/* * Copyright (c) 2000-2014 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)tcp_timer.c 8.2 (Berkeley) 5/24/95 * $FreeBSD: src/sys/netinet/tcp_timer.c,v 1.34.2.11 2001/08/22 00:59:12 silby Exp $ */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* before tcp_seq.h, for tcp_random18() */ #include #include #include #include #include #include #include #if INET6 #include #endif #include #include #include #include #include #include #include #if INET6 #include #endif #include #if TCPDEBUG #include #endif #include #include #include #define TIMERENTRY_TO_TP(te) ((struct tcpcb *)((uintptr_t)te - offsetof(struct tcpcb, tentry.le.le_next))) #define VERIFY_NEXT_LINK(elm,field) do { \ if (LIST_NEXT((elm),field) != NULL && \ LIST_NEXT((elm),field)->field.le_prev != \ &((elm)->field.le_next)) \ panic("Bad link elm %p next->prev != elm", (elm)); \ } while(0) #define VERIFY_PREV_LINK(elm,field) do { \ if (*(elm)->field.le_prev != (elm)) \ panic("Bad link elm %p prev->next != elm", (elm)); \ } while(0) #define TCP_SET_TIMER_MODE(mode, i) do { \ if (IS_TIMER_HZ_10MS(i)) \ (mode) |= TCP_TIMERLIST_10MS_MODE; \ else if (IS_TIMER_HZ_100MS(i)) \ (mode) |= TCP_TIMERLIST_100MS_MODE; \ else \ (mode) |= TCP_TIMERLIST_500MS_MODE; \ } while(0) /* Max number of times a stretch ack can be delayed on a connection */ #define TCP_STRETCHACK_DELAY_THRESHOLD 5 /* tcp timer list */ struct tcptimerlist tcp_timer_list; /* List of pcbs in timewait state, protected by tcbinfo's ipi_lock */ struct tcptailq tcp_tw_tailq; static int sysctl_msec_to_ticks SYSCTL_HANDLER_ARGS { #pragma unused(arg1, arg2) int error, s, tt; tt = *(int *)oidp->oid_arg1; s = tt * 1000 / TCP_RETRANSHZ;; error = sysctl_handle_int(oidp, &s, 0, req); if (error || !req->newptr) return (error); tt = s * TCP_RETRANSHZ / 1000; if (tt < 1) return (EINVAL); *(int *)oidp->oid_arg1 = tt; return (0); } int tcp_keepinit; SYSCTL_PROC(_net_inet_tcp, TCPCTL_KEEPINIT, keepinit, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_keepinit, 0, sysctl_msec_to_ticks, "I", ""); int tcp_keepidle; SYSCTL_PROC(_net_inet_tcp, TCPCTL_KEEPIDLE, keepidle, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_keepidle, 0, sysctl_msec_to_ticks, "I", ""); int tcp_keepintvl; SYSCTL_PROC(_net_inet_tcp, TCPCTL_KEEPINTVL, keepintvl, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_keepintvl, 0, sysctl_msec_to_ticks, "I", ""); int tcp_keepcnt; SYSCTL_INT(_net_inet_tcp, OID_AUTO, keepcnt, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_keepcnt, 0, "number of times to repeat keepalive"); int tcp_msl; SYSCTL_PROC(_net_inet_tcp, OID_AUTO, msl, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_msl, 0, sysctl_msec_to_ticks, "I", "Maximum segment lifetime"); /* * Avoid DoS via TCP Robustness in Persist Condition * (see http://www.ietf.org/id/draft-ananth-tcpm-persist-02.txt) * by allowing a system wide maximum persistence timeout value when in * Zero Window Probe mode. * * Expressed in milliseconds to be consistent without timeout related * values, the TCP socket option is in seconds. */ u_int32_t tcp_max_persist_timeout = 0; SYSCTL_PROC(_net_inet_tcp, OID_AUTO, max_persist_timeout, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_max_persist_timeout, 0, sysctl_msec_to_ticks, "I", "Maximum persistence timeout for ZWP"); static int always_keepalive = 0; SYSCTL_INT(_net_inet_tcp, OID_AUTO, always_keepalive, CTLFLAG_RW | CTLFLAG_LOCKED, &always_keepalive , 0, "Assume SO_KEEPALIVE on all TCP connections"); /* * This parameter determines how long the timer list will stay in fast or * quick mode even though all connections are idle. In this state, the * timer will run more frequently anticipating new data. */ int timer_fastmode_idlemax = TCP_FASTMODE_IDLERUN_MAX; SYSCTL_INT(_net_inet_tcp, OID_AUTO, timer_fastmode_idlemax, CTLFLAG_RW | CTLFLAG_LOCKED, &timer_fastmode_idlemax, 0, "Maximum idle generations in fast mode"); /* * See tcp_syn_backoff[] for interval values between SYN retransmits; * the value set below defines the number of retransmits, before we * disable the timestamp and window scaling options during subsequent * SYN retransmits. Setting it to 0 disables the dropping off of those * two options. */ static int tcp_broken_peer_syn_rxmit_thres = 7; SYSCTL_INT(_net_inet_tcp, OID_AUTO, broken_peer_syn_rxmit_thres, CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_broken_peer_syn_rxmit_thres, 0, "Number of retransmitted SYNs before " "TCP disables rfc1323 and rfc1644 during the rest of attempts"); /* A higher threshold on local connections for disabling RFC 1323 options */ static int tcp_broken_peer_syn_rxmit_thres_local = 10; SYSCTL_INT(_net_inet_tcp, OID_AUTO, broken_peer_syn_rexmit_thres_local, CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_broken_peer_syn_rxmit_thres_local, 0, "Number of retransmitted SYNs before disabling RFC 1323 " "options on local connections"); static int tcp_timer_advanced = 0; SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcp_timer_advanced, CTLFLAG_RD | CTLFLAG_LOCKED, &tcp_timer_advanced, 0, "Number of times one of the timers was advanced"); static int tcp_resched_timerlist = 0; SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcp_resched_timerlist, CTLFLAG_RD | CTLFLAG_LOCKED, &tcp_resched_timerlist, 0, "Number of times timer list was rescheduled as part of processing a packet"); int tcp_pmtud_black_hole_detect = 1 ; SYSCTL_INT(_net_inet_tcp, OID_AUTO, pmtud_blackhole_detection, CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_pmtud_black_hole_detect, 0, "Path MTU Discovery Black Hole Detection"); int tcp_pmtud_black_hole_mss = 1200 ; SYSCTL_INT(_net_inet_tcp, OID_AUTO, pmtud_blackhole_mss, CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_pmtud_black_hole_mss, 0, "Path MTU Discovery Black Hole Detection lowered MSS"); /* performed garbage collection of "used" sockets */ static boolean_t tcp_gc_done = FALSE; /* max idle probes */ int tcp_maxpersistidle; /* * TCP delack timer is set to 100 ms. Since the processing of timer list * in fast mode will happen no faster than 100 ms, the delayed ack timer * will fire some where between 100 and 200 ms. */ int tcp_delack = TCP_RETRANSHZ / 10; #if MPTCP /* * MP_JOIN retransmission of 3rd ACK will be every 500 msecs without backoff */ int tcp_jack_rxmt = TCP_RETRANSHZ / 2; #endif /* MPTCP */ static void tcp_remove_timer(struct tcpcb *tp); static void tcp_sched_timerlist(uint32_t offset); static u_int32_t tcp_run_conn_timer(struct tcpcb *tp, u_int16_t *mode); static void tcp_sched_timers(struct tcpcb *tp); static inline void tcp_set_lotimer_index(struct tcpcb *); static void tcp_rexmt_save_state(struct tcpcb *tp); __private_extern__ void tcp_remove_from_time_wait(struct inpcb *inp); __private_extern__ void tcp_report_stats(void); /* * Macro to compare two timers. If there is a reset of the sign bit, * it is safe to assume that the timer has wrapped around. By doing * signed comparision, we take care of wrap around such that the value * with the sign bit reset is actually ahead of the other. */ inline int32_t timer_diff(uint32_t t1, uint32_t toff1, uint32_t t2, uint32_t toff2) { return (int32_t)((t1 + toff1) - (t2 + toff2)); }; static u_int64_t tcp_last_report_time; #define TCP_REPORT_STATS_INTERVAL 345600 /* 4 days, in seconds */ /* Returns true if the timer is on the timer list */ #define TIMER_IS_ON_LIST(tp) ((tp)->t_flags & TF_TIMER_ONLIST) /* Run the TCP timerlist atleast once every hour */ #define TCP_TIMERLIST_MAX_OFFSET (60 * 60 * TCP_RETRANSHZ) static void add_to_time_wait_locked(struct tcpcb *tp, uint32_t delay); static boolean_t tcp_garbage_collect(struct inpcb *, int); /* * Add to tcp timewait list, delay is given in milliseconds. */ static void add_to_time_wait_locked(struct tcpcb *tp, uint32_t delay) { struct inpcbinfo *pcbinfo = &tcbinfo; struct inpcb *inp = tp->t_inpcb; uint32_t timer; /* pcb list should be locked when we get here */ lck_rw_assert(pcbinfo->ipi_lock, LCK_RW_ASSERT_EXCLUSIVE); /* We may get here multiple times, so check */ if (!(inp->inp_flags2 & INP2_TIMEWAIT)) { pcbinfo->ipi_twcount++; inp->inp_flags2 |= INP2_TIMEWAIT; /* Remove from global inp list */ LIST_REMOVE(inp, inp_list); } else { TAILQ_REMOVE(&tcp_tw_tailq, tp, t_twentry); } /* Compute the time at which this socket can be closed */ timer = tcp_now + delay; /* We will use the TCPT_2MSL timer for tracking this delay */ if (TIMER_IS_ON_LIST(tp)) tcp_remove_timer(tp); tp->t_timer[TCPT_2MSL] = timer; TAILQ_INSERT_TAIL(&tcp_tw_tailq, tp, t_twentry); } void add_to_time_wait(struct tcpcb *tp, uint32_t delay) { struct inpcbinfo *pcbinfo = &tcbinfo; if (tp->t_inpcb->inp_socket->so_options & SO_NOWAKEFROMSLEEP) socket_post_kev_msg_closed(tp->t_inpcb->inp_socket); if (!lck_rw_try_lock_exclusive(pcbinfo->ipi_lock)) { tcp_unlock(tp->t_inpcb->inp_socket, 0, 0); lck_rw_lock_exclusive(pcbinfo->ipi_lock); tcp_lock(tp->t_inpcb->inp_socket, 0, 0); } add_to_time_wait_locked(tp, delay); lck_rw_done(pcbinfo->ipi_lock); inpcb_gc_sched(pcbinfo, INPCB_TIMER_LAZY); } /* If this is on time wait queue, remove it. */ void tcp_remove_from_time_wait(struct inpcb *inp) { struct tcpcb *tp = intotcpcb(inp); if (inp->inp_flags2 & INP2_TIMEWAIT) TAILQ_REMOVE(&tcp_tw_tailq, tp, t_twentry); } static boolean_t tcp_garbage_collect(struct inpcb *inp, int istimewait) { boolean_t active = FALSE; struct socket *so; struct tcpcb *tp; so = inp->inp_socket; tp = intotcpcb(inp); /* * Skip if still in use or busy; it would have been more efficient * if we were to test so_usecount against 0, but this isn't possible * due to the current implementation of tcp_dropdropablreq() where * overflow sockets that are eligible for garbage collection have * their usecounts set to 1. */ if (!lck_mtx_try_lock_spin(&inp->inpcb_mtx)) return (TRUE); /* Check again under the lock */ if (so->so_usecount > 1) { if (inp->inp_wantcnt == WNT_STOPUSING) active = TRUE; lck_mtx_unlock(&inp->inpcb_mtx); return (active); } if (istimewait && TSTMP_GEQ(tcp_now, tp->t_timer[TCPT_2MSL]) && tp->t_state != TCPS_CLOSED) { /* Become a regular mutex */ lck_mtx_convert_spin(&inp->inpcb_mtx); tcp_close(tp); } /* * Overflowed socket dropped from the listening queue? Do this * only if we are called to clean up the time wait slots, since * tcp_dropdropablreq() considers a socket to have been fully * dropped after add_to_time_wait() is finished. * Also handle the case of connections getting closed by the peer * while in the queue as seen with rdar://6422317 * */ if (so->so_usecount == 1 && ((istimewait && (so->so_flags & SOF_OVERFLOW)) || ((tp != NULL) && (tp->t_state == TCPS_CLOSED) && (so->so_head != NULL) && ((so->so_state & (SS_INCOMP|SS_CANTSENDMORE|SS_CANTRCVMORE)) == (SS_INCOMP|SS_CANTSENDMORE|SS_CANTRCVMORE))))) { if (inp->inp_state != INPCB_STATE_DEAD) { /* Become a regular mutex */ lck_mtx_convert_spin(&inp->inpcb_mtx); #if INET6 if (SOCK_CHECK_DOM(so, PF_INET6)) in6_pcbdetach(inp); else #endif /* INET6 */ in_pcbdetach(inp); } so->so_usecount--; if (inp->inp_wantcnt == WNT_STOPUSING) active = TRUE; lck_mtx_unlock(&inp->inpcb_mtx); return (active); } else if (inp->inp_wantcnt != WNT_STOPUSING) { lck_mtx_unlock(&inp->inpcb_mtx); return (FALSE); } /* * We get here because the PCB is no longer searchable * (WNT_STOPUSING); detach (if needed) and dispose if it is dead * (usecount is 0). This covers all cases, including overflow * sockets and those that are considered as "embryonic", * i.e. created by sonewconn() in TCP input path, and have * not yet been committed. For the former, we reduce the usecount * to 0 as done by the code above. For the latter, the usecount * would have reduced to 0 as part calling soabort() when the * socket is dropped at the end of tcp_input(). */ if (so->so_usecount == 0) { DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp, struct tcpcb *, tp, int32_t, TCPS_CLOSED); /* Become a regular mutex */ lck_mtx_convert_spin(&inp->inpcb_mtx); /* * If this tp still happens to be on the timer list, * take it out */ if (TIMER_IS_ON_LIST(tp)) { tcp_remove_timer(tp); } if (inp->inp_state != INPCB_STATE_DEAD) { #if INET6 if (SOCK_CHECK_DOM(so, PF_INET6)) in6_pcbdetach(inp); else #endif /* INET6 */ in_pcbdetach(inp); } in_pcbdispose(inp); return (FALSE); } lck_mtx_unlock(&inp->inpcb_mtx); return (TRUE); } /* * TCP garbage collector callback (inpcb_timer_func_t). * * Returns the number of pcbs that will need to be gc-ed soon, * returnining > 0 will keep timer active. */ void tcp_gc(struct inpcbinfo *ipi) { struct inpcb *inp, *nxt; struct tcpcb *tw_tp, *tw_ntp; #if TCPDEBUG int ostate; #endif #if KDEBUG static int tws_checked = 0; #endif KERNEL_DEBUG(DBG_FNC_TCP_SLOW | DBG_FUNC_START, 0, 0, 0, 0, 0); /* * Update tcp_now here as it may get used while * processing the slow timer. */ calculate_tcp_clock(); /* * Garbage collect socket/tcpcb: We need to acquire the list lock * exclusively to do this */ if (lck_rw_try_lock_exclusive(ipi->ipi_lock) == FALSE) { /* don't sweat it this time; cleanup was done last time */ if (tcp_gc_done == TRUE) { tcp_gc_done = FALSE; KERNEL_DEBUG(DBG_FNC_TCP_SLOW | DBG_FUNC_END, tws_checked, cur_tw_slot, 0, 0, 0); /* Lock upgrade failed, give up this round */ atomic_add_32(&ipi->ipi_gc_req.intimer_fast, 1); return; } /* Upgrade failed, lost lock now take it again exclusive */ lck_rw_lock_exclusive(ipi->ipi_lock); } tcp_gc_done = TRUE; LIST_FOREACH_SAFE(inp, &tcb, inp_list, nxt) { if (tcp_garbage_collect(inp, 0)) atomic_add_32(&ipi->ipi_gc_req.intimer_fast, 1); } /* Now cleanup the time wait ones */ TAILQ_FOREACH_SAFE(tw_tp, &tcp_tw_tailq, t_twentry, tw_ntp) { /* * We check the timestamp here without holding the * socket lock for better performance. If there are * any pcbs in time-wait, the timer will get rescheduled. * Hence some error in this check can be tolerated. * * Sometimes a socket on time-wait queue can be closed if * 2MSL timer expired but the application still has a * usecount on it. */ if (tw_tp->t_state == TCPS_CLOSED || TSTMP_GEQ(tcp_now, tw_tp->t_timer[TCPT_2MSL])) { if (tcp_garbage_collect(tw_tp->t_inpcb, 1)) atomic_add_32(&ipi->ipi_gc_req.intimer_lazy, 1); } } /* take into account pcbs that are still in time_wait_slots */ atomic_add_32(&ipi->ipi_gc_req.intimer_lazy, ipi->ipi_twcount); lck_rw_done(ipi->ipi_lock); /* Clean up the socache while we are here */ if (so_cache_timer()) atomic_add_32(&ipi->ipi_gc_req.intimer_lazy, 1); KERNEL_DEBUG(DBG_FNC_TCP_SLOW | DBG_FUNC_END, tws_checked, cur_tw_slot, 0, 0, 0); return; } /* * Cancel all timers for TCP tp. */ void tcp_canceltimers(tp) struct tcpcb *tp; { register int i; tcp_remove_timer(tp); for (i = 0; i < TCPT_NTIMERS; i++) tp->t_timer[i] = 0; tp->tentry.timer_start = tcp_now; tp->tentry.index = TCPT_NONE; } int tcp_syn_backoff[TCP_MAXRXTSHIFT + 1] = { 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 64, 64 }; int tcp_backoff[TCP_MAXRXTSHIFT + 1] = { 1, 2, 4, 8, 16, 32, 64, 64, 64, 64, 64, 64, 64 }; static int tcp_totbackoff = 511; /* sum of tcp_backoff[] */ static void tcp_rexmt_save_state(struct tcpcb *tp) { u_int32_t fsize; if (TSTMP_SUPPORTED(tp)) { /* * Since timestamps are supported on the connection, * we can do recovery as described in rfc 4015. */ fsize = tp->snd_max - tp->snd_una; tp->snd_ssthresh_prev = max(fsize, tp->snd_ssthresh); tp->snd_recover_prev = tp->snd_recover; } else { /* * Timestamp option is not supported on this connection. * Record ssthresh and cwnd so they can * be recovered if this turns out to be a "bad" retransmit. * A retransmit is considered "bad" if an ACK for this * segment is received within RTT/2 interval; the assumption * here is that the ACK was already in flight. See * "On Estimating End-to-End Network Path Properties" by * Allman and Paxson for more details. */ tp->snd_cwnd_prev = tp->snd_cwnd; tp->snd_ssthresh_prev = tp->snd_ssthresh; tp->snd_recover_prev = tp->snd_recover; if (IN_FASTRECOVERY(tp)) tp->t_flags |= TF_WASFRECOVERY; else tp->t_flags &= ~TF_WASFRECOVERY; } tp->t_srtt_prev = (tp->t_srtt >> TCP_RTT_SHIFT) + 2; tp->t_rttvar_prev = (tp->t_rttvar >> TCP_RTTVAR_SHIFT); tp->t_flagsext &= ~(TF_RECOMPUTE_RTT); } /* * Revert to the older segment size if there is an indication that PMTU * blackhole detection was not needed. */ void tcp_pmtud_revert_segment_size(struct tcpcb *tp) { int32_t optlen; VERIFY(tp->t_pmtud_saved_maxopd > 0); tp->t_flags |= TF_PMTUD; tp->t_flags &= ~TF_BLACKHOLE; optlen = tp->t_maxopd - tp->t_maxseg; tp->t_maxopd = tp->t_pmtud_saved_maxopd; tp->t_maxseg = tp->t_maxopd - optlen; /* * Reset the slow-start flight size as it * may depend on the new MSS */ if (CC_ALGO(tp)->cwnd_init != NULL) CC_ALGO(tp)->cwnd_init(tp); tp->t_pmtud_start_ts = 0; tcpstat.tcps_pmtudbh_reverted++; } /* * TCP timer processing. */ struct tcpcb * tcp_timers(tp, timer) register struct tcpcb *tp; int timer; { int32_t rexmt, optlen = 0, idle_time = 0; struct socket *so; struct tcptemp *t_template; #if TCPDEBUG int ostate; #endif #if INET6 int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV4) == 0; #endif /* INET6 */ so = tp->t_inpcb->inp_socket; idle_time = tcp_now - tp->t_rcvtime; switch (timer) { /* * 2 MSL timeout in shutdown went off. If we're closed but * still waiting for peer to close and connection has been idle * too long, or if 2MSL time is up from TIME_WAIT or FIN_WAIT_2, * delete connection control block. * Otherwise, (this case shouldn't happen) check again in a bit * we keep the socket in the main list in that case. */ case TCPT_2MSL: tcp_free_sackholes(tp); if (tp->t_state != TCPS_TIME_WAIT && tp->t_state != TCPS_FIN_WAIT_2 && ((idle_time > 0) && (idle_time < TCP_CONN_MAXIDLE(tp)))) { tp->t_timer[TCPT_2MSL] = OFFSET_FROM_START(tp, (u_int32_t)TCP_CONN_KEEPINTVL(tp)); } else { tp = tcp_close(tp); return(tp); } break; /* * Retransmission timer went off. Message has not * been acked within retransmit interval. Back off * to a longer retransmit interval and retransmit one segment. */ case TCPT_REXMT: /* * Drop a connection in the retransmit timer * 1. If we have retransmitted more than TCP_MAXRXTSHIFT * times * 2. If the time spent in this retransmission episode is * more than the time limit set with TCP_RXT_CONNDROPTIME * socket option * 3. If TCP_RXT_FINDROP socket option was set and * we have already retransmitted the FIN 3 times without * receiving an ack */ if (++tp->t_rxtshift > TCP_MAXRXTSHIFT || (tp->t_rxt_conndroptime > 0 && tp->t_rxtstart > 0 && (tcp_now - tp->t_rxtstart) >= tp->t_rxt_conndroptime) || ((tp->t_flagsext & TF_RXTFINDROP) != 0 && (tp->t_flags & TF_SENTFIN) != 0 && tp->t_rxtshift >= 4)) { if ((tp->t_flagsext & TF_RXTFINDROP) != 0) { tcpstat.tcps_rxtfindrop++; } else { tcpstat.tcps_timeoutdrop++; } tp->t_rxtshift = TCP_MAXRXTSHIFT; postevent(so, 0, EV_TIMEOUT); soevent(so, (SO_FILT_HINT_LOCKED|SO_FILT_HINT_TIMEOUT)); tp = tcp_drop(tp, tp->t_softerror ? tp->t_softerror : ETIMEDOUT); break; } tcpstat.tcps_rexmttimeo++; if (tp->t_rxtshift == 1 && tp->t_state == TCPS_ESTABLISHED) { /* Set the time at which retransmission started. */ tp->t_rxtstart = tcp_now; /* * if this is the first retransmit timeout, save * the state so that we can recover if the timeout * is spurious. */ tcp_rexmt_save_state(tp); } #if MPTCP if ((tp->t_rxtshift >= mptcp_fail_thresh) && (tp->t_state == TCPS_ESTABLISHED) && (tp->t_mpflags & TMPF_MPTCP_TRUE)) { mptcp_act_on_txfail(so); } #endif /* MPTCP */ if (tp->t_adaptive_wtimo > 0 && tp->t_rxtshift > tp->t_adaptive_wtimo && TCPS_HAVEESTABLISHED(tp->t_state)) { /* Send an event to the application */ soevent(so, (SO_FILT_HINT_LOCKED| SO_FILT_HINT_ADAPTIVE_WTIMO)); } /* * If this is a retransmit timeout after PTO, the PTO * was not effective */ if (tp->t_flagsext & TF_SENT_TLPROBE) { tp->t_flagsext &= ~(TF_SENT_TLPROBE); tcpstat.tcps_rto_after_pto++; } if (tp->t_flagsext & TF_DELAY_RECOVERY) { /* * Retransmit timer fired before entering recovery * on a connection with packet re-ordering. This * suggests that the reordering metrics computed * are not accurate. */ tp->t_reorderwin = 0; tp->t_timer[TCPT_DELAYFR] = 0; tp->t_flagsext &= ~(TF_DELAY_RECOVERY); } if (tp->t_state == TCPS_SYN_SENT) { rexmt = TCP_REXMTVAL(tp) * tcp_syn_backoff[tp->t_rxtshift]; tp->t_stat.synrxtshift = tp->t_rxtshift; } else { rexmt = TCP_REXMTVAL(tp) * tcp_backoff[tp->t_rxtshift]; } TCPT_RANGESET(tp->t_rxtcur, rexmt, tp->t_rttmin, TCPTV_REXMTMAX, TCP_ADD_REXMTSLOP(tp)); tp->t_timer[TCPT_REXMT] = OFFSET_FROM_START(tp, tp->t_rxtcur); if (INP_WAIT_FOR_IF_FEEDBACK(tp->t_inpcb)) goto fc_output; tcp_free_sackholes(tp); /* * Check for potential Path MTU Discovery Black Hole */ if (tcp_pmtud_black_hole_detect && !(tp->t_flagsext & TF_NOBLACKHOLE_DETECTION) && (tp->t_state == TCPS_ESTABLISHED)) { if (((tp->t_flags & (TF_PMTUD|TF_MAXSEGSNT)) == (TF_PMTUD|TF_MAXSEGSNT)) && (tp->t_rxtshift == 2)) { /* * Enter Path MTU Black-hole Detection mechanism: * - Disable Path MTU Discovery (IP "DF" bit). * - Reduce MTU to lower value than what we * negotiated with the peer. */ /* Disable Path MTU Discovery for now */ tp->t_flags &= ~TF_PMTUD; /* Record that we may have found a black hole */ tp->t_flags |= TF_BLACKHOLE; optlen = tp->t_maxopd - tp->t_maxseg; /* Keep track of previous MSS */ tp->t_pmtud_saved_maxopd = tp->t_maxopd; tp->t_pmtud_start_ts = tcp_now; if (tp->t_pmtud_start_ts == 0) tp->t_pmtud_start_ts++; /* Reduce the MSS to intermediary value */ if (tp->t_maxopd > tcp_pmtud_black_hole_mss) { tp->t_maxopd = tcp_pmtud_black_hole_mss; } else { tp->t_maxopd = /* use the default MSS */ #if INET6 isipv6 ? tcp_v6mssdflt : #endif /* INET6 */ tcp_mssdflt; } tp->t_maxseg = tp->t_maxopd - optlen; /* * Reset the slow-start flight size * as it may depend on the new MSS */ if (CC_ALGO(tp)->cwnd_init != NULL) CC_ALGO(tp)->cwnd_init(tp); } /* * If further retransmissions are still * unsuccessful with a lowered MTU, maybe this * isn't a Black Hole and we restore the previous * MSS and blackhole detection flags. */ else { if ((tp->t_flags & TF_BLACKHOLE) && (tp->t_rxtshift > 4)) { tcp_pmtud_revert_segment_size(tp); } } } /* * Disable rfc1323 and rfc1644 if we haven't got any * response to our SYN (after we reach the threshold) * to work-around some broken terminal servers (most of * which have hopefully been retired) that have bad VJ * header compression code which trashes TCP segments * containing unknown-to-them TCP options. * Do this only on non-local connections. */ if (tp->t_state == TCPS_SYN_SENT && ((!(tp->t_flags & TF_LOCAL) && tp->t_rxtshift == tcp_broken_peer_syn_rxmit_thres) || ((tp->t_flags & TF_LOCAL) && tp->t_rxtshift == tcp_broken_peer_syn_rxmit_thres_local))) tp->t_flags &= ~(TF_REQ_SCALE|TF_REQ_TSTMP|TF_REQ_CC); /* * If losing, let the lower level know and try for * a better route. Also, if we backed off this far, * our srtt estimate is probably bogus. Clobber it * so we'll take the next rtt measurement as our srtt; * move the current srtt into rttvar to keep the current * retransmit times until then. */ if (tp->t_rxtshift > TCP_MAXRXTSHIFT / 4) { #if INET6 if (isipv6) in6_losing(tp->t_inpcb); else #endif /* INET6 */ in_losing(tp->t_inpcb); tp->t_rttvar += (tp->t_srtt >> TCP_RTT_SHIFT); tp->t_srtt = 0; } tp->snd_nxt = tp->snd_una; /* * Note: We overload snd_recover to function also as the * snd_last variable described in RFC 2582 */ tp->snd_recover = tp->snd_max; /* * Force a segment to be sent. */ tp->t_flags |= TF_ACKNOW; /* If timing a segment in this window, stop the timer */ tp->t_rtttime = 0; if (!IN_FASTRECOVERY(tp) && tp->t_rxtshift == 1) tcpstat.tcps_tailloss_rto++; /* * RFC 5681 says: when a TCP sender detects segment loss * using retransmit timer and the given segment has already * been retransmitted by way of the retransmission timer at * least once, the value of ssthresh is held constant */ if (tp->t_rxtshift == 1 && CC_ALGO(tp)->after_timeout != NULL) CC_ALGO(tp)->after_timeout(tp); EXIT_FASTRECOVERY(tp); /* CWR notifications are to be sent on new data right after * RTOs, Fast Retransmits and ECE notification receipts. */ if ((tp->ecn_flags & TE_ECN_ON) == TE_ECN_ON) { tp->ecn_flags |= TE_SENDCWR; } fc_output: tcp_ccdbg_trace(tp, NULL, TCP_CC_REXMT_TIMEOUT); (void) tcp_output(tp); break; /* * Persistance timer into zero window. * Force a byte to be output, if possible. */ case TCPT_PERSIST: tcpstat.tcps_persisttimeo++; /* * Hack: if the peer is dead/unreachable, we do not * time out if the window is closed. After a full * backoff, drop the connection if the idle time * (no responses to probes) reaches the maximum * backoff that we would use if retransmitting. * * Drop the connection if we reached the maximum allowed time for * Zero Window Probes without a non-zero update from the peer. * See rdar://5805356 */ if ((tp->t_rxtshift == TCP_MAXRXTSHIFT && (idle_time >= tcp_maxpersistidle || idle_time >= TCP_REXMTVAL(tp) * tcp_totbackoff)) || ((tp->t_persist_stop != 0) && TSTMP_LEQ(tp->t_persist_stop, tcp_now))) { tcpstat.tcps_persistdrop++; postevent(so, 0, EV_TIMEOUT); soevent(so, (SO_FILT_HINT_LOCKED|SO_FILT_HINT_TIMEOUT)); tp = tcp_drop(tp, ETIMEDOUT); break; } tcp_setpersist(tp); tp->t_flagsext |= TF_FORCE; (void) tcp_output(tp); tp->t_flagsext &= ~TF_FORCE; break; /* * Keep-alive timer went off; send something * or drop connection if idle for too long. */ case TCPT_KEEP: tcpstat.tcps_keeptimeo++; #if MPTCP /* * Regular TCP connections do not send keepalives after closing * MPTCP must not also, after sending Data FINs. */ struct mptcb *mp_tp = tp->t_mptcb; if ((tp->t_mpflags & TMPF_MPTCP_TRUE) && (tp->t_state > TCPS_ESTABLISHED)) { goto dropit; } else if (mp_tp != NULL) { if ((mptcp_ok_to_keepalive(mp_tp) == 0)) goto dropit; } #endif /* MPTCP */ if (tp->t_state < TCPS_ESTABLISHED) goto dropit; if ((always_keepalive || (tp->t_inpcb->inp_socket->so_options & SO_KEEPALIVE) || (tp->t_flagsext & TF_DETECT_READSTALL)) && (tp->t_state <= TCPS_CLOSING || tp->t_state == TCPS_FIN_WAIT_2)) { if (idle_time >= TCP_CONN_KEEPIDLE(tp) + TCP_CONN_MAXIDLE(tp)) goto dropit; /* * Send a packet designed to force a response * if the peer is up and reachable: * either an ACK if the connection is still alive, * or an RST if the peer has closed the connection * due to timeout or reboot. * Using sequence number tp->snd_una-1 * causes the transmitted zero-length segment * to lie outside the receive window; * by the protocol spec, this requires the * correspondent TCP to respond. */ tcpstat.tcps_keepprobe++; t_template = tcp_maketemplate(tp); if (t_template) { struct inpcb *inp = tp->t_inpcb; struct tcp_respond_args tra; bzero(&tra, sizeof(tra)); tra.nocell = INP_NO_CELLULAR(inp); tra.noexpensive = INP_NO_EXPENSIVE(inp); tra.awdl_unrestricted = INP_AWDL_UNRESTRICTED(inp); if (tp->t_inpcb->inp_flags & INP_BOUND_IF) tra.ifscope = tp->t_inpcb->inp_boundifp->if_index; else tra.ifscope = IFSCOPE_NONE; tcp_respond(tp, t_template->tt_ipgen, &t_template->tt_t, (struct mbuf *)NULL, tp->rcv_nxt, tp->snd_una - 1, 0, &tra); (void) m_free(dtom(t_template)); if (tp->t_flagsext & TF_DETECT_READSTALL) tp->t_rtimo_probes++; } tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp, TCP_CONN_KEEPINTVL(tp)); } else { tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp, TCP_CONN_KEEPIDLE(tp)); } if (tp->t_flagsext & TF_DETECT_READSTALL) { /* * The keep alive packets sent to detect a read * stall did not get a response from the * peer. Generate more keep-alives to confirm this. * If the number of probes sent reaches the limit, * generate an event. */ if (tp->t_rtimo_probes > tp->t_adaptive_rtimo) { /* Generate an event */ soevent(so, (SO_FILT_HINT_LOCKED| SO_FILT_HINT_ADAPTIVE_RTIMO)); tcp_keepalive_reset(tp); } else { tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START( tp, TCP_REXMTVAL(tp)); } } break; case TCPT_DELACK: if (tcp_delack_enabled && (tp->t_flags & TF_DELACK)) { tp->t_flags &= ~TF_DELACK; tp->t_timer[TCPT_DELACK] = 0; tp->t_flags |= TF_ACKNOW; /* * If delayed ack timer fired while stretching * acks, count the number of times the streaming * detection was not correct. If this exceeds a * threshold, disable strech ack on this * connection * * Also, go back to acking every other packet. */ if ((tp->t_flags & TF_STRETCHACK)) { if (tp->t_unacksegs > 1 && tp->t_unacksegs < maxseg_unacked) tp->t_stretchack_delayed++; if (tp->t_stretchack_delayed > TCP_STRETCHACK_DELAY_THRESHOLD) { tp->t_flagsext |= TF_DISABLE_STRETCHACK; /* * Note the time at which stretch * ack was disabled automatically */ tp->rcv_nostrack_ts = tcp_now; tcpstat.tcps_nostretchack++; tp->t_stretchack_delayed = 0; } tcp_reset_stretch_ack(tp); } /* * If we are measuring inter packet arrival jitter * for throttling a connection, this delayed ack * might be the reason for accumulating some * jitter. So let's restart the measurement. */ CLEAR_IAJ_STATE(tp); tcpstat.tcps_delack++; (void) tcp_output(tp); } break; #if MPTCP case TCPT_JACK_RXMT: if ((tp->t_state == TCPS_ESTABLISHED) && (tp->t_mpflags & TMPF_PREESTABLISHED) && (tp->t_mpflags & TMPF_JOINED_FLOW)) { if (++tp->t_mprxtshift > TCP_MAXRXTSHIFT) { tcpstat.tcps_timeoutdrop++; postevent(so, 0, EV_TIMEOUT); soevent(so, (SO_FILT_HINT_LOCKED| SO_FILT_HINT_TIMEOUT)); tp = tcp_drop(tp, tp->t_softerror ? tp->t_softerror : ETIMEDOUT); break; } tcpstat.tcps_join_rxmts++; tp->t_flags |= TF_ACKNOW; /* * No backoff is implemented for simplicity for this * corner case. */ (void) tcp_output(tp); } break; #endif /* MPTCP */ case TCPT_PTO: { tcp_seq old_snd_nxt; int32_t snd_len; boolean_t rescue_rxt = FALSE; tp->t_flagsext &= ~(TF_SENT_TLPROBE); /* * Check if the connection is in the right state to * send a probe */ if (tp->t_state != TCPS_ESTABLISHED || tp->t_rxtshift > 0 || tp->snd_max == tp->snd_una || !SACK_ENABLED(tp) || TAILQ_EMPTY(&tp->snd_holes) || (IN_FASTRECOVERY(tp) && (SEQ_GEQ(tp->snd_fack, tp->snd_recover) || SEQ_GT(tp->snd_nxt, tp->sack_newdata)))) break; tcpstat.tcps_pto++; /* If timing a segment in this window, stop the timer */ tp->t_rtttime = 0; if (IN_FASTRECOVERY(tp)) { /* * Send a probe to detect tail loss in a * recovery window when the connection is in * fast_recovery. */ old_snd_nxt = tp->snd_nxt; rescue_rxt = TRUE; VERIFY(SEQ_GEQ(tp->snd_fack, tp->snd_una)); snd_len = min((tp->snd_recover - tp->snd_fack), tp->t_maxseg); tp->snd_nxt = tp->snd_recover - snd_len; tcpstat.tcps_pto_in_recovery++; tcp_ccdbg_trace(tp, NULL, TCP_CC_TLP_IN_FASTRECOVERY); } else { /* * If there is no new data to send or if the * connection is limited by receive window then * retransmit the last segment, otherwise send * new data. */ snd_len = min(so->so_snd.sb_cc, tp->snd_wnd) - (tp->snd_max - tp->snd_una); if (snd_len > 0) { tp->snd_nxt = tp->snd_max; } else { snd_len = min((tp->snd_max - tp->snd_una), tp->t_maxseg); tp->snd_nxt = tp->snd_max - snd_len; } } /* Note that tail loss probe is being sent */ tp->t_flagsext |= TF_SENT_TLPROBE; tp->t_tlpstart = tcp_now; tp->snd_cwnd += tp->t_maxseg; (void )tcp_output(tp); tp->snd_cwnd -= tp->t_maxseg; tp->t_tlphighrxt = tp->snd_nxt; /* * If a tail loss probe was sent after entering recovery, * restore the old snd_nxt value so that other packets * will get retransmitted correctly. */ if (rescue_rxt) tp->snd_nxt = old_snd_nxt; break; } case TCPT_DELAYFR: tp->t_flagsext &= ~TF_DELAY_RECOVERY; /* * Don't do anything if one of the following is true: * - the connection is already in recovery * - sequence until snd_recover has been acknowledged. * - retransmit timeout has fired */ if (IN_FASTRECOVERY(tp) || SEQ_GEQ(tp->snd_una, tp->snd_recover) || tp->t_rxtshift > 0) break; VERIFY(SACK_ENABLED(tp)); if (CC_ALGO(tp)->pre_fr != NULL) CC_ALGO(tp)->pre_fr(tp); ENTER_FASTRECOVERY(tp); if ((tp->ecn_flags & TE_ECN_ON) == TE_ECN_ON) tp->ecn_flags |= TE_SENDCWR; tp->t_timer[TCPT_REXMT] = 0; tcpstat.tcps_sack_recovery_episode++; tp->sack_newdata = tp->snd_nxt; tp->snd_cwnd = tp->t_maxseg; tcp_ccdbg_trace(tp, NULL, TCP_CC_ENTER_FASTRECOVERY); (void) tcp_output(tp); break; dropit: tcpstat.tcps_keepdrops++; postevent(so, 0, EV_TIMEOUT); soevent(so, (SO_FILT_HINT_LOCKED|SO_FILT_HINT_TIMEOUT)); tp = tcp_drop(tp, ETIMEDOUT); break; } #if TCPDEBUG if (tp->t_inpcb->inp_socket->so_options & SO_DEBUG) tcp_trace(TA_USER, ostate, tp, (void *)0, (struct tcphdr *)0, PRU_SLOWTIMO); #endif return (tp); } /* Remove a timer entry from timer list */ void tcp_remove_timer(struct tcpcb *tp) { struct tcptimerlist *listp = &tcp_timer_list; lck_mtx_assert(&tp->t_inpcb->inpcb_mtx, LCK_MTX_ASSERT_OWNED); if (!(TIMER_IS_ON_LIST(tp))) { return; } lck_mtx_lock(listp->mtx); /* Check if pcb is on timer list again after acquiring the lock */ if (!(TIMER_IS_ON_LIST(tp))) { lck_mtx_unlock(listp->mtx); return; } if (listp->next_te != NULL && listp->next_te == &tp->tentry) listp->next_te = LIST_NEXT(&tp->tentry, le); LIST_REMOVE(&tp->tentry, le); tp->t_flags &= ~(TF_TIMER_ONLIST); listp->entries--; tp->tentry.le.le_next = NULL; tp->tentry.le.le_prev = NULL; lck_mtx_unlock(listp->mtx); } /* * Function to check if the timerlist needs to be rescheduled to run * the timer entry correctly. Basically, this is to check if we can avoid * taking the list lock. */ static boolean_t need_to_resched_timerlist(u_int32_t runtime, u_int16_t mode) { struct tcptimerlist *listp = &tcp_timer_list; int32_t diff; /* * If the list is being processed then the state of the list is * in flux. In this case always acquire the lock and set the state * correctly. */ if (listp->running) return (TRUE); if (!listp->scheduled) return (TRUE); diff = timer_diff(listp->runtime, 0, runtime, 0); if (diff <= 0) { /* The list is going to run before this timer */ return (FALSE); } else { if (mode & TCP_TIMERLIST_10MS_MODE) { if (diff <= TCP_TIMER_10MS_QUANTUM) return (FALSE); } else if (mode & TCP_TIMERLIST_100MS_MODE) { if (diff <= TCP_TIMER_100MS_QUANTUM) return (FALSE); } else { if (diff <= TCP_TIMER_500MS_QUANTUM) return (FALSE); } } return (TRUE); } void tcp_sched_timerlist(uint32_t offset) { uint64_t deadline = 0; struct tcptimerlist *listp = &tcp_timer_list; lck_mtx_assert(listp->mtx, LCK_MTX_ASSERT_OWNED); offset = min(offset, TCP_TIMERLIST_MAX_OFFSET); listp->runtime = tcp_now + offset; if (listp->runtime == 0) { listp->runtime++; offset++; } clock_interval_to_deadline(offset, USEC_PER_SEC, &deadline); thread_call_enter_delayed(listp->call, deadline); listp->scheduled = TRUE; } /* * Function to run the timers for a connection. * * Returns the offset of next timer to be run for this connection which * can be used to reschedule the timerlist. * * te_mode is an out parameter that indicates the modes of active * timers for this connection. */ u_int32_t tcp_run_conn_timer(struct tcpcb *tp, u_int16_t *te_mode) { struct socket *so; u_int16_t i = 0, index = TCPT_NONE, lo_index = TCPT_NONE; u_int32_t timer_val, offset = 0, lo_timer = 0; int32_t diff; boolean_t needtorun[TCPT_NTIMERS]; int count = 0; VERIFY(tp != NULL); bzero(needtorun, sizeof(needtorun)); *te_mode = 0; tcp_lock(tp->t_inpcb->inp_socket, 1, 0); so = tp->t_inpcb->inp_socket; /* Release the want count on inp */ if (in_pcb_checkstate(tp->t_inpcb, WNT_RELEASE, 1) == WNT_STOPUSING) { if (TIMER_IS_ON_LIST(tp)) { tcp_remove_timer(tp); } /* Looks like the TCP connection got closed while we * were waiting for the lock.. Done */ goto done; } /* * Since the timer thread needs to wait for tcp lock, it may race * with another thread that can cancel or reschedule the timer * that is about to run. Check if we need to run anything. */ if ((index = tp->tentry.index) == TCPT_NONE) goto done; timer_val = tp->t_timer[index]; diff = timer_diff(tp->tentry.runtime, 0, tcp_now, 0); if (diff > 0) { if (tp->tentry.index != TCPT_NONE) { offset = diff; *(te_mode) = tp->tentry.mode; } goto done; } tp->t_timer[index] = 0; if (timer_val > 0) { tp = tcp_timers(tp, index); if (tp == NULL) goto done; } /* * Check if there are any other timers that need to be run. * While doing it, adjust the timer values wrt tcp_now. */ tp->tentry.mode = 0; for (i = 0; i < TCPT_NTIMERS; ++i) { if (tp->t_timer[i] != 0) { diff = timer_diff(tp->tentry.timer_start, tp->t_timer[i], tcp_now, 0); if (diff <= 0) { needtorun[i] = TRUE; count++; } else { tp->t_timer[i] = diff; needtorun[i] = FALSE; if (lo_timer == 0 || diff < lo_timer) { lo_timer = diff; lo_index = i; } TCP_SET_TIMER_MODE(tp->tentry.mode, i); } } } tp->tentry.timer_start = tcp_now; tp->tentry.index = lo_index; VERIFY(tp->tentry.index == TCPT_NONE || tp->tentry.mode > 0); if (tp->tentry.index != TCPT_NONE) { tp->tentry.runtime = tp->tentry.timer_start + tp->t_timer[tp->tentry.index]; if (tp->tentry.runtime == 0) tp->tentry.runtime++; } if (count > 0) { /* run any other timers outstanding at this time. */ for (i = 0; i < TCPT_NTIMERS; ++i) { if (needtorun[i]) { tp->t_timer[i] = 0; tp = tcp_timers(tp, i); if (tp == NULL) { offset = 0; *(te_mode) = 0; goto done; } } } tcp_set_lotimer_index(tp); } if (tp->tentry.index < TCPT_NONE) { offset = tp->t_timer[tp->tentry.index]; *(te_mode) = tp->tentry.mode; } done: if (tp != NULL && tp->tentry.index == TCPT_NONE) { tcp_remove_timer(tp); offset = 0; } tcp_unlock(so, 1, 0); return(offset); } void tcp_run_timerlist(void * arg1, void * arg2) { #pragma unused(arg1, arg2) struct tcptimerentry *te, *next_te; struct tcptimerlist *listp = &tcp_timer_list; struct tcpcb *tp; uint32_t next_timer = 0; /* offset of the next timer on the list */ u_int16_t te_mode = 0; /* modes of all active timers in a tcpcb */ u_int16_t list_mode = 0; /* cumulative of modes of all tcpcbs */ uint32_t active_count = 0; calculate_tcp_clock(); lck_mtx_lock(listp->mtx); listp->running = TRUE; LIST_FOREACH_SAFE(te, &listp->lhead, le, next_te) { uint32_t offset = 0; uint32_t runtime = te->runtime; if (te->index < TCPT_NONE && TSTMP_GT(runtime, tcp_now)) { offset = timer_diff(runtime, 0, tcp_now, 0); if (next_timer == 0 || offset < next_timer) { next_timer = offset; } list_mode |= te->mode; continue; } tp = TIMERENTRY_TO_TP(te); /* * Acquire an inp wantcnt on the inpcb so that the socket * won't get detached even if tcp_close is called */ if (in_pcb_checkstate(tp->t_inpcb, WNT_ACQUIRE, 0) == WNT_STOPUSING) { /* * Some how this pcb went into dead state while * on the timer list, just take it off the list. * Since the timer list entry pointers are * protected by the timer list lock, we can * do it here without the socket lock. */ if (TIMER_IS_ON_LIST(tp)) { tp->t_flags &= ~(TF_TIMER_ONLIST); LIST_REMOVE(&tp->tentry, le); listp->entries--; tp->tentry.le.le_next = NULL; tp->tentry.le.le_prev = NULL; } continue; } active_count++; /* * Store the next timerentry pointer before releasing the * list lock. If that entry has to be removed when we * release the lock, this pointer will be updated to the * element after that. */ listp->next_te = next_te; VERIFY_NEXT_LINK(&tp->tentry, le); VERIFY_PREV_LINK(&tp->tentry, le); lck_mtx_unlock(listp->mtx); offset = tcp_run_conn_timer(tp, &te_mode); lck_mtx_lock(listp->mtx); next_te = listp->next_te; listp->next_te = NULL; if (offset > 0 && te_mode != 0) { list_mode |= te_mode; if (next_timer == 0 || offset < next_timer) next_timer = offset; } } if (!LIST_EMPTY(&listp->lhead)) { u_int16_t next_mode = 0; if ((list_mode & TCP_TIMERLIST_10MS_MODE) || (listp->pref_mode & TCP_TIMERLIST_10MS_MODE)) next_mode = TCP_TIMERLIST_10MS_MODE; else if ((list_mode & TCP_TIMERLIST_100MS_MODE) || (listp->pref_mode & TCP_TIMERLIST_100MS_MODE)) next_mode = TCP_TIMERLIST_100MS_MODE; else next_mode = TCP_TIMERLIST_500MS_MODE; if (next_mode != TCP_TIMERLIST_500MS_MODE) { listp->idleruns = 0; } else { /* * the next required mode is slow mode, but if * the last one was a faster mode and we did not * have enough idle runs, repeat the last mode. * * We try to keep the timer list in fast mode for * some idle time in expectation of new data. */ if (listp->mode != next_mode && listp->idleruns < timer_fastmode_idlemax) { listp->idleruns++; next_mode = listp->mode; next_timer = TCP_TIMER_100MS_QUANTUM; } else { listp->idleruns = 0; } } listp->mode = next_mode; if (listp->pref_offset != 0) next_timer = min(listp->pref_offset, next_timer); if (listp->mode == TCP_TIMERLIST_500MS_MODE) next_timer = max(next_timer, TCP_TIMER_500MS_QUANTUM); tcp_sched_timerlist(next_timer); } else { /* * No need to reschedule this timer, but always run * periodically at a much higher granularity. */ tcp_sched_timerlist(TCP_TIMERLIST_MAX_OFFSET); } listp->running = FALSE; listp->pref_mode = 0; listp->pref_offset = 0; lck_mtx_unlock(listp->mtx); } /* * Function to check if the timerlist needs to be reschduled to run this * connection's timers correctly. */ void tcp_sched_timers(struct tcpcb *tp) { struct tcptimerentry *te = &tp->tentry; u_int16_t index = te->index; u_int16_t mode = te->mode; struct tcptimerlist *listp = &tcp_timer_list; int32_t offset = 0; boolean_t list_locked = FALSE; if (tp->t_inpcb->inp_state == INPCB_STATE_DEAD) { /* Just return without adding the dead pcb to the list */ if (TIMER_IS_ON_LIST(tp)) { tcp_remove_timer(tp); } return; } if (index == TCPT_NONE) { /* Nothing to run */ tcp_remove_timer(tp); return; } /* * compute the offset at which the next timer for this connection * has to run. */ offset = timer_diff(te->runtime, 0, tcp_now, 0); if (offset <= 0) { offset = 1; tcp_timer_advanced++; } if (!TIMER_IS_ON_LIST(tp)) { if (!list_locked) { lck_mtx_lock(listp->mtx); list_locked = TRUE; } LIST_INSERT_HEAD(&listp->lhead, te, le); tp->t_flags |= TF_TIMER_ONLIST; listp->entries++; if (listp->entries > listp->maxentries) listp->maxentries = listp->entries; /* if the list is not scheduled, just schedule it */ if (!listp->scheduled) goto schedule; } /* * Timer entry is currently on the list, check if the list needs * to be rescheduled. */ if (need_to_resched_timerlist(te->runtime, mode)) { tcp_resched_timerlist++; if (!list_locked) { lck_mtx_lock(listp->mtx); list_locked = TRUE; } VERIFY_NEXT_LINK(te, le); VERIFY_PREV_LINK(te, le); if (listp->running) { listp->pref_mode |= mode; if (listp->pref_offset == 0 || offset < listp->pref_offset) { listp->pref_offset = offset; } } else { /* * The list could have got rescheduled while * this thread was waiting for the lock */ if (listp->scheduled) { int32_t diff; diff = timer_diff(listp->runtime, 0, tcp_now, offset); if (diff <= 0) goto done; else goto schedule; } else { goto schedule; } } } goto done; schedule: /* * Since a connection with timers is getting scheduled, the timer * list moves from idle to active state and that is why idlegen is * reset */ if (mode & TCP_TIMERLIST_10MS_MODE) { listp->mode = TCP_TIMERLIST_10MS_MODE; listp->idleruns = 0; offset = min(offset, TCP_TIMER_10MS_QUANTUM); } else if (mode & TCP_TIMERLIST_100MS_MODE) { if (listp->mode > TCP_TIMERLIST_100MS_MODE) listp->mode = TCP_TIMERLIST_100MS_MODE; listp->idleruns = 0; offset = min(offset, TCP_TIMER_100MS_QUANTUM); } tcp_sched_timerlist(offset); done: if (list_locked) lck_mtx_unlock(listp->mtx); return; } static inline void tcp_set_lotimer_index(struct tcpcb *tp) { uint16_t i, lo_index = TCPT_NONE, mode = 0; uint32_t lo_timer = 0; for (i = 0; i < TCPT_NTIMERS; ++i) { if (tp->t_timer[i] != 0) { TCP_SET_TIMER_MODE(mode, i); if (lo_timer == 0 || tp->t_timer[i] < lo_timer) { lo_timer = tp->t_timer[i]; lo_index = i; } } } tp->tentry.index = lo_index; tp->tentry.mode = mode; VERIFY(tp->tentry.index == TCPT_NONE || tp->tentry.mode > 0); if (tp->tentry.index != TCPT_NONE) { tp->tentry.runtime = tp->tentry.timer_start + tp->t_timer[tp->tentry.index]; if (tp->tentry.runtime == 0) tp->tentry.runtime++; } } void tcp_check_timer_state(struct tcpcb *tp) { lck_mtx_assert(&tp->t_inpcb->inpcb_mtx, LCK_MTX_ASSERT_OWNED); if (tp->t_inpcb->inp_flags2 & INP2_TIMEWAIT) return; tcp_set_lotimer_index(tp); tcp_sched_timers(tp); return; } __private_extern__ void tcp_report_stats(void) { struct nstat_sysinfo_data data; struct sockaddr_in dst; struct sockaddr_in6 dst6; struct rtentry *rt = NULL; u_int64_t var, uptime; #define stat data.u.tcp_stats if (((uptime = net_uptime()) - tcp_last_report_time) < TCP_REPORT_STATS_INTERVAL) return; tcp_last_report_time = uptime; bzero(&data, sizeof(data)); data.flags = NSTAT_SYSINFO_TCP_STATS; bzero(&dst, sizeof(dst)); dst.sin_len = sizeof(dst); dst.sin_family = AF_INET; /* ipv4 avg rtt */ lck_mtx_lock(rnh_lock); rt = rt_lookup(TRUE, (struct sockaddr *)&dst, NULL, rt_tables[AF_INET], IFSCOPE_NONE); lck_mtx_unlock(rnh_lock); if (rt != NULL) { RT_LOCK(rt); if (rt_primary_default(rt, rt_key(rt)) && rt->rt_stats != NULL) { stat.ipv4_avgrtt = rt->rt_stats->nstat_avg_rtt; } RT_UNLOCK(rt); rtfree(rt); rt = NULL; } /* ipv6 avg rtt */ bzero(&dst6, sizeof(dst6)); dst6.sin6_len = sizeof(dst6); dst6.sin6_family = AF_INET6; lck_mtx_lock(rnh_lock); rt = rt_lookup(TRUE,(struct sockaddr *)&dst6, NULL, rt_tables[AF_INET6], IFSCOPE_NONE); lck_mtx_unlock(rnh_lock); if (rt != NULL) { RT_LOCK(rt); if (rt_primary_default(rt, rt_key(rt)) && rt->rt_stats != NULL) { stat.ipv6_avgrtt = rt->rt_stats->nstat_avg_rtt; } RT_UNLOCK(rt); rtfree(rt); rt = NULL; } /* send packet loss rate, shift by 10 for precision */ if (tcpstat.tcps_sndpack > 0 && tcpstat.tcps_sndrexmitpack > 0) { var = tcpstat.tcps_sndrexmitpack << 10; stat.send_plr = (var * 100) / tcpstat.tcps_sndpack; } /* recv packet loss rate, shift by 10 for precision */ if (tcpstat.tcps_rcvpack > 0 && tcpstat.tcps_recovered_pkts > 0) { var = tcpstat.tcps_recovered_pkts << 10; stat.recv_plr = (var * 100) / tcpstat.tcps_rcvpack; } /* RTO after tail loss, shift by 10 for precision */ if (tcpstat.tcps_sndrexmitpack > 0 && tcpstat.tcps_tailloss_rto > 0) { var = tcpstat.tcps_tailloss_rto << 10; stat.send_tlrto_rate = (var * 100) / tcpstat.tcps_sndrexmitpack; } /* packet reordering */ if (tcpstat.tcps_sndpack > 0 && tcpstat.tcps_reordered_pkts > 0) { var = tcpstat.tcps_reordered_pkts << 10; stat.send_reorder_rate = (var * 100) / tcpstat.tcps_sndpack; } nstat_sysinfo_send_data(&data); #undef stat }