/* * Copyright (c) 2000-2012 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* * @OSF_COPYRIGHT@ */ /* * Mach Operating System * Copyright (c) 1991,1990 Carnegie Mellon University * All Rights Reserved. * * Permission to use, copy, modify and distribute this software and its * documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie Mellon * the rights to redistribute these changes. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* LAPIC_PMC_SWI_VECTOR */ #if CONFIG_COUNTERS #include #endif /* CONFIG_COUNTERS */ #if KPC #include #endif #if KPERF #include #endif /* * Maps state flavor to number of words in the state: */ unsigned int _MachineStateCount[] = { /* FLAVOR_LIST */ 0, x86_THREAD_STATE32_COUNT, x86_FLOAT_STATE32_COUNT, x86_EXCEPTION_STATE32_COUNT, x86_THREAD_STATE64_COUNT, x86_FLOAT_STATE64_COUNT, x86_EXCEPTION_STATE64_COUNT, x86_THREAD_STATE_COUNT, x86_FLOAT_STATE_COUNT, x86_EXCEPTION_STATE_COUNT, 0, x86_SAVED_STATE32_COUNT, x86_SAVED_STATE64_COUNT, x86_DEBUG_STATE32_COUNT, x86_DEBUG_STATE64_COUNT, x86_DEBUG_STATE_COUNT }; zone_t iss_zone; /* zone for saved_state area */ zone_t ids_zone; /* zone for debug_state area */ /* Forward */ extern void Thread_continue(void); extern void Load_context( thread_t thread); static void get_exception_state32(thread_t thread, x86_exception_state32_t *es); static void get_exception_state64(thread_t thread, x86_exception_state64_t *es); static void get_thread_state32(thread_t thread, x86_thread_state32_t *ts); static void get_thread_state64(thread_t thread, x86_thread_state64_t *ts); static int set_thread_state32(thread_t thread, x86_thread_state32_t *ts); static int set_thread_state64(thread_t thread, x86_thread_state64_t *ts); #if CONFIG_COUNTERS static inline void machine_pmc_cswitch(thread_t /* old */, thread_t /* new */); static inline void pmc_swi(thread_t /* old */, thread_t /*new */); static inline void pmc_swi(thread_t old, thread_t new) { current_cpu_datap()->csw_old_thread = old; current_cpu_datap()->csw_new_thread = new; pal_pmc_swi(); } static inline void machine_pmc_cswitch(thread_t old, thread_t new) { if (pmc_thread_eligible(old) || pmc_thread_eligible(new)) { pmc_swi(old, new); } } void ml_get_csw_threads(thread_t *old, thread_t *new) { *old = current_cpu_datap()->csw_old_thread; *new = current_cpu_datap()->csw_new_thread; } #endif /* CONFIG_COUNTERS */ #if KPC static inline void ml_kpc_cswitch(thread_t old, thread_t new) { if(!kpc_threads_counting) return; /* call the kpc function */ kpc_switch_context( old, new ); } #endif #if KPERF static inline void ml_kperf_cswitch(thread_t old, thread_t new) { if(!kperf_cswitch_hook) return; /* call the kpc function */ kperf_switch_context( old, new ); } #endif /* * Don't let an illegal value for dr7 get set. Specifically, * check for undefined settings. Setting these bit patterns * result in undefined behaviour and can lead to an unexpected * TRCTRAP. */ static boolean_t dr7_is_valid(uint32_t *dr7) { int i; uint32_t mask1, mask2; /* * If the DE bit is set in CR4, R/W0-3 can be pattern * "10B" to indicate i/o reads and write */ if (!(get_cr4() & CR4_DE)) for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4; i++, mask1 <<= 4, mask2 <<= 4) if ((*dr7 & mask1) == mask2) return (FALSE); /* * if we are doing an instruction execution break (indicated * by r/w[x] being "00B"), then the len[x] must also be set * to "00B" */ for (i = 0; i < 4; i++) if (((((*dr7 >> (16 + i*4))) & 0x3) == 0) && ((((*dr7 >> (18 + i*4))) & 0x3) != 0)) return (FALSE); /* * Intel docs have these bits fixed. */ *dr7 |= 0x1 << 10; /* set bit 10 to 1 */ *dr7 &= ~(0x1 << 11); /* set bit 11 to 0 */ *dr7 &= ~(0x1 << 12); /* set bit 12 to 0 */ *dr7 &= ~(0x1 << 14); /* set bit 14 to 0 */ *dr7 &= ~(0x1 << 15); /* set bit 15 to 0 */ /* * We don't allow anything to set the global breakpoints. */ if (*dr7 & 0x2) return (FALSE); if (*dr7 & (0x2<<2)) return (FALSE); if (*dr7 & (0x2<<4)) return (FALSE); if (*dr7 & (0x2<<6)) return (FALSE); return (TRUE); } static inline void set_live_debug_state32(cpu_data_t *cdp, x86_debug_state32_t *ds) { __asm__ volatile ("movl %0,%%db0" : :"r" (ds->dr0)); __asm__ volatile ("movl %0,%%db1" : :"r" (ds->dr1)); __asm__ volatile ("movl %0,%%db2" : :"r" (ds->dr2)); __asm__ volatile ("movl %0,%%db3" : :"r" (ds->dr3)); cdp->cpu_dr7 = ds->dr7; } extern void set_64bit_debug_regs(x86_debug_state64_t *ds); static inline void set_live_debug_state64(cpu_data_t *cdp, x86_debug_state64_t *ds) { /* * We need to enter 64-bit mode in order to set the full * width of these registers */ set_64bit_debug_regs(ds); cdp->cpu_dr7 = ds->dr7; } boolean_t debug_state_is_valid32(x86_debug_state32_t *ds) { if (!dr7_is_valid(&ds->dr7)) return FALSE; return TRUE; } boolean_t debug_state_is_valid64(x86_debug_state64_t *ds) { if (!dr7_is_valid((uint32_t *)&ds->dr7)) return FALSE; /* * Don't allow the user to set debug addresses above their max * value */ if (ds->dr7 & 0x1) if (ds->dr0 >= VM_MAX_PAGE_ADDRESS) return FALSE; if (ds->dr7 & (0x1<<2)) if (ds->dr1 >= VM_MAX_PAGE_ADDRESS) return FALSE; if (ds->dr7 & (0x1<<4)) if (ds->dr2 >= VM_MAX_PAGE_ADDRESS) return FALSE; if (ds->dr7 & (0x1<<6)) if (ds->dr3 >= VM_MAX_PAGE_ADDRESS) return FALSE; return TRUE; } static kern_return_t set_debug_state32(thread_t thread, x86_debug_state32_t *ds) { x86_debug_state32_t *ids; pcb_t pcb; pcb = THREAD_TO_PCB(thread); ids = pcb->ids; if (debug_state_is_valid32(ds) != TRUE) { return KERN_INVALID_ARGUMENT; } if (ids == NULL) { ids = zalloc(ids_zone); bzero(ids, sizeof *ids); simple_lock(&pcb->lock); /* make sure it wasn't already alloc()'d elsewhere */ if (pcb->ids == NULL) { pcb->ids = ids; simple_unlock(&pcb->lock); } else { simple_unlock(&pcb->lock); zfree(ids_zone, ids); } } copy_debug_state32(ds, ids, FALSE); return (KERN_SUCCESS); } static kern_return_t set_debug_state64(thread_t thread, x86_debug_state64_t *ds) { x86_debug_state64_t *ids; pcb_t pcb; pcb = THREAD_TO_PCB(thread); ids = pcb->ids; if (debug_state_is_valid64(ds) != TRUE) { return KERN_INVALID_ARGUMENT; } if (ids == NULL) { ids = zalloc(ids_zone); bzero(ids, sizeof *ids); simple_lock(&pcb->lock); /* make sure it wasn't already alloc()'d elsewhere */ if (pcb->ids == NULL) { pcb->ids = ids; simple_unlock(&pcb->lock); } else { simple_unlock(&pcb->lock); zfree(ids_zone, ids); } } copy_debug_state64(ds, ids, FALSE); return (KERN_SUCCESS); } static void get_debug_state32(thread_t thread, x86_debug_state32_t *ds) { x86_debug_state32_t *saved_state; saved_state = thread->machine.ids; if (saved_state) { copy_debug_state32(saved_state, ds, TRUE); } else bzero(ds, sizeof *ds); } static void get_debug_state64(thread_t thread, x86_debug_state64_t *ds) { x86_debug_state64_t *saved_state; saved_state = (x86_debug_state64_t *)thread->machine.ids; if (saved_state) { copy_debug_state64(saved_state, ds, TRUE); } else bzero(ds, sizeof *ds); } /* * consider_machine_collect: * * Try to collect machine-dependent pages */ void consider_machine_collect(void) { } void consider_machine_adjust(void) { } /* * Switch to the first thread on a CPU. */ void machine_load_context( thread_t new) { #if CONFIG_COUNTERS machine_pmc_cswitch(NULL, new); #endif new->machine.specFlags |= OnProc; act_machine_switch_pcb(NULL, new); Load_context(new); } /* * Switch to a new thread. * Save the old thread`s kernel state or continuation, * and return it. */ thread_t machine_switch_context( thread_t old, thread_continue_t continuation, thread_t new) { #if MACH_RT assert(current_cpu_datap()->cpu_active_stack == old->kernel_stack); #endif #if CONFIG_COUNTERS machine_pmc_cswitch(old, new); #endif #if KPC ml_kpc_cswitch(old, new); #endif #if KPERF ml_kperf_cswitch(old, new); #endif /* * Save FP registers if in use. */ fpu_save_context(old); old->machine.specFlags &= ~OnProc; new->machine.specFlags |= OnProc; /* * Monitor the stack depth and report new max, * not worrying about races. */ vm_offset_t depth = current_stack_depth(); if (depth > kernel_stack_depth_max) { kernel_stack_depth_max = depth; KERNEL_DEBUG_CONSTANT( MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_DEPTH), (long) depth, 0, 0, 0, 0); } /* * Switch address maps if need be, even if not switching tasks. * (A server activation may be "borrowing" a client map.) */ PMAP_SWITCH_CONTEXT(old, new, cpu_number()); /* * Load the rest of the user state for the new thread */ act_machine_switch_pcb(old, new); return(Switch_context(old, continuation, new)); } thread_t machine_processor_shutdown( thread_t thread, void (*doshutdown)(processor_t), processor_t processor) { #if CONFIG_VMX vmx_suspend(); #endif fpu_save_context(thread); PMAP_SWITCH_CONTEXT(thread, processor->idle_thread, cpu_number()); return(Shutdown_context(thread, doshutdown, processor)); } /* * This is where registers that are not normally specified by the mach-o * file on an execve would be nullified, perhaps to avoid a covert channel. */ kern_return_t machine_thread_state_initialize( thread_t thread) { /* * If there's an fpu save area, free it. * The initialized state will then be lazily faulted-in, if required. * And if we're target, re-arm the no-fpu trap. */ if (thread->machine.ifps) { (void) fpu_set_fxstate(thread, NULL, x86_FLOAT_STATE64); if (thread == current_thread()) clear_fpu(); } if (thread->machine.ids) { zfree(ids_zone, thread->machine.ids); thread->machine.ids = NULL; } return KERN_SUCCESS; } uint32_t get_eflags_exportmask(void) { return EFL_USER_SET; } /* * x86_SAVED_STATE32 - internal save/restore general register state on 32/64 bit processors * for 32bit tasks only * x86_SAVED_STATE64 - internal save/restore general register state on 64 bit processors * for 64bit tasks only * x86_THREAD_STATE32 - external set/get general register state on 32/64 bit processors * for 32bit tasks only * x86_THREAD_STATE64 - external set/get general register state on 64 bit processors * for 64bit tasks only * x86_SAVED_STATE - external set/get general register state on 32/64 bit processors * for either 32bit or 64bit tasks * x86_FLOAT_STATE32 - internal/external save/restore float and xmm state on 32/64 bit processors * for 32bit tasks only * x86_FLOAT_STATE64 - internal/external save/restore float and xmm state on 64 bit processors * for 64bit tasks only * x86_FLOAT_STATE - external save/restore float and xmm state on 32/64 bit processors * for either 32bit or 64bit tasks * x86_EXCEPTION_STATE32 - external get exception state on 32/64 bit processors * for 32bit tasks only * x86_EXCEPTION_STATE64 - external get exception state on 64 bit processors * for 64bit tasks only * x86_EXCEPTION_STATE - external get exception state on 323/64 bit processors * for either 32bit or 64bit tasks */ static void get_exception_state64(thread_t thread, x86_exception_state64_t *es) { x86_saved_state64_t *saved_state; saved_state = USER_REGS64(thread); es->trapno = saved_state->isf.trapno; es->cpu = saved_state->isf.cpu; es->err = (typeof(es->err))saved_state->isf.err; es->faultvaddr = saved_state->cr2; } static void get_exception_state32(thread_t thread, x86_exception_state32_t *es) { x86_saved_state32_t *saved_state; saved_state = USER_REGS32(thread); es->trapno = saved_state->trapno; es->cpu = saved_state->cpu; es->err = saved_state->err; es->faultvaddr = saved_state->cr2; } static int set_thread_state32(thread_t thread, x86_thread_state32_t *ts) { x86_saved_state32_t *saved_state; pal_register_cache_state(thread, DIRTY); saved_state = USER_REGS32(thread); /* * Scrub segment selector values: */ ts->cs = USER_CS; /* * On a 64 bit kernel, we always override the data segments, * as the actual selector numbers have changed. This also * means that we don't support setting the data segments * manually any more. */ ts->ss = USER_DS; ts->ds = USER_DS; ts->es = USER_DS; /* Check segment selectors are safe */ if (!valid_user_segment_selectors(ts->cs, ts->ss, ts->ds, ts->es, ts->fs, ts->gs)) return(KERN_INVALID_ARGUMENT); saved_state->eax = ts->eax; saved_state->ebx = ts->ebx; saved_state->ecx = ts->ecx; saved_state->edx = ts->edx; saved_state->edi = ts->edi; saved_state->esi = ts->esi; saved_state->ebp = ts->ebp; saved_state->uesp = ts->esp; saved_state->efl = (ts->eflags & ~EFL_USER_CLEAR) | EFL_USER_SET; saved_state->eip = ts->eip; saved_state->cs = ts->cs; saved_state->ss = ts->ss; saved_state->ds = ts->ds; saved_state->es = ts->es; saved_state->fs = ts->fs; saved_state->gs = ts->gs; /* * If the trace trap bit is being set, * ensure that the user returns via iret * - which is signaled thusly: */ if ((saved_state->efl & EFL_TF) && saved_state->cs == SYSENTER_CS) saved_state->cs = SYSENTER_TF_CS; return(KERN_SUCCESS); } static int set_thread_state64(thread_t thread, x86_thread_state64_t *ts) { x86_saved_state64_t *saved_state; pal_register_cache_state(thread, DIRTY); saved_state = USER_REGS64(thread); if (!IS_USERADDR64_CANONICAL(ts->rsp) || !IS_USERADDR64_CANONICAL(ts->rip)) return(KERN_INVALID_ARGUMENT); saved_state->r8 = ts->r8; saved_state->r9 = ts->r9; saved_state->r10 = ts->r10; saved_state->r11 = ts->r11; saved_state->r12 = ts->r12; saved_state->r13 = ts->r13; saved_state->r14 = ts->r14; saved_state->r15 = ts->r15; saved_state->rax = ts->rax; saved_state->rbx = ts->rbx; saved_state->rcx = ts->rcx; saved_state->rdx = ts->rdx; saved_state->rdi = ts->rdi; saved_state->rsi = ts->rsi; saved_state->rbp = ts->rbp; saved_state->isf.rsp = ts->rsp; saved_state->isf.rflags = (ts->rflags & ~EFL_USER_CLEAR) | EFL_USER_SET; saved_state->isf.rip = ts->rip; saved_state->isf.cs = USER64_CS; saved_state->fs = (uint32_t)ts->fs; saved_state->gs = (uint32_t)ts->gs; return(KERN_SUCCESS); } static void get_thread_state32(thread_t thread, x86_thread_state32_t *ts) { x86_saved_state32_t *saved_state; pal_register_cache_state(thread, VALID); saved_state = USER_REGS32(thread); ts->eax = saved_state->eax; ts->ebx = saved_state->ebx; ts->ecx = saved_state->ecx; ts->edx = saved_state->edx; ts->edi = saved_state->edi; ts->esi = saved_state->esi; ts->ebp = saved_state->ebp; ts->esp = saved_state->uesp; ts->eflags = saved_state->efl; ts->eip = saved_state->eip; ts->cs = saved_state->cs; ts->ss = saved_state->ss; ts->ds = saved_state->ds; ts->es = saved_state->es; ts->fs = saved_state->fs; ts->gs = saved_state->gs; } static void get_thread_state64(thread_t thread, x86_thread_state64_t *ts) { x86_saved_state64_t *saved_state; pal_register_cache_state(thread, VALID); saved_state = USER_REGS64(thread); ts->r8 = saved_state->r8; ts->r9 = saved_state->r9; ts->r10 = saved_state->r10; ts->r11 = saved_state->r11; ts->r12 = saved_state->r12; ts->r13 = saved_state->r13; ts->r14 = saved_state->r14; ts->r15 = saved_state->r15; ts->rax = saved_state->rax; ts->rbx = saved_state->rbx; ts->rcx = saved_state->rcx; ts->rdx = saved_state->rdx; ts->rdi = saved_state->rdi; ts->rsi = saved_state->rsi; ts->rbp = saved_state->rbp; ts->rsp = saved_state->isf.rsp; ts->rflags = saved_state->isf.rflags; ts->rip = saved_state->isf.rip; ts->cs = saved_state->isf.cs; ts->fs = saved_state->fs; ts->gs = saved_state->gs; } /* * act_machine_set_state: * * Set the status of the specified thread. */ kern_return_t machine_thread_set_state( thread_t thr_act, thread_flavor_t flavor, thread_state_t tstate, mach_msg_type_number_t count) { switch (flavor) { case x86_SAVED_STATE32: { x86_saved_state32_t *state; x86_saved_state32_t *saved_state; if (count < x86_SAVED_STATE32_COUNT) return(KERN_INVALID_ARGUMENT); if (thread_is_64bit(thr_act)) return(KERN_INVALID_ARGUMENT); state = (x86_saved_state32_t *) tstate; /* Check segment selectors are safe */ if (!valid_user_segment_selectors(state->cs, state->ss, state->ds, state->es, state->fs, state->gs)) return KERN_INVALID_ARGUMENT; pal_register_cache_state(thr_act, DIRTY); saved_state = USER_REGS32(thr_act); /* * General registers */ saved_state->edi = state->edi; saved_state->esi = state->esi; saved_state->ebp = state->ebp; saved_state->uesp = state->uesp; saved_state->ebx = state->ebx; saved_state->edx = state->edx; saved_state->ecx = state->ecx; saved_state->eax = state->eax; saved_state->eip = state->eip; saved_state->efl = (state->efl & ~EFL_USER_CLEAR) | EFL_USER_SET; /* * If the trace trap bit is being set, * ensure that the user returns via iret * - which is signaled thusly: */ if ((saved_state->efl & EFL_TF) && state->cs == SYSENTER_CS) state->cs = SYSENTER_TF_CS; /* * User setting segment registers. * Code and stack selectors have already been * checked. Others will be reset by 'iret' * if they are not valid. */ saved_state->cs = state->cs; saved_state->ss = state->ss; saved_state->ds = state->ds; saved_state->es = state->es; saved_state->fs = state->fs; saved_state->gs = state->gs; break; } case x86_SAVED_STATE64: { x86_saved_state64_t *state; x86_saved_state64_t *saved_state; if (count < x86_SAVED_STATE64_COUNT) return(KERN_INVALID_ARGUMENT); if (!thread_is_64bit(thr_act)) return(KERN_INVALID_ARGUMENT); state = (x86_saved_state64_t *) tstate; /* Verify that the supplied code segment selector is * valid. In 64-bit mode, the FS and GS segment overrides * use the FS.base and GS.base MSRs to calculate * base addresses, and the trampolines don't directly * restore the segment registers--hence they are no * longer relevant for validation. */ if (!valid_user_code_selector(state->isf.cs)) return KERN_INVALID_ARGUMENT; /* Check pc and stack are canonical addresses */ if (!IS_USERADDR64_CANONICAL(state->isf.rsp) || !IS_USERADDR64_CANONICAL(state->isf.rip)) return KERN_INVALID_ARGUMENT; pal_register_cache_state(thr_act, DIRTY); saved_state = USER_REGS64(thr_act); /* * General registers */ saved_state->r8 = state->r8; saved_state->r9 = state->r9; saved_state->r10 = state->r10; saved_state->r11 = state->r11; saved_state->r12 = state->r12; saved_state->r13 = state->r13; saved_state->r14 = state->r14; saved_state->r15 = state->r15; saved_state->rdi = state->rdi; saved_state->rsi = state->rsi; saved_state->rbp = state->rbp; saved_state->rbx = state->rbx; saved_state->rdx = state->rdx; saved_state->rcx = state->rcx; saved_state->rax = state->rax; saved_state->isf.rsp = state->isf.rsp; saved_state->isf.rip = state->isf.rip; saved_state->isf.rflags = (state->isf.rflags & ~EFL_USER_CLEAR) | EFL_USER_SET; /* * User setting segment registers. * Code and stack selectors have already been * checked. Others will be reset by 'sys' * if they are not valid. */ saved_state->isf.cs = state->isf.cs; saved_state->isf.ss = state->isf.ss; saved_state->fs = state->fs; saved_state->gs = state->gs; break; } case x86_FLOAT_STATE32: { if (count != x86_FLOAT_STATE32_COUNT) return(KERN_INVALID_ARGUMENT); if (thread_is_64bit(thr_act)) return(KERN_INVALID_ARGUMENT); return fpu_set_fxstate(thr_act, tstate, flavor); } case x86_FLOAT_STATE64: { if (count != x86_FLOAT_STATE64_COUNT) return(KERN_INVALID_ARGUMENT); if ( !thread_is_64bit(thr_act)) return(KERN_INVALID_ARGUMENT); return fpu_set_fxstate(thr_act, tstate, flavor); } case x86_FLOAT_STATE: { x86_float_state_t *state; if (count != x86_FLOAT_STATE_COUNT) return(KERN_INVALID_ARGUMENT); state = (x86_float_state_t *)tstate; if (state->fsh.flavor == x86_FLOAT_STATE64 && state->fsh.count == x86_FLOAT_STATE64_COUNT && thread_is_64bit(thr_act)) { return fpu_set_fxstate(thr_act, (thread_state_t)&state->ufs.fs64, x86_FLOAT_STATE64); } if (state->fsh.flavor == x86_FLOAT_STATE32 && state->fsh.count == x86_FLOAT_STATE32_COUNT && !thread_is_64bit(thr_act)) { return fpu_set_fxstate(thr_act, (thread_state_t)&state->ufs.fs32, x86_FLOAT_STATE32); } return(KERN_INVALID_ARGUMENT); } case x86_AVX_STATE32: { if (count != x86_AVX_STATE32_COUNT) return(KERN_INVALID_ARGUMENT); if (thread_is_64bit(thr_act)) return(KERN_INVALID_ARGUMENT); return fpu_set_fxstate(thr_act, tstate, flavor); } case x86_AVX_STATE64: { if (count != x86_AVX_STATE64_COUNT) return(KERN_INVALID_ARGUMENT); if (!thread_is_64bit(thr_act)) return(KERN_INVALID_ARGUMENT); return fpu_set_fxstate(thr_act, tstate, flavor); } case x86_AVX_STATE: { x86_avx_state_t *state; if (count != x86_AVX_STATE_COUNT) return(KERN_INVALID_ARGUMENT); state = (x86_avx_state_t *)tstate; if (state->ash.flavor == x86_AVX_STATE64 && state->ash.count == x86_FLOAT_STATE64_COUNT && thread_is_64bit(thr_act)) { return fpu_set_fxstate(thr_act, (thread_state_t)&state->ufs.as64, x86_FLOAT_STATE64); } if (state->ash.flavor == x86_FLOAT_STATE32 && state->ash.count == x86_FLOAT_STATE32_COUNT && !thread_is_64bit(thr_act)) { return fpu_set_fxstate(thr_act, (thread_state_t)&state->ufs.as32, x86_FLOAT_STATE32); } return(KERN_INVALID_ARGUMENT); } case x86_THREAD_STATE32: { if (count != x86_THREAD_STATE32_COUNT) return(KERN_INVALID_ARGUMENT); if (thread_is_64bit(thr_act)) return(KERN_INVALID_ARGUMENT); return set_thread_state32(thr_act, (x86_thread_state32_t *)tstate); } case x86_THREAD_STATE64: { if (count != x86_THREAD_STATE64_COUNT) return(KERN_INVALID_ARGUMENT); if (!thread_is_64bit(thr_act)) return(KERN_INVALID_ARGUMENT); return set_thread_state64(thr_act, (x86_thread_state64_t *)tstate); } case x86_THREAD_STATE: { x86_thread_state_t *state; if (count != x86_THREAD_STATE_COUNT) return(KERN_INVALID_ARGUMENT); state = (x86_thread_state_t *)tstate; if (state->tsh.flavor == x86_THREAD_STATE64 && state->tsh.count == x86_THREAD_STATE64_COUNT && thread_is_64bit(thr_act)) { return set_thread_state64(thr_act, &state->uts.ts64); } else if (state->tsh.flavor == x86_THREAD_STATE32 && state->tsh.count == x86_THREAD_STATE32_COUNT && !thread_is_64bit(thr_act)) { return set_thread_state32(thr_act, &state->uts.ts32); } else return(KERN_INVALID_ARGUMENT); break; } case x86_DEBUG_STATE32: { x86_debug_state32_t *state; kern_return_t ret; if (thread_is_64bit(thr_act)) return(KERN_INVALID_ARGUMENT); state = (x86_debug_state32_t *)tstate; ret = set_debug_state32(thr_act, state); return ret; } case x86_DEBUG_STATE64: { x86_debug_state64_t *state; kern_return_t ret; if (!thread_is_64bit(thr_act)) return(KERN_INVALID_ARGUMENT); state = (x86_debug_state64_t *)tstate; ret = set_debug_state64(thr_act, state); return ret; } case x86_DEBUG_STATE: { x86_debug_state_t *state; kern_return_t ret = KERN_INVALID_ARGUMENT; if (count != x86_DEBUG_STATE_COUNT) return (KERN_INVALID_ARGUMENT); state = (x86_debug_state_t *)tstate; if (state->dsh.flavor == x86_DEBUG_STATE64 && state->dsh.count == x86_DEBUG_STATE64_COUNT && thread_is_64bit(thr_act)) { ret = set_debug_state64(thr_act, &state->uds.ds64); } else if (state->dsh.flavor == x86_DEBUG_STATE32 && state->dsh.count == x86_DEBUG_STATE32_COUNT && !thread_is_64bit(thr_act)) { ret = set_debug_state32(thr_act, &state->uds.ds32); } return ret; } default: return(KERN_INVALID_ARGUMENT); } return(KERN_SUCCESS); } /* * thread_getstatus: * * Get the status of the specified thread. */ kern_return_t machine_thread_get_state( thread_t thr_act, thread_flavor_t flavor, thread_state_t tstate, mach_msg_type_number_t *count) { switch (flavor) { case THREAD_STATE_FLAVOR_LIST: { if (*count < 3) return (KERN_INVALID_ARGUMENT); tstate[0] = i386_THREAD_STATE; tstate[1] = i386_FLOAT_STATE; tstate[2] = i386_EXCEPTION_STATE; *count = 3; break; } case THREAD_STATE_FLAVOR_LIST_NEW: { if (*count < 4) return (KERN_INVALID_ARGUMENT); tstate[0] = x86_THREAD_STATE; tstate[1] = x86_FLOAT_STATE; tstate[2] = x86_EXCEPTION_STATE; tstate[3] = x86_DEBUG_STATE; *count = 4; break; } case THREAD_STATE_FLAVOR_LIST_10_9: { if (*count < 5) return (KERN_INVALID_ARGUMENT); tstate[0] = x86_THREAD_STATE; tstate[1] = x86_FLOAT_STATE; tstate[2] = x86_EXCEPTION_STATE; tstate[3] = x86_DEBUG_STATE; tstate[4] = x86_AVX_STATE; *count = 5; break; } case x86_SAVED_STATE32: { x86_saved_state32_t *state; x86_saved_state32_t *saved_state; if (*count < x86_SAVED_STATE32_COUNT) return(KERN_INVALID_ARGUMENT); if (thread_is_64bit(thr_act)) return(KERN_INVALID_ARGUMENT); state = (x86_saved_state32_t *) tstate; saved_state = USER_REGS32(thr_act); /* * First, copy everything: */ *state = *saved_state; state->ds = saved_state->ds & 0xffff; state->es = saved_state->es & 0xffff; state->fs = saved_state->fs & 0xffff; state->gs = saved_state->gs & 0xffff; *count = x86_SAVED_STATE32_COUNT; break; } case x86_SAVED_STATE64: { x86_saved_state64_t *state; x86_saved_state64_t *saved_state; if (*count < x86_SAVED_STATE64_COUNT) return(KERN_INVALID_ARGUMENT); if (!thread_is_64bit(thr_act)) return(KERN_INVALID_ARGUMENT); state = (x86_saved_state64_t *)tstate; saved_state = USER_REGS64(thr_act); /* * First, copy everything: */ *state = *saved_state; state->fs = saved_state->fs & 0xffff; state->gs = saved_state->gs & 0xffff; *count = x86_SAVED_STATE64_COUNT; break; } case x86_FLOAT_STATE32: { if (*count < x86_FLOAT_STATE32_COUNT) return(KERN_INVALID_ARGUMENT); if (thread_is_64bit(thr_act)) return(KERN_INVALID_ARGUMENT); *count = x86_FLOAT_STATE32_COUNT; return fpu_get_fxstate(thr_act, tstate, flavor); } case x86_FLOAT_STATE64: { if (*count < x86_FLOAT_STATE64_COUNT) return(KERN_INVALID_ARGUMENT); if ( !thread_is_64bit(thr_act)) return(KERN_INVALID_ARGUMENT); *count = x86_FLOAT_STATE64_COUNT; return fpu_get_fxstate(thr_act, tstate, flavor); } case x86_FLOAT_STATE: { x86_float_state_t *state; kern_return_t kret; if (*count < x86_FLOAT_STATE_COUNT) return(KERN_INVALID_ARGUMENT); state = (x86_float_state_t *)tstate; /* * no need to bzero... currently * x86_FLOAT_STATE64_COUNT == x86_FLOAT_STATE32_COUNT */ if (thread_is_64bit(thr_act)) { state->fsh.flavor = x86_FLOAT_STATE64; state->fsh.count = x86_FLOAT_STATE64_COUNT; kret = fpu_get_fxstate(thr_act, (thread_state_t)&state->ufs.fs64, x86_FLOAT_STATE64); } else { state->fsh.flavor = x86_FLOAT_STATE32; state->fsh.count = x86_FLOAT_STATE32_COUNT; kret = fpu_get_fxstate(thr_act, (thread_state_t)&state->ufs.fs32, x86_FLOAT_STATE32); } *count = x86_FLOAT_STATE_COUNT; return(kret); } case x86_AVX_STATE32: { if (*count != x86_AVX_STATE32_COUNT) return(KERN_INVALID_ARGUMENT); if (thread_is_64bit(thr_act)) return(KERN_INVALID_ARGUMENT); *count = x86_AVX_STATE32_COUNT; return fpu_get_fxstate(thr_act, tstate, flavor); } case x86_AVX_STATE64: { if (*count != x86_AVX_STATE64_COUNT) return(KERN_INVALID_ARGUMENT); if ( !thread_is_64bit(thr_act)) return(KERN_INVALID_ARGUMENT); *count = x86_AVX_STATE64_COUNT; return fpu_get_fxstate(thr_act, tstate, flavor); } case x86_AVX_STATE: { x86_avx_state_t *state; kern_return_t kret; if (*count < x86_AVX_STATE_COUNT) return(KERN_INVALID_ARGUMENT); state = (x86_avx_state_t *)tstate; bzero((char *)state, sizeof(x86_avx_state_t)); if (thread_is_64bit(thr_act)) { state->ash.flavor = x86_AVX_STATE64; state->ash.count = x86_AVX_STATE64_COUNT; kret = fpu_get_fxstate(thr_act, (thread_state_t)&state->ufs.as64, x86_AVX_STATE64); } else { state->ash.flavor = x86_AVX_STATE32; state->ash.count = x86_AVX_STATE32_COUNT; kret = fpu_get_fxstate(thr_act, (thread_state_t)&state->ufs.as32, x86_AVX_STATE32); } *count = x86_AVX_STATE_COUNT; return(kret); } case x86_THREAD_STATE32: { if (*count < x86_THREAD_STATE32_COUNT) return(KERN_INVALID_ARGUMENT); if (thread_is_64bit(thr_act)) return(KERN_INVALID_ARGUMENT); *count = x86_THREAD_STATE32_COUNT; get_thread_state32(thr_act, (x86_thread_state32_t *)tstate); break; } case x86_THREAD_STATE64: { if (*count < x86_THREAD_STATE64_COUNT) return(KERN_INVALID_ARGUMENT); if ( !thread_is_64bit(thr_act)) return(KERN_INVALID_ARGUMENT); *count = x86_THREAD_STATE64_COUNT; get_thread_state64(thr_act, (x86_thread_state64_t *)tstate); break; } case x86_THREAD_STATE: { x86_thread_state_t *state; if (*count < x86_THREAD_STATE_COUNT) return(KERN_INVALID_ARGUMENT); state = (x86_thread_state_t *)tstate; bzero((char *)state, sizeof(x86_thread_state_t)); if (thread_is_64bit(thr_act)) { state->tsh.flavor = x86_THREAD_STATE64; state->tsh.count = x86_THREAD_STATE64_COUNT; get_thread_state64(thr_act, &state->uts.ts64); } else { state->tsh.flavor = x86_THREAD_STATE32; state->tsh.count = x86_THREAD_STATE32_COUNT; get_thread_state32(thr_act, &state->uts.ts32); } *count = x86_THREAD_STATE_COUNT; break; } case x86_EXCEPTION_STATE32: { if (*count < x86_EXCEPTION_STATE32_COUNT) return(KERN_INVALID_ARGUMENT); if (thread_is_64bit(thr_act)) return(KERN_INVALID_ARGUMENT); *count = x86_EXCEPTION_STATE32_COUNT; get_exception_state32(thr_act, (x86_exception_state32_t *)tstate); /* * Suppress the cpu number for binary compatibility * of this deprecated state. */ ((x86_exception_state32_t *)tstate)->cpu = 0; break; } case x86_EXCEPTION_STATE64: { if (*count < x86_EXCEPTION_STATE64_COUNT) return(KERN_INVALID_ARGUMENT); if ( !thread_is_64bit(thr_act)) return(KERN_INVALID_ARGUMENT); *count = x86_EXCEPTION_STATE64_COUNT; get_exception_state64(thr_act, (x86_exception_state64_t *)tstate); /* * Suppress the cpu number for binary compatibility * of this deprecated state. */ ((x86_exception_state64_t *)tstate)->cpu = 0; break; } case x86_EXCEPTION_STATE: { x86_exception_state_t *state; if (*count < x86_EXCEPTION_STATE_COUNT) return(KERN_INVALID_ARGUMENT); state = (x86_exception_state_t *)tstate; bzero((char *)state, sizeof(x86_exception_state_t)); if (thread_is_64bit(thr_act)) { state->esh.flavor = x86_EXCEPTION_STATE64; state->esh.count = x86_EXCEPTION_STATE64_COUNT; get_exception_state64(thr_act, &state->ues.es64); } else { state->esh.flavor = x86_EXCEPTION_STATE32; state->esh.count = x86_EXCEPTION_STATE32_COUNT; get_exception_state32(thr_act, &state->ues.es32); } *count = x86_EXCEPTION_STATE_COUNT; break; } case x86_DEBUG_STATE32: { if (*count < x86_DEBUG_STATE32_COUNT) return(KERN_INVALID_ARGUMENT); if (thread_is_64bit(thr_act)) return(KERN_INVALID_ARGUMENT); get_debug_state32(thr_act, (x86_debug_state32_t *)tstate); *count = x86_DEBUG_STATE32_COUNT; break; } case x86_DEBUG_STATE64: { if (*count < x86_DEBUG_STATE64_COUNT) return(KERN_INVALID_ARGUMENT); if (!thread_is_64bit(thr_act)) return(KERN_INVALID_ARGUMENT); get_debug_state64(thr_act, (x86_debug_state64_t *)tstate); *count = x86_DEBUG_STATE64_COUNT; break; } case x86_DEBUG_STATE: { x86_debug_state_t *state; if (*count < x86_DEBUG_STATE_COUNT) return(KERN_INVALID_ARGUMENT); state = (x86_debug_state_t *)tstate; bzero(state, sizeof *state); if (thread_is_64bit(thr_act)) { state->dsh.flavor = x86_DEBUG_STATE64; state->dsh.count = x86_DEBUG_STATE64_COUNT; get_debug_state64(thr_act, &state->uds.ds64); } else { state->dsh.flavor = x86_DEBUG_STATE32; state->dsh.count = x86_DEBUG_STATE32_COUNT; get_debug_state32(thr_act, &state->uds.ds32); } *count = x86_DEBUG_STATE_COUNT; break; } default: return(KERN_INVALID_ARGUMENT); } return(KERN_SUCCESS); } kern_return_t machine_thread_get_kern_state( thread_t thread, thread_flavor_t flavor, thread_state_t tstate, mach_msg_type_number_t *count) { x86_saved_state_t *int_state = current_cpu_datap()->cpu_int_state; /* * This works only for an interrupted kernel thread */ if (thread != current_thread() || int_state == NULL) return KERN_FAILURE; switch (flavor) { case x86_THREAD_STATE32: { x86_thread_state32_t *state; x86_saved_state32_t *saved_state; if (!is_saved_state32(int_state) || *count < x86_THREAD_STATE32_COUNT) return (KERN_INVALID_ARGUMENT); state = (x86_thread_state32_t *) tstate; saved_state = saved_state32(int_state); /* * General registers. */ state->eax = saved_state->eax; state->ebx = saved_state->ebx; state->ecx = saved_state->ecx; state->edx = saved_state->edx; state->edi = saved_state->edi; state->esi = saved_state->esi; state->ebp = saved_state->ebp; state->esp = saved_state->uesp; state->eflags = saved_state->efl; state->eip = saved_state->eip; state->cs = saved_state->cs; state->ss = saved_state->ss; state->ds = saved_state->ds & 0xffff; state->es = saved_state->es & 0xffff; state->fs = saved_state->fs & 0xffff; state->gs = saved_state->gs & 0xffff; *count = x86_THREAD_STATE32_COUNT; return KERN_SUCCESS; } case x86_THREAD_STATE64: { x86_thread_state64_t *state; x86_saved_state64_t *saved_state; if (!is_saved_state64(int_state) || *count < x86_THREAD_STATE64_COUNT) return (KERN_INVALID_ARGUMENT); state = (x86_thread_state64_t *) tstate; saved_state = saved_state64(int_state); /* * General registers. */ state->rax = saved_state->rax; state->rbx = saved_state->rbx; state->rcx = saved_state->rcx; state->rdx = saved_state->rdx; state->rdi = saved_state->rdi; state->rsi = saved_state->rsi; state->rbp = saved_state->rbp; state->rsp = saved_state->isf.rsp; state->r8 = saved_state->r8; state->r9 = saved_state->r9; state->r10 = saved_state->r10; state->r11 = saved_state->r11; state->r12 = saved_state->r12; state->r13 = saved_state->r13; state->r14 = saved_state->r14; state->r15 = saved_state->r15; state->rip = saved_state->isf.rip; state->rflags = saved_state->isf.rflags; state->cs = saved_state->isf.cs; state->fs = saved_state->fs & 0xffff; state->gs = saved_state->gs & 0xffff; *count = x86_THREAD_STATE64_COUNT; return KERN_SUCCESS; } case x86_THREAD_STATE: { x86_thread_state_t *state = NULL; if (*count < x86_THREAD_STATE_COUNT) return (KERN_INVALID_ARGUMENT); state = (x86_thread_state_t *) tstate; if (is_saved_state32(int_state)) { x86_saved_state32_t *saved_state = saved_state32(int_state); state->tsh.flavor = x86_THREAD_STATE32; state->tsh.count = x86_THREAD_STATE32_COUNT; /* * General registers. */ state->uts.ts32.eax = saved_state->eax; state->uts.ts32.ebx = saved_state->ebx; state->uts.ts32.ecx = saved_state->ecx; state->uts.ts32.edx = saved_state->edx; state->uts.ts32.edi = saved_state->edi; state->uts.ts32.esi = saved_state->esi; state->uts.ts32.ebp = saved_state->ebp; state->uts.ts32.esp = saved_state->uesp; state->uts.ts32.eflags = saved_state->efl; state->uts.ts32.eip = saved_state->eip; state->uts.ts32.cs = saved_state->cs; state->uts.ts32.ss = saved_state->ss; state->uts.ts32.ds = saved_state->ds & 0xffff; state->uts.ts32.es = saved_state->es & 0xffff; state->uts.ts32.fs = saved_state->fs & 0xffff; state->uts.ts32.gs = saved_state->gs & 0xffff; } else if (is_saved_state64(int_state)) { x86_saved_state64_t *saved_state = saved_state64(int_state); state->tsh.flavor = x86_THREAD_STATE64; state->tsh.count = x86_THREAD_STATE64_COUNT; /* * General registers. */ state->uts.ts64.rax = saved_state->rax; state->uts.ts64.rbx = saved_state->rbx; state->uts.ts64.rcx = saved_state->rcx; state->uts.ts64.rdx = saved_state->rdx; state->uts.ts64.rdi = saved_state->rdi; state->uts.ts64.rsi = saved_state->rsi; state->uts.ts64.rbp = saved_state->rbp; state->uts.ts64.rsp = saved_state->isf.rsp; state->uts.ts64.r8 = saved_state->r8; state->uts.ts64.r9 = saved_state->r9; state->uts.ts64.r10 = saved_state->r10; state->uts.ts64.r11 = saved_state->r11; state->uts.ts64.r12 = saved_state->r12; state->uts.ts64.r13 = saved_state->r13; state->uts.ts64.r14 = saved_state->r14; state->uts.ts64.r15 = saved_state->r15; state->uts.ts64.rip = saved_state->isf.rip; state->uts.ts64.rflags = saved_state->isf.rflags; state->uts.ts64.cs = saved_state->isf.cs; state->uts.ts64.fs = saved_state->fs & 0xffff; state->uts.ts64.gs = saved_state->gs & 0xffff; } else { panic("unknown thread state"); } *count = x86_THREAD_STATE_COUNT; return KERN_SUCCESS; } } return KERN_FAILURE; } void machine_thread_switch_addrmode(thread_t thread) { /* * We don't want to be preempted until we're done * - particularly if we're switching the current thread */ disable_preemption(); /* * Reset the state saveareas. As we're resetting, we anticipate no * memory allocations in this path. */ machine_thread_create(thread, thread->task); /* If we're switching ourselves, reset the pcb addresses etc. */ if (thread == current_thread()) { boolean_t istate = ml_set_interrupts_enabled(FALSE); act_machine_switch_pcb(NULL, thread); ml_set_interrupts_enabled(istate); } enable_preemption(); } /* * This is used to set the current thr_act/thread * when starting up a new processor */ void machine_set_current_thread(thread_t thread) { current_cpu_datap()->cpu_active_thread = thread; } /* * Perform machine-dependent per-thread initializations */ void machine_thread_init(void) { iss_zone = zinit(sizeof(x86_saved_state_t), thread_max * sizeof(x86_saved_state_t), THREAD_CHUNK * sizeof(x86_saved_state_t), "x86_64 saved state"); ids_zone = zinit(sizeof(x86_debug_state64_t), thread_max * sizeof(x86_debug_state64_t), THREAD_CHUNK * sizeof(x86_debug_state64_t), "x86_64 debug state"); fpu_module_init(); } user_addr_t get_useraddr(void) { thread_t thr_act = current_thread(); if (thread_is_64bit(thr_act)) { x86_saved_state64_t *iss64; iss64 = USER_REGS64(thr_act); return(iss64->isf.rip); } else { x86_saved_state32_t *iss32; iss32 = USER_REGS32(thr_act); return(iss32->eip); } } /* * detach and return a kernel stack from a thread */ vm_offset_t machine_stack_detach(thread_t thread) { vm_offset_t stack; KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_DETACH), (uintptr_t)thread_tid(thread), thread->priority, thread->sched_pri, 0, 0); stack = thread->kernel_stack; thread->kernel_stack = 0; return (stack); } /* * attach a kernel stack to a thread and initialize it */ void machine_stack_attach( thread_t thread, vm_offset_t stack) { struct x86_kernel_state *statep; KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_ATTACH), (uintptr_t)thread_tid(thread), thread->priority, thread->sched_pri, 0, 0); assert(stack); thread->kernel_stack = stack; statep = STACK_IKS(stack); #if defined(__x86_64__) statep->k_rip = (unsigned long) Thread_continue; statep->k_rbx = (unsigned long) thread_continue; statep->k_rsp = (unsigned long) (STACK_IKS(stack) - 1); #else statep->k_eip = (unsigned long) Thread_continue; statep->k_ebx = (unsigned long) thread_continue; statep->k_esp = (unsigned long) (STACK_IKS(stack) - 1); #endif return; } /* * move a stack from old to new thread */ void machine_stack_handoff(thread_t old, thread_t new) { vm_offset_t stack; assert(new); assert(old); #if CONFIG_COUNTERS machine_pmc_cswitch(old, new); #endif #if KPC ml_kpc_cswitch(old, new); #endif #if KPERF ml_kperf_cswitch(old, new); #endif stack = old->kernel_stack; if (stack == old->reserved_stack) { assert(new->reserved_stack); old->reserved_stack = new->reserved_stack; new->reserved_stack = stack; } old->kernel_stack = 0; /* * A full call to machine_stack_attach() is unnecessry * because old stack is already initialized. */ new->kernel_stack = stack; fpu_save_context(old); old->machine.specFlags &= ~OnProc; new->machine.specFlags |= OnProc; PMAP_SWITCH_CONTEXT(old, new, cpu_number()); act_machine_switch_pcb(old, new); machine_set_current_thread(new); return; } struct x86_act_context32 { x86_saved_state32_t ss; x86_float_state32_t fs; x86_debug_state32_t ds; }; struct x86_act_context64 { x86_saved_state64_t ss; x86_float_state64_t fs; x86_debug_state64_t ds; }; void * act_thread_csave(void) { kern_return_t kret; mach_msg_type_number_t val; thread_t thr_act = current_thread(); if (thread_is_64bit(thr_act)) { struct x86_act_context64 *ic64; ic64 = (struct x86_act_context64 *)kalloc(sizeof(struct x86_act_context64)); if (ic64 == (struct x86_act_context64 *)NULL) return((void *)0); val = x86_SAVED_STATE64_COUNT; kret = machine_thread_get_state(thr_act, x86_SAVED_STATE64, (thread_state_t) &ic64->ss, &val); if (kret != KERN_SUCCESS) { kfree(ic64, sizeof(struct x86_act_context64)); return((void *)0); } val = x86_FLOAT_STATE64_COUNT; kret = machine_thread_get_state(thr_act, x86_FLOAT_STATE64, (thread_state_t) &ic64->fs, &val); if (kret != KERN_SUCCESS) { kfree(ic64, sizeof(struct x86_act_context64)); return((void *)0); } val = x86_DEBUG_STATE64_COUNT; kret = machine_thread_get_state(thr_act, x86_DEBUG_STATE64, (thread_state_t)&ic64->ds, &val); if (kret != KERN_SUCCESS) { kfree(ic64, sizeof(struct x86_act_context64)); return((void *)0); } return(ic64); } else { struct x86_act_context32 *ic32; ic32 = (struct x86_act_context32 *)kalloc(sizeof(struct x86_act_context32)); if (ic32 == (struct x86_act_context32 *)NULL) return((void *)0); val = x86_SAVED_STATE32_COUNT; kret = machine_thread_get_state(thr_act, x86_SAVED_STATE32, (thread_state_t) &ic32->ss, &val); if (kret != KERN_SUCCESS) { kfree(ic32, sizeof(struct x86_act_context32)); return((void *)0); } val = x86_FLOAT_STATE32_COUNT; kret = machine_thread_get_state(thr_act, x86_FLOAT_STATE32, (thread_state_t) &ic32->fs, &val); if (kret != KERN_SUCCESS) { kfree(ic32, sizeof(struct x86_act_context32)); return((void *)0); } val = x86_DEBUG_STATE32_COUNT; kret = machine_thread_get_state(thr_act, x86_DEBUG_STATE32, (thread_state_t)&ic32->ds, &val); if (kret != KERN_SUCCESS) { kfree(ic32, sizeof(struct x86_act_context32)); return((void *)0); } return(ic32); } } void act_thread_catt(void *ctx) { thread_t thr_act = current_thread(); kern_return_t kret; if (ctx == (void *)NULL) return; if (thread_is_64bit(thr_act)) { struct x86_act_context64 *ic64; ic64 = (struct x86_act_context64 *)ctx; kret = machine_thread_set_state(thr_act, x86_SAVED_STATE64, (thread_state_t) &ic64->ss, x86_SAVED_STATE64_COUNT); if (kret == KERN_SUCCESS) { machine_thread_set_state(thr_act, x86_FLOAT_STATE64, (thread_state_t) &ic64->fs, x86_FLOAT_STATE64_COUNT); } kfree(ic64, sizeof(struct x86_act_context64)); } else { struct x86_act_context32 *ic32; ic32 = (struct x86_act_context32 *)ctx; kret = machine_thread_set_state(thr_act, x86_SAVED_STATE32, (thread_state_t) &ic32->ss, x86_SAVED_STATE32_COUNT); if (kret == KERN_SUCCESS) { (void) machine_thread_set_state(thr_act, x86_FLOAT_STATE32, (thread_state_t) &ic32->fs, x86_FLOAT_STATE32_COUNT); } kfree(ic32, sizeof(struct x86_act_context32)); } } void act_thread_cfree(__unused void *ctx) { /* XXX - Unused */ } /* * Duplicate one x86_debug_state32_t to another. "all" parameter * chooses whether dr4 and dr5 are copied (they are never meant * to be installed when we do machine_task_set_state() or * machine_thread_set_state()). */ void copy_debug_state32( x86_debug_state32_t *src, x86_debug_state32_t *target, boolean_t all) { if (all) { target->dr4 = src->dr4; target->dr5 = src->dr5; } target->dr0 = src->dr0; target->dr1 = src->dr1; target->dr2 = src->dr2; target->dr3 = src->dr3; target->dr6 = src->dr6; target->dr7 = src->dr7; } /* * Duplicate one x86_debug_state64_t to another. "all" parameter * chooses whether dr4 and dr5 are copied (they are never meant * to be installed when we do machine_task_set_state() or * machine_thread_set_state()). */ void copy_debug_state64( x86_debug_state64_t *src, x86_debug_state64_t *target, boolean_t all) { if (all) { target->dr4 = src->dr4; target->dr5 = src->dr5; } target->dr0 = src->dr0; target->dr1 = src->dr1; target->dr2 = src->dr2; target->dr3 = src->dr3; target->dr6 = src->dr6; target->dr7 = src->dr7; }