/* * Copyright (c) 2000-2012 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* * @OSF_COPYRIGHT@ */ /* * Mach Operating System * Copyright (c) 1991,1990,1989, 1988 Carnegie Mellon University * All Rights Reserved. * * Permission to use, copy, modify and distribute this software and its * documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie Mellon * the rights to redistribute these changes. */ /* */ /* * File: model_dep.c * Author: Avadis Tevanian, Jr., Michael Wayne Young * * Copyright (C) 1986, Avadis Tevanian, Jr., Michael Wayne Young * * Basic initialization for I386 - ISA bus machines. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* mp_rendezvous_break_lock */ #include #include #include #include #if CONFIG_MTRR #include #endif #include #include #include #include /* inb() */ #include #include #include #include #include #include #include #include #include #include #include #include #include #if DEBUG #define DPRINTF(x...) kprintf(x) #else #define DPRINTF(x...) #endif static void machine_conf(void); extern int max_unsafe_quanta; extern int max_poll_quanta; extern unsigned int panic_is_inited; int db_run_mode; volatile int pbtcpu = -1; hw_lock_data_t pbtlock; /* backtrace print lock */ uint32_t pbtcnt = 0; volatile int panic_double_fault_cpu = -1; #define PRINT_ARGS_FROM_STACK_FRAME 0 typedef struct _cframe_t { struct _cframe_t *prev; uintptr_t caller; #if PRINT_ARGS_FROM_STACK_FRAME unsigned args[0]; #endif } cframe_t; static unsigned panic_io_port; static unsigned commit_paniclog_to_nvram; unsigned int debug_boot_arg; void machine_startup(void) { int boot_arg; #if 0 if( PE_get_hotkey( kPEControlKey )) halt_in_debugger = halt_in_debugger ? 0 : 1; #endif if (PE_parse_boot_argn("debug", &debug_boot_arg, sizeof (debug_boot_arg))) { panicDebugging = TRUE; if (debug_boot_arg & DB_HALT) halt_in_debugger=1; if (debug_boot_arg & DB_PRT) disable_debug_output=FALSE; if (debug_boot_arg & DB_SLOG) systemLogDiags=TRUE; if (debug_boot_arg & DB_LOG_PI_SCRN) logPanicDataToScreen=TRUE; } else { debug_boot_arg = 0; } if (!PE_parse_boot_argn("nvram_paniclog", &commit_paniclog_to_nvram, sizeof (commit_paniclog_to_nvram))) commit_paniclog_to_nvram = 1; /* * Entering the debugger will put the CPUs into a "safe" * power mode. */ if (PE_parse_boot_argn("pmsafe_debug", &boot_arg, sizeof (boot_arg))) pmsafe_debug = boot_arg; #if NOTYET hw_lock_init(&debugger_lock); /* initialize debugger lock */ #endif hw_lock_init(&pbtlock); /* initialize print backtrace lock */ if (PE_parse_boot_argn("preempt", &boot_arg, sizeof (boot_arg))) { default_preemption_rate = boot_arg; } if (PE_parse_boot_argn("unsafe", &boot_arg, sizeof (boot_arg))) { max_unsafe_quanta = boot_arg; } if (PE_parse_boot_argn("poll", &boot_arg, sizeof (boot_arg))) { max_poll_quanta = boot_arg; } if (PE_parse_boot_argn("yield", &boot_arg, sizeof (boot_arg))) { sched_poll_yield_shift = boot_arg; } /* The I/O port to issue a read from, in the event of a panic. Useful for * triggering logic analyzers. */ if (PE_parse_boot_argn("panic_io_port", &boot_arg, sizeof (boot_arg))) { /*I/O ports range from 0 through 0xFFFF */ panic_io_port = boot_arg & 0xffff; } machine_conf(); panic_hooks_init(); /* * Start the system. */ kernel_bootstrap(); /*NOTREACHED*/ } static void machine_conf(void) { machine_info.memory_size = (typeof(machine_info.memory_size))mem_size; } extern void *gPEEFIRuntimeServices; extern void *gPEEFISystemTable; /*- * COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or * code or tables extracted from it, as desired without restriction. * * First, the polynomial itself and its table of feedback terms. The * polynomial is * X^32+X^26+X^23+X^22+X^16+X^12+X^11+X^10+X^8+X^7+X^5+X^4+X^2+X^1+X^0 * * Note that we take it "backwards" and put the highest-order term in * the lowest-order bit. The X^32 term is "implied"; the LSB is the * X^31 term, etc. The X^0 term (usually shown as "+1") results in * the MSB being 1 * * Note that the usual hardware shift register implementation, which * is what we're using (we're merely optimizing it by doing eight-bit * chunks at a time) shifts bits into the lowest-order term. In our * implementation, that means shifting towards the right. Why do we * do it this way? Because the calculated CRC must be transmitted in * order from highest-order term to lowest-order term. UARTs transmit * characters in order from LSB to MSB. By storing the CRC this way * we hand it to the UART in the order low-byte to high-byte; the UART * sends each low-bit to hight-bit; and the result is transmission bit * by bit from highest- to lowest-order term without requiring any bit * shuffling on our part. Reception works similarly * * The feedback terms table consists of 256, 32-bit entries. Notes * * The table can be generated at runtime if desired; code to do so * is shown later. It might not be obvious, but the feedback * terms simply represent the results of eight shift/xor opera * tions for all combinations of data and CRC register values * * The values must be right-shifted by eight bits by the "updcrc * logic; the shift must be unsigned (bring in zeroes). On some * hardware you could probably optimize the shift in assembler by * using byte-swap instructions * polynomial $edb88320 * * * CRC32 code derived from work by Gary S. Brown. */ static uint32_t crc32_tab[] = { 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d }; static uint32_t crc32(uint32_t crc, const void *buf, size_t size) { const uint8_t *p; p = buf; crc = crc ^ ~0U; while (size--) crc = crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8); return crc ^ ~0U; } static void efi_set_tables_64(EFI_SYSTEM_TABLE_64 * system_table) { EFI_RUNTIME_SERVICES_64 *runtime; uint32_t hdr_cksum; uint32_t cksum; DPRINTF("Processing 64-bit EFI tables at %p\n", system_table); do { DPRINTF("Header:\n"); DPRINTF(" Signature: 0x%016llx\n", system_table->Hdr.Signature); DPRINTF(" Revision: 0x%08x\n", system_table->Hdr.Revision); DPRINTF(" HeaderSize: 0x%08x\n", system_table->Hdr.HeaderSize); DPRINTF(" CRC32: 0x%08x\n", system_table->Hdr.CRC32); DPRINTF("RuntimeServices: 0x%016llx\n", system_table->RuntimeServices); if (system_table->Hdr.Signature != EFI_SYSTEM_TABLE_SIGNATURE) { kprintf("Bad EFI system table signature\n"); break; } // Verify signature of the system table hdr_cksum = system_table->Hdr.CRC32; system_table->Hdr.CRC32 = 0; cksum = crc32(0L, system_table, system_table->Hdr.HeaderSize); DPRINTF("System table calculated CRC32 = 0x%x, header = 0x%x\n", cksum, hdr_cksum); system_table->Hdr.CRC32 = hdr_cksum; if (cksum != hdr_cksum) { kprintf("Bad EFI system table checksum\n"); break; } gPEEFISystemTable = system_table; if(system_table->RuntimeServices == 0) { kprintf("No runtime table present\n"); break; } DPRINTF("RuntimeServices table at 0x%qx\n", system_table->RuntimeServices); // 64-bit virtual address is OK for 64-bit EFI and 64/32-bit kernel. runtime = (EFI_RUNTIME_SERVICES_64 *) (uintptr_t)system_table->RuntimeServices; DPRINTF("Checking runtime services table %p\n", runtime); if (runtime->Hdr.Signature != EFI_RUNTIME_SERVICES_SIGNATURE) { kprintf("Bad EFI runtime table signature\n"); break; } // Verify signature of runtime services table hdr_cksum = runtime->Hdr.CRC32; runtime->Hdr.CRC32 = 0; cksum = crc32(0L, runtime, runtime->Hdr.HeaderSize); DPRINTF("Runtime table calculated CRC32 = 0x%x, header = 0x%x\n", cksum, hdr_cksum); runtime->Hdr.CRC32 = hdr_cksum; if (cksum != hdr_cksum) { kprintf("Bad EFI runtime table checksum\n"); break; } gPEEFIRuntimeServices = runtime; } while (FALSE); } static void efi_set_tables_32(EFI_SYSTEM_TABLE_32 * system_table) { EFI_RUNTIME_SERVICES_32 *runtime; uint32_t hdr_cksum; uint32_t cksum; DPRINTF("Processing 32-bit EFI tables at %p\n", system_table); do { DPRINTF("Header:\n"); DPRINTF(" Signature: 0x%016llx\n", system_table->Hdr.Signature); DPRINTF(" Revision: 0x%08x\n", system_table->Hdr.Revision); DPRINTF(" HeaderSize: 0x%08x\n", system_table->Hdr.HeaderSize); DPRINTF(" CRC32: 0x%08x\n", system_table->Hdr.CRC32); DPRINTF("RuntimeServices: 0x%08x\n", system_table->RuntimeServices); if (system_table->Hdr.Signature != EFI_SYSTEM_TABLE_SIGNATURE) { kprintf("Bad EFI system table signature\n"); break; } // Verify signature of the system table hdr_cksum = system_table->Hdr.CRC32; system_table->Hdr.CRC32 = 0; DPRINTF("System table at %p HeaderSize 0x%x\n", system_table, system_table->Hdr.HeaderSize); cksum = crc32(0L, system_table, system_table->Hdr.HeaderSize); DPRINTF("System table calculated CRC32 = 0x%x, header = 0x%x\n", cksum, hdr_cksum); system_table->Hdr.CRC32 = hdr_cksum; if (cksum != hdr_cksum) { kprintf("Bad EFI system table checksum\n"); break; } gPEEFISystemTable = system_table; if(system_table->RuntimeServices == 0) { kprintf("No runtime table present\n"); break; } DPRINTF("RuntimeServices table at 0x%x\n", system_table->RuntimeServices); // 32-bit virtual address is OK for 32-bit EFI and 32-bit kernel. // For a 64-bit kernel, booter provides a virtual address mod 4G runtime = (EFI_RUNTIME_SERVICES_32 *) (system_table->RuntimeServices | VM_MIN_KERNEL_ADDRESS); DPRINTF("Runtime table addressed at %p\n", runtime); if (runtime->Hdr.Signature != EFI_RUNTIME_SERVICES_SIGNATURE) { kprintf("Bad EFI runtime table signature\n"); break; } // Verify signature of runtime services table hdr_cksum = runtime->Hdr.CRC32; runtime->Hdr.CRC32 = 0; cksum = crc32(0L, runtime, runtime->Hdr.HeaderSize); DPRINTF("Runtime table calculated CRC32 = 0x%x, header = 0x%x\n", cksum, hdr_cksum); runtime->Hdr.CRC32 = hdr_cksum; if (cksum != hdr_cksum) { kprintf("Bad EFI runtime table checksum\n"); break; } DPRINTF("Runtime functions\n"); DPRINTF(" GetTime : 0x%x\n", runtime->GetTime); DPRINTF(" SetTime : 0x%x\n", runtime->SetTime); DPRINTF(" GetWakeupTime : 0x%x\n", runtime->GetWakeupTime); DPRINTF(" SetWakeupTime : 0x%x\n", runtime->SetWakeupTime); DPRINTF(" SetVirtualAddressMap : 0x%x\n", runtime->SetVirtualAddressMap); DPRINTF(" ConvertPointer : 0x%x\n", runtime->ConvertPointer); DPRINTF(" GetVariable : 0x%x\n", runtime->GetVariable); DPRINTF(" GetNextVariableName : 0x%x\n", runtime->GetNextVariableName); DPRINTF(" SetVariable : 0x%x\n", runtime->SetVariable); DPRINTF(" GetNextHighMonotonicCount: 0x%x\n", runtime->GetNextHighMonotonicCount); DPRINTF(" ResetSystem : 0x%x\n", runtime->ResetSystem); gPEEFIRuntimeServices = runtime; } while (FALSE); } /* Map in EFI runtime areas. */ static void efi_init(void) { boot_args *args = (boot_args *)PE_state.bootArgs; kprintf("Initializing EFI runtime services\n"); do { vm_offset_t vm_size, vm_addr; vm_map_offset_t phys_addr; EfiMemoryRange *mptr; unsigned int msize, mcount; unsigned int i; msize = args->MemoryMapDescriptorSize; mcount = args->MemoryMapSize / msize; DPRINTF("efi_init() kernel base: 0x%x size: 0x%x\n", args->kaddr, args->ksize); DPRINTF(" efiSystemTable physical: 0x%x virtual: %p\n", args->efiSystemTable, (void *) ml_static_ptovirt(args->efiSystemTable)); DPRINTF(" efiRuntimeServicesPageStart: 0x%x\n", args->efiRuntimeServicesPageStart); DPRINTF(" efiRuntimeServicesPageCount: 0x%x\n", args->efiRuntimeServicesPageCount); DPRINTF(" efiRuntimeServicesVirtualPageStart: 0x%016llx\n", args->efiRuntimeServicesVirtualPageStart); mptr = (EfiMemoryRange *)ml_static_ptovirt(args->MemoryMap); for (i=0; i < mcount; i++, mptr = (EfiMemoryRange *)(((vm_offset_t)mptr) + msize)) { if (((mptr->Attribute & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME) ) { vm_size = (vm_offset_t)i386_ptob((uint32_t)mptr->NumberOfPages); vm_addr = (vm_offset_t) mptr->VirtualStart; /* For K64 on EFI32, shadow-map into high KVA */ if (vm_addr < VM_MIN_KERNEL_ADDRESS) vm_addr |= VM_MIN_KERNEL_ADDRESS; phys_addr = (vm_map_offset_t) mptr->PhysicalStart; DPRINTF(" Type: %x phys: %p EFIv: %p kv: %p size: %p\n", mptr->Type, (void *) (uintptr_t) phys_addr, (void *) (uintptr_t) mptr->VirtualStart, (void *) vm_addr, (void *) vm_size); pmap_map_bd(vm_addr, phys_addr, phys_addr + round_page(vm_size), (mptr->Type == kEfiRuntimeServicesCode) ? VM_PROT_READ | VM_PROT_EXECUTE : VM_PROT_READ|VM_PROT_WRITE, (mptr->Type == EfiMemoryMappedIO) ? VM_WIMG_IO : VM_WIMG_USE_DEFAULT); } } if (args->Version != kBootArgsVersion2) panic("Incompatible boot args version %d revision %d\n", args->Version, args->Revision); DPRINTF("Boot args version %d revision %d mode %d\n", args->Version, args->Revision, args->efiMode); if (args->efiMode == kBootArgsEfiMode64) { efi_set_tables_64((EFI_SYSTEM_TABLE_64 *) ml_static_ptovirt(args->efiSystemTable)); } else { efi_set_tables_32((EFI_SYSTEM_TABLE_32 *) ml_static_ptovirt(args->efiSystemTable)); } } while (FALSE); return; } /* Remap EFI runtime areas. */ void hibernate_newruntime_map(void * map, vm_size_t map_size, uint32_t system_table_offset) { boot_args *args = (boot_args *)PE_state.bootArgs; kprintf("Reinitializing EFI runtime services\n"); do { vm_offset_t vm_size, vm_addr; vm_map_offset_t phys_addr; EfiMemoryRange *mptr; unsigned int msize, mcount; unsigned int i; gPEEFISystemTable = 0; gPEEFIRuntimeServices = 0; system_table_offset += ptoa_32(args->efiRuntimeServicesPageStart); kprintf("Old system table 0x%x, new 0x%x\n", (uint32_t)args->efiSystemTable, system_table_offset); args->efiSystemTable = system_table_offset; kprintf("Old map:\n"); msize = args->MemoryMapDescriptorSize; mcount = args->MemoryMapSize / msize; mptr = (EfiMemoryRange *)ml_static_ptovirt(args->MemoryMap); for (i=0; i < mcount; i++, mptr = (EfiMemoryRange *)(((vm_offset_t)mptr) + msize)) { if ((mptr->Attribute & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME) { vm_size = (vm_offset_t)i386_ptob((uint32_t)mptr->NumberOfPages); vm_addr = (vm_offset_t) mptr->VirtualStart; /* K64 on EFI32 */ if (vm_addr < VM_MIN_KERNEL_ADDRESS) vm_addr |= VM_MIN_KERNEL_ADDRESS; phys_addr = (vm_map_offset_t) mptr->PhysicalStart; kprintf("mapping[%u] %qx @ %lx, %llu\n", mptr->Type, phys_addr, (unsigned long)vm_addr, mptr->NumberOfPages); } } pmap_remove(kernel_pmap, i386_ptob(args->efiRuntimeServicesPageStart), i386_ptob(args->efiRuntimeServicesPageStart + args->efiRuntimeServicesPageCount)); kprintf("New map:\n"); msize = args->MemoryMapDescriptorSize; mcount = (unsigned int )(map_size / msize); mptr = map; for (i=0; i < mcount; i++, mptr = (EfiMemoryRange *)(((vm_offset_t)mptr) + msize)) { if ((mptr->Attribute & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME) { vm_size = (vm_offset_t)i386_ptob((uint32_t)mptr->NumberOfPages); vm_addr = (vm_offset_t) mptr->VirtualStart; if (vm_addr < VM_MIN_KERNEL_ADDRESS) vm_addr |= VM_MIN_KERNEL_ADDRESS; phys_addr = (vm_map_offset_t) mptr->PhysicalStart; kprintf("mapping[%u] %qx @ %lx, %llu\n", mptr->Type, phys_addr, (unsigned long)vm_addr, mptr->NumberOfPages); pmap_map(vm_addr, phys_addr, phys_addr + round_page(vm_size), (mptr->Type == kEfiRuntimeServicesCode) ? VM_PROT_READ | VM_PROT_EXECUTE : VM_PROT_READ|VM_PROT_WRITE, (mptr->Type == EfiMemoryMappedIO) ? VM_WIMG_IO : VM_WIMG_USE_DEFAULT); } } if (args->Version != kBootArgsVersion2) panic("Incompatible boot args version %d revision %d\n", args->Version, args->Revision); kprintf("Boot args version %d revision %d mode %d\n", args->Version, args->Revision, args->efiMode); if (args->efiMode == kBootArgsEfiMode64) { efi_set_tables_64((EFI_SYSTEM_TABLE_64 *) ml_static_ptovirt(args->efiSystemTable)); } else { efi_set_tables_32((EFI_SYSTEM_TABLE_32 *) ml_static_ptovirt(args->efiSystemTable)); } } while (FALSE); kprintf("Done reinitializing EFI runtime services\n"); return; } /* * Find devices. The system is alive. */ void machine_init(void) { /* Now with VM up, switch to dynamically allocated cpu data */ cpu_data_realloc(); /* Ensure panic buffer is initialized. */ debug_log_init(); /* * Display CPU identification */ cpuid_cpu_display("CPU identification"); cpuid_feature_display("CPU features"); cpuid_extfeature_display("CPU extended features"); /* * Initialize EFI runtime services. */ efi_init(); smp_init(); /* * Set up to use floating point. */ init_fpu(); /* * Configure clock devices. */ clock_config(); #if CONFIG_MTRR /* * Initialize MTRR from boot processor. */ mtrr_init(); /* * Set up PAT for boot processor. */ pat_init(); #endif /* * Free lowmem pages and complete other setup */ pmap_lowmem_finalize(); } /* * Halt a cpu. */ void halt_cpu(void) { halt_all_cpus(FALSE); } int reset_mem_on_reboot = 1; /* * Halt the system or reboot. */ void halt_all_cpus(boolean_t reboot) { if (reboot) { printf("MACH Reboot\n"); PEHaltRestart( kPERestartCPU ); } else { printf("CPU halted\n"); PEHaltRestart( kPEHaltCPU ); } while(1); } /* Issue an I/O port read if one has been requested - this is an event logic * analyzers can use as a trigger point. */ void panic_io_port_read(void) { if (panic_io_port) (void)inb(panic_io_port); } /* For use with the MP rendezvous mechanism */ uint64_t panic_restart_timeout = ~(0ULL); #define PANIC_RESTART_TIMEOUT (3ULL * NSEC_PER_SEC) static void machine_halt_cpu(void) { uint64_t deadline; panic_io_port_read(); /* Halt here forever if we're not rebooting */ if (!PE_reboot_on_panic() && panic_restart_timeout == ~(0ULL)) { pmCPUHalt(PM_HALT_DEBUG); return; } if (PE_reboot_on_panic()) deadline = mach_absolute_time() + PANIC_RESTART_TIMEOUT; else deadline = mach_absolute_time() + panic_restart_timeout; while (mach_absolute_time() < deadline) cpu_pause(); kprintf("Invoking PE_halt_restart\n"); /* Attempt restart via ACPI RESET_REG; at the time of this * writing, this is routine is chained through AppleSMC-> * AppleACPIPlatform */ if (PE_halt_restart) (*PE_halt_restart)(kPERestartCPU); pmCPUHalt(PM_HALT_DEBUG); } void DebuggerWithContext( __unused unsigned int reason, __unused void *ctx, const char *message) { Debugger(message); } void Debugger( const char *message) { unsigned long pi_size = 0; void *stackptr; int cn = cpu_number(); hw_atomic_add(&debug_mode, 1); if (!panic_is_inited) { postcode(PANIC_HLT); asm("hlt"); } printf("Debugger called: <%s>\n", message); kprintf("Debugger called: <%s>\n", message); /* * Skip the graphical panic box if no panic string. * This is the case if we're being called from * host_reboot(,HOST_REBOOT_DEBUGGER) * as a quiet way into the debugger. */ if (panicstr) { disable_preemption(); /* Issue an I/O port read if one has been requested - this is an event logic * analyzers can use as a trigger point. */ panic_io_port_read(); /* Obtain current frame pointer */ __asm__ volatile("movq %%rbp, %0" : "=m" (stackptr)); /* Print backtrace - callee is internally synchronized */ panic_i386_backtrace(stackptr, ((panic_double_fault_cpu == cn) ? 80: 48), NULL, FALSE, NULL); /* everything should be printed now so copy to NVRAM */ if( debug_buf_size > 0) { /* Optionally sync the panic log, if any, to NVRAM * This is the default. */ if (commit_paniclog_to_nvram) { unsigned int bufpos; uintptr_t cr0; debug_putc(0); /* Now call the compressor */ /* XXX Consider using the WKdm compressor in the * future, rather than just packing - would need to * be co-ordinated with crashreporter, which decodes * this post-restart. The compressor should be * capable of in-place compression. */ bufpos = packA(debug_buf, (unsigned int) (debug_buf_ptr - debug_buf), debug_buf_size); /* If compression was successful, * use the compressed length */ pi_size = bufpos ? bufpos : (unsigned) (debug_buf_ptr - debug_buf); /* Save panic log to non-volatile store * Panic info handler must truncate data that is * too long for this platform. * This call must save data synchronously, * since we can subsequently halt the system. */ /* The following sequence is a workaround for: * SnowLeopard10A67: AppleEFINVRAM should not invoke * any routines that use floating point (MMX in this case) when saving panic * logs to nvram/flash. */ cr0 = get_cr0(); clear_ts(); kprintf("Attempting to commit panic log to NVRAM\n"); pi_size = PESavePanicInfo((unsigned char *)debug_buf, (uint32_t)pi_size ); set_cr0(cr0); /* Uncompress in-place, to permit examination of * the panic log by debuggers. */ if (bufpos) { unpackA(debug_buf, bufpos); } } } if (!panicDebugging) { unsigned cnum; /* Clear the MP rendezvous function lock, in the event * that a panic occurred while in that codepath. */ mp_rendezvous_break_lock(); /* Non-maskably interrupt all other processors * If a restart timeout is specified, this processor * will attempt a restart. */ kprintf("Invoking machine_halt_cpu on CPU %d\n", cn); for (cnum = 0; cnum < real_ncpus; cnum++) { if (cnum != (unsigned) cn) { cpu_NMI_interrupt(cnum); } } machine_halt_cpu(); /* NOT REACHED */ } } __asm__("int3"); hw_atomic_sub(&debug_mode, 1); } char * machine_boot_info(char *buf, __unused vm_size_t size) { *buf ='\0'; return buf; } /* Routines for address - symbol translation. Not called unless the "keepsyms" * boot-arg is supplied. */ static int panic_print_macho_symbol_name(kernel_mach_header_t *mh, vm_address_t search, const char *module_name) { kernel_nlist_t *sym = NULL; struct load_command *cmd; kernel_segment_command_t *orig_ts = NULL, *orig_le = NULL; struct symtab_command *orig_st = NULL; unsigned int i; char *strings, *bestsym = NULL; vm_address_t bestaddr = 0, diff, curdiff; /* Assume that if it's loaded and linked into the kernel, it's a valid Mach-O */ cmd = (struct load_command *) &mh[1]; for (i = 0; i < mh->ncmds; i++) { if (cmd->cmd == LC_SEGMENT_KERNEL) { kernel_segment_command_t *orig_sg = (kernel_segment_command_t *) cmd; if (strncmp(SEG_TEXT, orig_sg->segname, sizeof(orig_sg->segname)) == 0) orig_ts = orig_sg; else if (strncmp(SEG_LINKEDIT, orig_sg->segname, sizeof(orig_sg->segname)) == 0) orig_le = orig_sg; else if (strncmp("", orig_sg->segname, sizeof(orig_sg->segname)) == 0) orig_ts = orig_sg; /* pre-Lion i386 kexts have a single unnamed segment */ } else if (cmd->cmd == LC_SYMTAB) orig_st = (struct symtab_command *) cmd; cmd = (struct load_command *) ((uintptr_t) cmd + cmd->cmdsize); } if ((orig_ts == NULL) || (orig_st == NULL) || (orig_le == NULL)) return 0; if ((search < orig_ts->vmaddr) || (search >= orig_ts->vmaddr + orig_ts->vmsize)) { /* search out of range for this mach header */ return 0; } sym = (kernel_nlist_t *)(uintptr_t)(orig_le->vmaddr + orig_st->symoff - orig_le->fileoff); strings = (char *)(uintptr_t)(orig_le->vmaddr + orig_st->stroff - orig_le->fileoff); diff = search; for (i = 0; i < orig_st->nsyms; i++) { if (sym[i].n_type & N_STAB) continue; if (sym[i].n_value <= search) { curdiff = search - (vm_address_t)sym[i].n_value; if (curdiff < diff) { diff = curdiff; bestaddr = sym[i].n_value; bestsym = strings + sym[i].n_un.n_strx; } } } if (bestsym != NULL) { if (diff != 0) { kdb_printf("%s : %s + 0x%lx", module_name, bestsym, (unsigned long)diff); } else { kdb_printf("%s : %s", module_name, bestsym); } return 1; } return 0; } extern kmod_info_t * kmod; /* the list of modules */ static void panic_print_kmod_symbol_name(vm_address_t search) { u_int i; if (gLoadedKextSummaries == NULL) return; for (i = 0; i < gLoadedKextSummaries->numSummaries; ++i) { OSKextLoadedKextSummary *summary = gLoadedKextSummaries->summaries + i; if ((search >= summary->address) && (search < (summary->address + summary->size))) { kernel_mach_header_t *header = (kernel_mach_header_t *)(uintptr_t) summary->address; if (panic_print_macho_symbol_name(header, search, summary->name) == 0) { kdb_printf("%s + %llu", summary->name, (unsigned long)search - summary->address); } break; } } } static void panic_print_symbol_name(vm_address_t search) { /* try searching in the kernel */ if (panic_print_macho_symbol_name(&_mh_execute_header, search, "mach_kernel") == 0) { /* that failed, now try to search for the right kext */ panic_print_kmod_symbol_name(search); } } /* Generate a backtrace, given a frame pointer - this routine * should walk the stack safely. The trace is appended to the panic log * and conditionally, to the console. If the trace contains kernel module * addresses, display the module name, load address and dependencies. */ #define DUMPFRAMES 32 #define PBT_TIMEOUT_CYCLES (5 * 1000 * 1000 * 1000ULL) void panic_i386_backtrace(void *_frame, int nframes, const char *msg, boolean_t regdump, x86_saved_state_t *regs) { cframe_t *frame = (cframe_t *)_frame; vm_offset_t raddrs[DUMPFRAMES]; vm_offset_t PC = 0; int frame_index; volatile uint32_t *ppbtcnt = &pbtcnt; uint64_t bt_tsc_timeout; boolean_t keepsyms = FALSE; int cn = cpu_number(); if(pbtcpu != cn) { hw_atomic_add(&pbtcnt, 1); /* Spin on print backtrace lock, which serializes output * Continue anyway if a timeout occurs. */ hw_lock_to(&pbtlock, ~0U); pbtcpu = cn; } panic_check_hook(); PE_parse_boot_argn("keepsyms", &keepsyms, sizeof (keepsyms)); if (msg != NULL) { kdb_printf("%s", msg); } if ((regdump == TRUE) && (regs != NULL)) { x86_saved_state64_t *ss64p = saved_state64(regs); kdb_printf( "RAX: 0x%016llx, RBX: 0x%016llx, RCX: 0x%016llx, RDX: 0x%016llx\n" "RSP: 0x%016llx, RBP: 0x%016llx, RSI: 0x%016llx, RDI: 0x%016llx\n" "R8: 0x%016llx, R9: 0x%016llx, R10: 0x%016llx, R11: 0x%016llx\n" "R12: 0x%016llx, R13: 0x%016llx, R14: 0x%016llx, R15: 0x%016llx\n" "RFL: 0x%016llx, RIP: 0x%016llx, CS: 0x%016llx, SS: 0x%016llx\n", ss64p->rax, ss64p->rbx, ss64p->rcx, ss64p->rdx, ss64p->isf.rsp, ss64p->rbp, ss64p->rsi, ss64p->rdi, ss64p->r8, ss64p->r9, ss64p->r10, ss64p->r11, ss64p->r12, ss64p->r13, ss64p->r14, ss64p->r15, ss64p->isf.rflags, ss64p->isf.rip, ss64p->isf.cs, ss64p->isf.ss); PC = ss64p->isf.rip; } kdb_printf("Backtrace (CPU %d), " #if PRINT_ARGS_FROM_STACK_FRAME "Frame : Return Address (4 potential args on stack)\n", cn); #else "Frame : Return Address\n", cn); #endif for (frame_index = 0; frame_index < nframes; frame_index++) { vm_offset_t curframep = (vm_offset_t) frame; if (!curframep) break; if (curframep & 0x3) { kdb_printf("Unaligned frame\n"); goto invalid; } if (!kvtophys(curframep) || !kvtophys(curframep + sizeof(cframe_t) - 1)) { kdb_printf("No mapping exists for frame pointer\n"); goto invalid; } kdb_printf("%p : 0x%lx ", frame, frame->caller); if (frame_index < DUMPFRAMES) raddrs[frame_index] = frame->caller; #if PRINT_ARGS_FROM_STACK_FRAME if (kvtophys((vm_offset_t)&(frame->args[3]))) kdb_printf("(0x%x 0x%x 0x%x 0x%x) ", frame->args[0], frame->args[1], frame->args[2], frame->args[3]); #endif /* Display address-symbol translation only if the "keepsyms" * boot-arg is suppplied, since we unload LINKEDIT otherwise. * This routine is potentially unsafe; also, function * boundary identification is unreliable after a strip -x. */ if (keepsyms) panic_print_symbol_name((vm_address_t)frame->caller); kdb_printf("\n"); frame = frame->prev; } if (frame_index >= nframes) kdb_printf("\tBacktrace continues...\n"); goto out; invalid: kdb_printf("Backtrace terminated-invalid frame pointer %p\n",frame); out: /* Identify kernel modules in the backtrace and display their * load addresses and dependencies. This routine should walk * the kmod list safely. */ if (frame_index) kmod_panic_dump((vm_offset_t *)&raddrs[0], frame_index); if (PC != 0) kmod_panic_dump(&PC, 1); panic_display_system_configuration(); /* Release print backtrace lock, to permit other callers in the * event of panics on multiple processors. */ hw_lock_unlock(&pbtlock); hw_atomic_sub(&pbtcnt, 1); /* Wait for other processors to complete output * Timeout and continue after PBT_TIMEOUT_CYCLES. */ bt_tsc_timeout = rdtsc64() + PBT_TIMEOUT_CYCLES; while(*ppbtcnt && (rdtsc64() < bt_tsc_timeout)); }