assert_wait64(&sfi_class->wait_queue, CAST_EVENT64_T(class_id), THREAD_INTERRUPTIBLE, 0); if (waitret == THREAD_WAITING) { thread->sfi_wait_class = class_id; did_wait = TRUE; continuation = sfi_class->continuation; } else { /* thread may be exiting already, all other errors are unexpected */ assert(waitret == THREAD_INTERRUPTED); } } simple_unlock(&sfi_lock); splx(s); if (did_wait) { thread_block_reason(continuation, did_clear_wq ? workq_callback : NULL, AST_SFI); } else { if (did_clear_wq) { s = splsched(); thread_lock(thread); thread_sched_call(thread, workq_callback); thread_unlock(thread); splx(s); } } } /* Thread must be unlocked */ void sfi_reevaluate(thread_t thread) { kern_return_t kret; spl_t s; sfi_class_id_t class_id, current_class_id; ast_t sfi_ast; s = splsched(); simple_lock(&sfi_lock); thread_lock(thread); sfi_ast = sfi_thread_needs_ast(thread, &class_id); thread->sfi_class = class_id; /* * This routine chiefly exists to boost threads out of an SFI wait * if their classification changes before the "on" timer fires. * * If we calculate that a thread is in a different ->sfi_wait_class * than we think it should be (including no-SFI-wait), we need to * correct that: * * If the thread is in SFI wait and should not be (or should be waiting * on a different class' "on" timer), we wake it up. If needed, the * thread may immediately block again in the different SFI wait state. * * If the thread is not in an SFI wait state and it should be, we need * to get that thread's attention, possibly by sending an AST to another * processor. */ if ((current_class_id = thread->sfi_wait_class) != SFI_CLASS_UNSPECIFIED) { thread_unlock(thread); /* not needed anymore */ assert(current_class_id < MAX_SFI_CLASS_ID); if ((sfi_ast == AST_NONE) || (class_id != current_class_id)) { struct sfi_class_state *sfi_class = &sfi_classes[current_class_id]; KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_WAIT_CANCELED), thread_tid(thread), current_class_id, class_id, 0, 0); kret = wait_queue_wakeup64_thread(&sfi_class->wait_queue, CAST_EVENT64_T(current_class_id), thread, THREAD_AWAKENED); assert(kret == KERN_SUCCESS || kret == KERN_NOT_WAITING); } } else { /* * Thread's current SFI wait class is not set, and because we * have the sfi_lock, it won't get set. */ if ((thread->state & (TH_RUN | TH_IDLE)) == TH_RUN) { if (sfi_ast != AST_NONE) { if (thread == current_thread()) ast_on(sfi_ast); else { processor_t processor = thread->last_processor; if (processor != PROCESSOR_NULL && processor->state == PROCESSOR_RUNNING && processor->active_thread == thread) { cause_ast_check(processor); } else { /* * Runnable thread that's not on a CPU currently. When a processor * does context switch to it, the AST will get set based on whether * the thread is in its "off time". */ } } } } thread_unlock(thread); } simple_unlock(&sfi_lock); splx(s); }