/* * Copyright (c) 2000-2012 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* * File: kern/gzalloc.c * Author: Derek Kumar * * "Guard mode" zone allocator, used to trap use-after-free errors, * overruns, underruns, mismatched allocations/frees, uninitialized * zone element use, timing dependent races etc. * * The allocator is configured by these boot-args: * gzalloc_size=: target all zones with elements of bytes * gzalloc_min=: target zones with elements >= size * gzalloc_max=: target zones with elements <= size * gzalloc_min/max can be specified in conjunction to target a range of * sizes * gzalloc_fc_size=: number of zone elements (effectively page * multiple sized) to retain in the free VA cache. This cache is evicted * (backing pages and VA released) in a least-recently-freed fashion. * Larger free VA caches allow for a longer window of opportunity to trap * delayed use-after-free operations, but use more memory. * -gzalloc_wp: Write protect, rather than unmap, freed allocations * lingering in the free VA cache. Useful to disambiguate between * read-after-frees/read overruns and writes. Also permits direct inspection * of the freed element in the cache via the kernel debugger. As each * element has a "header" (trailer in underflow detection mode), the zone * of origin of the element can be easily determined in this mode. * -gzalloc_uf_mode: Underflow detection mode, where the guard page * adjoining each element is placed *before* the element page rather than * after. The element is also located at the top of the page, rather than * abutting the bottom as with the standard overflow detection mode. * -gzalloc_noconsistency: disable consistency checks that flag mismatched * frees, corruptions of the header/trailer signatures etc. * -nogzalloc_mode: Disables the guard mode allocator. The DEBUG kernel * enables the guard allocator for zones sized 8K-16K (if present) by * default, this option can disable that behaviour. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern boolean_t vm_kernel_ready, kmem_ready; boolean_t gzalloc_mode = FALSE; uint32_t pdzalloc_count, pdzfree_count; #define GZALLOC_MIN_DEFAULT (1024) #define GZDEADZONE ((zone_t) 0xDEAD201E) #define GZALLOC_SIGNATURE (0xABADCAFE) #define GZALLOC_RESERVE_SIZE_DEFAULT (2 * 1024 * 1024) #define GZFC_DEFAULT_SIZE (1024) char gzalloc_fill_pattern = 0x67; /* 'g' */ uint32_t gzalloc_min = ~0U; uint32_t gzalloc_max = 0; uint32_t gzalloc_size = 0; uint64_t gzalloc_allocated, gzalloc_freed, gzalloc_early_alloc, gzalloc_early_free, gzalloc_wasted; boolean_t gzalloc_uf_mode = FALSE, gzalloc_consistency_checks = TRUE; vm_prot_t gzalloc_prot = VM_PROT_NONE; uint32_t gzalloc_guard = KMA_GUARD_LAST; uint32_t gzfc_size = GZFC_DEFAULT_SIZE; vm_map_t gzalloc_map; vm_offset_t gzalloc_map_min, gzalloc_map_max; vm_offset_t gzalloc_reserve; vm_size_t gzalloc_reserve_size; typedef struct gzalloc_header { zone_t gzone; uint32_t gzsize; uint32_t gzsig; } gzhdr_t; #define GZHEADER_SIZE (sizeof(gzhdr_t)) extern zone_t vm_page_zone; void gzalloc_reconfigure(__unused zone_t z) { /* Nothing for now */ } boolean_t gzalloc_enabled(void) { return gzalloc_mode; } void gzalloc_zone_init(zone_t z) { if (gzalloc_mode) { bzero(&z->gz, sizeof(z->gz)); if (gzfc_size && (z->elem_size >= gzalloc_min) && (z->elem_size <= gzalloc_max) && (z->gzalloc_exempt == FALSE)) { vm_size_t gzfcsz = round_page(sizeof(*z->gz.gzfc) * gzfc_size); /* If the VM/kmem system aren't yet configured, carve * out the free element cache structure directly from the * gzalloc_reserve supplied by the pmap layer. */ if (!kmem_ready) { if (gzalloc_reserve_size < gzfcsz) panic("gzalloc reserve exhausted"); z->gz.gzfc = (vm_offset_t *)gzalloc_reserve; gzalloc_reserve += gzfcsz; gzalloc_reserve_size -= gzfcsz; } else { kern_return_t kr; if ((kr = kernel_memory_allocate(kernel_map, (vm_offset_t *)&z->gz.gzfc, gzfcsz, 0, KMA_KOBJECT)) != KERN_SUCCESS) { panic("zinit/gzalloc: kernel_memory_allocate failed (%d) for 0x%lx bytes", kr, (unsigned long) gzfcsz); } } bzero((void *)z->gz.gzfc, gzfcsz); } } } void gzalloc_configure(void) { char temp_buf[16]; if (PE_parse_boot_argn("-gzalloc_mode", temp_buf, sizeof (temp_buf))) { gzalloc_mode = TRUE; gzalloc_min = GZALLOC_MIN_DEFAULT; #if ZONE_DEBUG gzalloc_min += (typeof(gzalloc_min))ZONE_DEBUG_OFFSET; #endif gzalloc_max = ~0U; } if (PE_parse_boot_argn("gzalloc_min", &gzalloc_min, sizeof(gzalloc_min))) { #if ZONE_DEBUG gzalloc_min += (typeof(gzalloc_min))ZONE_DEBUG_OFFSET; #endif gzalloc_mode = TRUE; gzalloc_max = ~0U; } if (PE_parse_boot_argn("gzalloc_max", &gzalloc_max, sizeof(gzalloc_max))) { #if ZONE_DEBUG gzalloc_max += (typeof(gzalloc_min))ZONE_DEBUG_OFFSET; #endif gzalloc_mode = TRUE; if (gzalloc_min == ~0U) gzalloc_min = 0; } if (PE_parse_boot_argn("gzalloc_size", &gzalloc_size, sizeof(gzalloc_size))) { #if ZONE_DEBUG gzalloc_size += (typeof(gzalloc_min))ZONE_DEBUG_OFFSET; #endif gzalloc_min = gzalloc_max = gzalloc_size; gzalloc_mode = TRUE; } (void)PE_parse_boot_argn("gzalloc_fc_size", &gzfc_size, sizeof(gzfc_size)); if (PE_parse_boot_argn("-gzalloc_wp", temp_buf, sizeof (temp_buf))) { gzalloc_prot = VM_PROT_READ; } if (PE_parse_boot_argn("-gzalloc_uf_mode", temp_buf, sizeof (temp_buf))) { gzalloc_uf_mode = TRUE; gzalloc_guard = KMA_GUARD_FIRST; } if (PE_parse_boot_argn("-gzalloc_noconsistency", temp_buf, sizeof (temp_buf))) { gzalloc_consistency_checks = FALSE; } #if DEBUG if (gzalloc_mode == FALSE) { gzalloc_min = 8192; gzalloc_max = 16384; gzalloc_prot = VM_PROT_READ; gzalloc_mode = TRUE; } #endif if (PE_parse_boot_argn("-nogzalloc_mode", temp_buf, sizeof (temp_buf))) gzalloc_mode = FALSE; if (gzalloc_mode) { gzalloc_reserve_size = GZALLOC_RESERVE_SIZE_DEFAULT; gzalloc_reserve = (vm_offset_t) pmap_steal_memory(gzalloc_reserve_size); } } void gzalloc_init(vm_size_t max_zonemap_size) { kern_return_t retval; if (gzalloc_mode) { retval = kmem_suballoc(kernel_map, &gzalloc_map_min, (max_zonemap_size << 2), FALSE, VM_FLAGS_ANYWHERE | VM_FLAGS_PERMANENT, &gzalloc_map); if (retval != KERN_SUCCESS) panic("zone_init: kmem_suballoc(gzalloc) failed"); gzalloc_map_max = gzalloc_map_min + (max_zonemap_size << 2); } } vm_offset_t gzalloc_alloc(zone_t zone, boolean_t canblock) { vm_offset_t addr = 0; if (__improbable(gzalloc_mode && (((zone->elem_size >= gzalloc_min) && (zone->elem_size <= gzalloc_max))) && (zone->gzalloc_exempt == 0))) { if (get_preemption_level() != 0) { if (canblock == TRUE) { pdzalloc_count++; } else return 0; } vm_offset_t rounded_size = round_page(zone->elem_size + GZHEADER_SIZE); vm_offset_t residue = rounded_size - zone->elem_size; vm_offset_t gzaddr = 0; gzhdr_t *gzh; if (!kmem_ready || (vm_page_zone == ZONE_NULL)) { /* Early allocations are supplied directly from the * reserve. */ if (gzalloc_reserve_size < rounded_size) panic("gzalloc reserve exhausted"); gzaddr = gzalloc_reserve; /* No guard page for these early allocations, just * waste an additional page. */ gzalloc_reserve += rounded_size + PAGE_SIZE; gzalloc_reserve_size -= rounded_size + PAGE_SIZE; OSAddAtomic64((SInt32) (rounded_size), &gzalloc_early_alloc); } else { kern_return_t kr = kernel_memory_allocate(gzalloc_map, &gzaddr, rounded_size + (1*PAGE_SIZE), 0, KMA_KOBJECT | gzalloc_guard); if (kr != KERN_SUCCESS) panic("gzalloc: kernel_memory_allocate for size 0x%llx failed with %d", (uint64_t)rounded_size, kr); } if (gzalloc_uf_mode) { gzaddr += PAGE_SIZE; /* The "header" becomes a "footer" in underflow * mode. */ gzh = (gzhdr_t *) (gzaddr + zone->elem_size); addr = gzaddr; } else { gzh = (gzhdr_t *) (gzaddr + residue - GZHEADER_SIZE); addr = (gzaddr + residue); } /* Fill with a pattern on allocation to trap uninitialized * data use. Since the element size may be "rounded up" * by higher layers such as the kalloc layer, this may * also identify overruns between the originally requested * size and the rounded size via visual inspection. * TBD: plumb through the originally requested size, * prior to rounding by kalloc/IOMalloc etc. * We also add a signature and the zone of origin in a header * prefixed to the allocation. */ memset((void *)gzaddr, gzalloc_fill_pattern, rounded_size); gzh->gzone = (kmem_ready && vm_page_zone) ? zone : GZDEADZONE; gzh->gzsize = (uint32_t) zone->elem_size; gzh->gzsig = GZALLOC_SIGNATURE; lock_zone(zone); zone->count++; zone->sum_count++; zone->cur_size += rounded_size; unlock_zone(zone); OSAddAtomic64((SInt32) rounded_size, &gzalloc_allocated); OSAddAtomic64((SInt32) (rounded_size - zone->elem_size), &gzalloc_wasted); } return addr; } boolean_t gzalloc_free(zone_t zone, void *addr) { boolean_t gzfreed = FALSE; kern_return_t kr; if (__improbable(gzalloc_mode && (((zone->elem_size >= gzalloc_min) && (zone->elem_size <= gzalloc_max))) && (zone->gzalloc_exempt == 0))) { gzhdr_t *gzh; vm_offset_t rounded_size = round_page(zone->elem_size + GZHEADER_SIZE); vm_offset_t residue = rounded_size - zone->elem_size; vm_offset_t saddr; vm_offset_t free_addr = 0; if (gzalloc_uf_mode) { gzh = (gzhdr_t *)((vm_offset_t)addr + zone->elem_size); saddr = (vm_offset_t) addr - PAGE_SIZE; } else { gzh = (gzhdr_t *)((vm_offset_t)addr - GZHEADER_SIZE); saddr = ((vm_offset_t)addr) - residue; } assert((saddr & PAGE_MASK) == 0); if (gzalloc_consistency_checks) { if (gzh->gzsig != GZALLOC_SIGNATURE) { panic("GZALLOC signature mismatch for element %p, expected 0x%x, found 0x%x", addr, GZALLOC_SIGNATURE, gzh->gzsig); } if (gzh->gzone != zone && (gzh->gzone != GZDEADZONE)) panic("%s: Mismatched zone or under/overflow, current zone: %p, recorded zone: %p, address: %p", __FUNCTION__, zone, gzh->gzone, (void *)addr); /* Partially redundant given the zone check, but may flag header corruption */ if (gzh->gzsize != zone->elem_size) { panic("Mismatched zfree or under/overflow for zone %p, recorded size: 0x%x, element size: 0x%x, address: %p\n", zone, gzh->gzsize, (uint32_t) zone->elem_size, (void *)addr); } } if (!kmem_ready || gzh->gzone == GZDEADZONE) { /* For now, just leak frees of early allocations * performed before kmem is fully configured. * They don't seem to get freed currently; * consider ml_static_mfree in the future. */ OSAddAtomic64((SInt32) (rounded_size), &gzalloc_early_free); return TRUE; } if (get_preemption_level() != 0) { pdzfree_count++; } if (gzfc_size) { /* Either write protect or unmap the newly freed * allocation */ kr = vm_map_protect( gzalloc_map, saddr, saddr + rounded_size + (1 * PAGE_SIZE), gzalloc_prot, FALSE); if (kr != KERN_SUCCESS) panic("%s: vm_map_protect: %p, 0x%x", __FUNCTION__, (void *)saddr, kr); } else { free_addr = saddr; } lock_zone(zone); /* Insert newly freed element into the protected free element * cache, and rotate out the LRU element. */ if (gzfc_size) { if (zone->gz.gzfc_index >= gzfc_size) { zone->gz.gzfc_index = 0; } free_addr = zone->gz.gzfc[zone->gz.gzfc_index]; zone->gz.gzfc[zone->gz.gzfc_index++] = saddr; } if (free_addr) { zone->count--; zone->cur_size -= rounded_size; } unlock_zone(zone); if (free_addr) { kr = vm_map_remove( gzalloc_map, free_addr, free_addr + rounded_size + (1 * PAGE_SIZE), VM_MAP_REMOVE_KUNWIRE); if (kr != KERN_SUCCESS) panic("gzfree: vm_map_remove: %p, 0x%x", (void *)free_addr, kr); OSAddAtomic64((SInt32)rounded_size, &gzalloc_freed); OSAddAtomic64(-((SInt32) (rounded_size - zone->elem_size)), &gzalloc_wasted); } gzfreed = TRUE; } return gzfreed; }