/* * Copyright (c) 2000-2013 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* $FreeBSD: src/sys/netinet6/udp6_usrreq.c,v 1.6.2.6 2001/07/29 19:32:40 ume Exp $ */ /* $KAME: udp6_usrreq.c,v 1.27 2001/05/21 05:45:10 jinmei Exp $ */ /* * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)udp_var.h 8.1 (Berkeley) 6/10/93 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if IPSEC #include #include extern int ipsec_bypass; #endif /* IPSEC */ /* * UDP protocol inplementation. * Per RFC 768, August, 1980. */ static int udp6_abort(struct socket *); static int udp6_attach(struct socket *, int, struct proc *); static int udp6_bind(struct socket *, struct sockaddr *, struct proc *); static int udp6_connectx(struct socket *, struct sockaddr_list **, struct sockaddr_list **, struct proc *, uint32_t, associd_t, connid_t *, uint32_t, void *, uint32_t); static int udp6_detach(struct socket *); static int udp6_disconnect(struct socket *); static int udp6_disconnectx(struct socket *, associd_t, connid_t); static int udp6_send(struct socket *, int, struct mbuf *, struct sockaddr *, struct mbuf *, struct proc *); static void udp6_append(struct inpcb *, struct ip6_hdr *, struct sockaddr_in6 *, struct mbuf *, int, struct ifnet *); static int udp6_input_checksum(struct mbuf *, struct udphdr *, int, int); #if IPFIREWALL extern int fw_verbose; extern void ipfwsyslog( int level, const char *format,...); extern void ipfw_stealth_stats_incr_udpv6(void); /* Apple logging, log to ipfw.log */ #define log_in_vain_log(a) { \ if ((udp_log_in_vain == 3) && (fw_verbose == 2)) { \ ipfwsyslog a; \ } else if ((udp_log_in_vain == 4) && (fw_verbose == 2)) { \ ipfw_stealth_stats_incr_udpv6(); \ } else { \ log a; \ } \ } #else /* !IPFIREWALL */ #define log_in_vain_log( a ) { log a; } #endif /* !IPFIREWALL */ struct pr_usrreqs udp6_usrreqs = { .pru_abort = udp6_abort, .pru_attach = udp6_attach, .pru_bind = udp6_bind, .pru_connect = udp6_connect, .pru_connectx = udp6_connectx, .pru_control = in6_control, .pru_detach = udp6_detach, .pru_disconnect = udp6_disconnect, .pru_disconnectx = udp6_disconnectx, .pru_peeraddr = in6_mapped_peeraddr, .pru_send = udp6_send, .pru_shutdown = udp_shutdown, .pru_sockaddr = in6_mapped_sockaddr, .pru_sosend = sosend, .pru_soreceive = soreceive, }; /* * subroutine of udp6_input(), mainly for source code readability. */ static void udp6_append(struct inpcb *last, struct ip6_hdr *ip6, struct sockaddr_in6 *udp_in6, struct mbuf *n, int off, struct ifnet *ifp) { #pragma unused(ip6) struct mbuf *opts = NULL; int ret = 0; boolean_t cell = IFNET_IS_CELLULAR(ifp); boolean_t wifi = (!cell && IFNET_IS_WIFI(ifp)); #if CONFIG_MACF_NET if (mac_inpcb_check_deliver(last, n, AF_INET6, SOCK_DGRAM) != 0) { m_freem(n); return; } #endif /* CONFIG_MACF_NET */ if ((last->in6p_flags & INP_CONTROLOPTS) != 0 || (last->in6p_socket->so_options & SO_TIMESTAMP) != 0 || (last->in6p_socket->so_options & SO_TIMESTAMP_MONOTONIC) != 0) { ret = ip6_savecontrol(last, n, &opts); if (ret != 0) { m_freem(n); m_freem(opts); return; } } m_adj(n, off); if (nstat_collect) { INP_ADD_STAT(last, cell, wifi, rxpackets, 1); INP_ADD_STAT(last, cell, wifi, rxbytes, n->m_pkthdr.len); } so_recv_data_stat(last->in6p_socket, n, 0); if (sbappendaddr(&last->in6p_socket->so_rcv, (struct sockaddr *)udp_in6, n, opts, NULL) == 0) udpstat.udps_fullsock++; else sorwakeup(last->in6p_socket); } int udp6_input(struct mbuf **mp, int *offp, int proto) { #pragma unused(proto) struct mbuf *m = *mp; struct ifnet *ifp; struct ip6_hdr *ip6; struct udphdr *uh; struct inpcb *in6p; struct mbuf *opts = NULL; int off = *offp; int plen, ulen, ret = 0; boolean_t cell, wifi; struct sockaddr_in6 udp_in6; struct inpcbinfo *pcbinfo = &udbinfo; struct sockaddr_in6 fromsa; IP6_EXTHDR_CHECK(m, off, sizeof (struct udphdr), return IPPROTO_DONE); /* Expect 32-bit aligned data pointer on strict-align platforms */ MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m); ifp = m->m_pkthdr.rcvif; ip6 = mtod(m, struct ip6_hdr *); cell = IFNET_IS_CELLULAR(ifp); wifi = (!cell && IFNET_IS_WIFI(ifp)); udpstat.udps_ipackets++; plen = ntohs(ip6->ip6_plen) - off + sizeof (*ip6); uh = (struct udphdr *)(void *)((caddr_t)ip6 + off); ulen = ntohs((u_short)uh->uh_ulen); if (plen != ulen) { udpstat.udps_badlen++; IF_UDP_STATINC(ifp, badlength); goto bad; } /* destination port of 0 is illegal, based on RFC768. */ if (uh->uh_dport == 0) { IF_UDP_STATINC(ifp, port0); goto bad; } /* * Checksum extended UDP header and data. */ if (udp6_input_checksum(m, uh, off, ulen)) goto bad; /* * Construct sockaddr format source address. */ init_sin6(&fromsa, m); fromsa.sin6_port = uh->uh_sport; if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { int reuse_sock = 0, mcast_delivered = 0; struct ip6_moptions *imo; struct mbuf *n = NULL; /* * Deliver a multicast datagram to all sockets * for which the local and remote addresses and ports match * those of the incoming datagram. This allows more than * one process to receive multicasts on the same port. * (This really ought to be done for unicast datagrams as * well, but that would cause problems with existing * applications that open both address-specific sockets and * a wildcard socket listening to the same port -- they would * end up receiving duplicates of every unicast datagram. * Those applications open the multiple sockets to overcome an * inadequacy of the UDP socket interface, but for backwards * compatibility we avoid the problem here rather than * fixing the interface. Maybe 4.5BSD will remedy this?) */ /* * In a case that laddr should be set to the link-local * address (this happens in RIPng), the multicast address * specified in the received packet does not match with * laddr. To cure this situation, the matching is relaxed * if the receiving interface is the same as one specified * in the socket and if the destination multicast address * matches one of the multicast groups specified in the socket. */ /* * Construct sockaddr format source address. */ init_sin6(&udp_in6, m); /* general init */ udp_in6.sin6_port = uh->uh_sport; /* * KAME note: usually we drop udphdr from mbuf here. * We need udphdr for IPsec processing so we do that later. */ /* * Locate pcb(s) for datagram. * (Algorithm copied from raw_intr().) */ lck_rw_lock_shared(pcbinfo->ipi_lock); LIST_FOREACH(in6p, &udb, inp_list) { #if IPSEC int skipit; #endif /* IPSEC */ if ((in6p->inp_vflag & INP_IPV6) == 0) continue; if (inp_restricted(in6p, ifp)) continue; if (IFNET_IS_CELLULAR(ifp) && (in6p->in6p_flags & INP_NO_IFT_CELLULAR)) continue; if (in_pcb_checkstate(in6p, WNT_ACQUIRE, 0) == WNT_STOPUSING) continue; udp_lock(in6p->in6p_socket, 1, 0); if (in_pcb_checkstate(in6p, WNT_RELEASE, 1) == WNT_STOPUSING) { udp_unlock(in6p->in6p_socket, 1, 0); continue; } if (in6p->in6p_lport != uh->uh_dport) { udp_unlock(in6p->in6p_socket, 1, 0); continue; } /* * Handle socket delivery policy for any-source * and source-specific multicast. [RFC3678] */ imo = in6p->in6p_moptions; if (imo && IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { struct sockaddr_in6 mcaddr; int blocked; IM6O_LOCK(imo); bzero(&mcaddr, sizeof (struct sockaddr_in6)); mcaddr.sin6_len = sizeof (struct sockaddr_in6); mcaddr.sin6_family = AF_INET6; mcaddr.sin6_addr = ip6->ip6_dst; blocked = im6o_mc_filter(imo, ifp, (struct sockaddr *)&mcaddr, (struct sockaddr *)&fromsa); IM6O_UNLOCK(imo); if (blocked != MCAST_PASS) { udp_unlock(in6p->in6p_socket, 1, 0); if (blocked == MCAST_NOTSMEMBER || blocked == MCAST_MUTED) udpstat.udps_filtermcast++; continue; } } if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr) && (!IN6_ARE_ADDR_EQUAL(&in6p->in6p_faddr, &ip6->ip6_src) || in6p->in6p_fport != uh->uh_sport)) { udp_unlock(in6p->in6p_socket, 1, 0); continue; } reuse_sock = in6p->inp_socket->so_options & (SO_REUSEPORT | SO_REUSEADDR); #if IPSEC skipit = 0; /* Check AH/ESP integrity. */ if (ipsec_bypass == 0 && ipsec6_in_reject_so(m, in6p->inp_socket)) { IPSEC_STAT_INCREMENT(ipsec6stat.in_polvio); /* do not inject data to pcb */ skipit = 1; } if (skipit == 0) #endif /* IPSEC */ { /* * KAME NOTE: do not * m_copy(m, offset, ...) below. * sbappendaddr() expects M_PKTHDR, * and m_copy() will copy M_PKTHDR * only if offset is 0. */ if (reuse_sock) n = m_copy(m, 0, M_COPYALL); udp6_append(in6p, ip6, &udp_in6, m, off + sizeof (struct udphdr), ifp); mcast_delivered++; } udp_unlock(in6p->in6p_socket, 1, 0); /* * Don't look for additional matches if this one does * not have either the SO_REUSEPORT or SO_REUSEADDR * socket options set. This heuristic avoids searching * through all pcbs in the common case of a non-shared * port. It assumes that an application will never * clear these options after setting them. */ if (reuse_sock == 0 || ((m = n) == NULL)) break; /* * Expect 32-bit aligned data pointer on strict-align * platforms. */ MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m); /* * Recompute IP and UDP header pointers for new mbuf */ ip6 = mtod(m, struct ip6_hdr *); uh = (struct udphdr *)(void *)((caddr_t)ip6 + off); } lck_rw_done(pcbinfo->ipi_lock); if (mcast_delivered == 0) { /* * No matching pcb found; discard datagram. * (No need to send an ICMP Port Unreachable * for a broadcast or multicast datgram.) */ udpstat.udps_noport++; udpstat.udps_noportmcast++; IF_UDP_STATINC(ifp, port_unreach); goto bad; } if (reuse_sock != 0) /* free the extra copy of mbuf */ m_freem(m); return (IPPROTO_DONE); } /* * Locate pcb for datagram. */ in6p = in6_pcblookup_hash(&udbinfo, &ip6->ip6_src, uh->uh_sport, &ip6->ip6_dst, uh->uh_dport, 1, m->m_pkthdr.rcvif); if (in6p == NULL) { IF_UDP_STATINC(ifp, port_unreach); if (udp_log_in_vain) { char buf[INET6_ADDRSTRLEN]; strlcpy(buf, ip6_sprintf(&ip6->ip6_dst), sizeof (buf)); if (udp_log_in_vain < 3) { log(LOG_INFO, "Connection attempt to UDP " "%s:%d from %s:%d\n", buf, ntohs(uh->uh_dport), ip6_sprintf(&ip6->ip6_src), ntohs(uh->uh_sport)); } else if (!(m->m_flags & (M_BCAST | M_MCAST)) && !IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) { log_in_vain_log((LOG_INFO, "Connection attempt " "to UDP %s:%d from %s:%d\n", buf, ntohs(uh->uh_dport), ip6_sprintf(&ip6->ip6_src), ntohs(uh->uh_sport))); } } udpstat.udps_noport++; if (m->m_flags & M_MCAST) { printf("UDP6: M_MCAST is set in a unicast packet.\n"); udpstat.udps_noportmcast++; IF_UDP_STATINC(ifp, badmcast); goto bad; } icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_NOPORT, 0); return (IPPROTO_DONE); } #if IPSEC /* * Check AH/ESP integrity. */ if (ipsec_bypass == 0) { if (ipsec6_in_reject_so(m, in6p->in6p_socket)) { IPSEC_STAT_INCREMENT(ipsec6stat.in_polvio); in_pcb_checkstate(in6p, WNT_RELEASE, 0); IF_UDP_STATINC(ifp, badipsec); goto bad; } } #endif /* IPSEC */ /* * Construct sockaddr format source address. * Stuff source address and datagram in user buffer. */ udp_lock(in6p->in6p_socket, 1, 0); if (in_pcb_checkstate(in6p, WNT_RELEASE, 1) == WNT_STOPUSING) { udp_unlock(in6p->in6p_socket, 1, 0); IF_UDP_STATINC(ifp, cleanup); goto bad; } init_sin6(&udp_in6, m); /* general init */ udp_in6.sin6_port = uh->uh_sport; if ((in6p->in6p_flags & INP_CONTROLOPTS) != 0 || (in6p->in6p_socket->so_options & SO_TIMESTAMP) != 0 || (in6p->in6p_socket->so_options & SO_TIMESTAMP_MONOTONIC) != 0) { ret = ip6_savecontrol(in6p, m, &opts); if (ret != 0) { udp_unlock(in6p->in6p_socket, 1, 0); goto bad; } } m_adj(m, off + sizeof (struct udphdr)); if (nstat_collect) { INP_ADD_STAT(in6p, cell, wifi, rxpackets, 1); INP_ADD_STAT(in6p, cell, wifi, rxbytes, m->m_pkthdr.len); } so_recv_data_stat(in6p->in6p_socket, m, 0); if (sbappendaddr(&in6p->in6p_socket->so_rcv, (struct sockaddr *)&udp_in6, m, opts, NULL) == 0) { m = NULL; opts = NULL; udpstat.udps_fullsock++; udp_unlock(in6p->in6p_socket, 1, 0); goto bad; } sorwakeup(in6p->in6p_socket); udp_unlock(in6p->in6p_socket, 1, 0); return (IPPROTO_DONE); bad: if (m != NULL) m_freem(m); if (opts != NULL) m_freem(opts); return (IPPROTO_DONE); } void udp6_ctlinput(int cmd, struct sockaddr *sa, void *d) { struct udphdr uh; struct ip6_hdr *ip6; struct mbuf *m; int off = 0; struct ip6ctlparam *ip6cp = NULL; const struct sockaddr_in6 *sa6_src = NULL; void (*notify)(struct inpcb *, int) = udp_notify; struct udp_portonly { u_int16_t uh_sport; u_int16_t uh_dport; } *uhp; if (sa->sa_family != AF_INET6 || sa->sa_len != sizeof (struct sockaddr_in6)) return; if ((unsigned)cmd >= PRC_NCMDS) return; if (PRC_IS_REDIRECT(cmd)) notify = in6_rtchange, d = NULL; else if (cmd == PRC_HOSTDEAD) d = NULL; else if (inet6ctlerrmap[cmd] == 0) return; /* if the parameter is from icmp6, decode it. */ if (d != NULL) { ip6cp = (struct ip6ctlparam *)d; m = ip6cp->ip6c_m; ip6 = ip6cp->ip6c_ip6; off = ip6cp->ip6c_off; sa6_src = ip6cp->ip6c_src; } else { m = NULL; ip6 = NULL; sa6_src = &sa6_any; } if (ip6 != NULL) { /* * XXX: We assume that when IPV6 is non NULL, * M and OFF are valid. */ /* check if we can safely examine src and dst ports */ if (m->m_pkthdr.len < off + sizeof (*uhp)) return; bzero(&uh, sizeof (uh)); m_copydata(m, off, sizeof (*uhp), (caddr_t)&uh); (void) in6_pcbnotify(&udbinfo, sa, uh.uh_dport, (struct sockaddr*)ip6cp->ip6c_src, uh.uh_sport, cmd, NULL, notify); } else { (void) in6_pcbnotify(&udbinfo, sa, 0, (struct sockaddr *)&sa6_src, 0, cmd, NULL, notify); } } static int udp6_abort(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); if (inp == NULL) { panic("%s: so=%p null inp\n", __func__, so); /* NOTREACHED */ } soisdisconnected(so); in6_pcbdetach(inp); return (0); } static int udp6_attach(struct socket *so, int proto, struct proc *p) { #pragma unused(proto) struct inpcb *inp; int error; inp = sotoinpcb(so); if (inp != NULL) return (EINVAL); error = in_pcballoc(so, &udbinfo, p); if (error) return (error); if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { error = soreserve(so, udp_sendspace, udp_recvspace); if (error) return (error); } inp = (struct inpcb *)so->so_pcb; inp->inp_vflag |= INP_IPV6; if (ip6_mapped_addr_on) inp->inp_vflag |= INP_IPV4; inp->in6p_hops = -1; /* use kernel default */ inp->in6p_cksum = -1; /* just to be sure */ /* * XXX: ugly!! * IPv4 TTL initialization is necessary for an IPv6 socket as well, * because the socket may be bound to an IPv6 wildcard address, * which may match an IPv4-mapped IPv6 address. */ inp->inp_ip_ttl = ip_defttl; if (nstat_collect) nstat_udp_new_pcb(inp); return (0); } static int udp6_bind(struct socket *so, struct sockaddr *nam, struct proc *p) { struct inpcb *inp; int error; inp = sotoinpcb(so); if (inp == NULL || (inp->inp_flags2 & INP2_WANT_FLOW_DIVERT)) return (inp == NULL ? EINVAL : EPROTOTYPE); inp->inp_vflag &= ~INP_IPV4; inp->inp_vflag |= INP_IPV6; if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) { struct sockaddr_in6 *sin6_p; sin6_p = (struct sockaddr_in6 *)(void *)nam; if (IN6_IS_ADDR_UNSPECIFIED(&sin6_p->sin6_addr)) { inp->inp_vflag |= INP_IPV4; } else if (IN6_IS_ADDR_V4MAPPED(&sin6_p->sin6_addr)) { struct sockaddr_in sin; in6_sin6_2_sin(&sin, sin6_p); inp->inp_vflag |= INP_IPV4; inp->inp_vflag &= ~INP_IPV6; error = in_pcbbind(inp, (struct sockaddr *)&sin, p); return (error); } } error = in6_pcbbind(inp, nam, p); return (error); } int udp6_connect(struct socket *so, struct sockaddr *nam, struct proc *p) { struct inpcb *inp; int error; inp = sotoinpcb(so); if (inp == NULL || (inp->inp_flags2 & INP2_WANT_FLOW_DIVERT)) return (inp == NULL ? EINVAL : EPROTOTYPE); if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) { struct sockaddr_in6 *sin6_p; sin6_p = (struct sockaddr_in6 *)(void *)nam; if (IN6_IS_ADDR_V4MAPPED(&sin6_p->sin6_addr)) { struct sockaddr_in sin; if (inp->inp_faddr.s_addr != INADDR_ANY) return (EISCONN); in6_sin6_2_sin(&sin, sin6_p); error = in_pcbconnect(inp, (struct sockaddr *)&sin, p, IFSCOPE_NONE, NULL); if (error == 0) { inp->inp_vflag |= INP_IPV4; inp->inp_vflag &= ~INP_IPV6; soisconnected(so); } return (error); } } if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) return (EISCONN); error = in6_pcbconnect(inp, nam, p); if (error == 0) { /* should be non mapped addr */ if (ip6_mapped_addr_on || (inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) { inp->inp_vflag &= ~INP_IPV4; inp->inp_vflag |= INP_IPV6; } soisconnected(so); if (inp->inp_flowhash == 0) inp->inp_flowhash = inp_calc_flowhash(inp); /* update flowinfo - RFC 6437 */ if (inp->inp_flow == 0 && inp->in6p_flags & IN6P_AUTOFLOWLABEL) { inp->inp_flow &= ~IPV6_FLOWLABEL_MASK; inp->inp_flow |= (htonl(inp->inp_flowhash) & IPV6_FLOWLABEL_MASK); } } return (error); } static int udp6_connectx(struct socket *so, struct sockaddr_list **src_sl, struct sockaddr_list **dst_sl, struct proc *p, uint32_t ifscope, associd_t aid, connid_t *pcid, uint32_t flags, void *arg, uint32_t arglen) { return (udp_connectx_common(so, AF_INET6, src_sl, dst_sl, p, ifscope, aid, pcid, flags, arg, arglen)); } static int udp6_detach(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); if (inp == NULL) return (EINVAL); in6_pcbdetach(inp); return (0); } static int udp6_disconnect(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); if (inp == NULL || (inp->inp_flags2 & INP2_WANT_FLOW_DIVERT)) return (inp == NULL ? EINVAL : EPROTOTYPE); if (inp->inp_vflag & INP_IPV4) { struct pr_usrreqs *pru; pru = ip_protox[IPPROTO_UDP]->pr_usrreqs; return ((*pru->pru_disconnect)(so)); } if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) return (ENOTCONN); in6_pcbdisconnect(inp); /* reset flow-controlled state, just in case */ inp_reset_fc_state(inp); inp->in6p_laddr = in6addr_any; inp->in6p_last_outifp = NULL; so->so_state &= ~SS_ISCONNECTED; /* XXX */ return (0); } static int udp6_disconnectx(struct socket *so, associd_t aid, connid_t cid) { #pragma unused(cid) if (aid != ASSOCID_ANY && aid != ASSOCID_ALL) return (EINVAL); return (udp6_disconnect(so)); } static int udp6_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, struct mbuf *control, struct proc *p) { struct inpcb *inp; int error = 0; inp = sotoinpcb(so); if (inp == NULL || (inp->inp_flags2 & INP2_WANT_FLOW_DIVERT)) { error = (inp == NULL ? EINVAL : EPROTOTYPE); goto bad; } if (addr != NULL) { if (addr->sa_len != sizeof (struct sockaddr_in6)) { error = EINVAL; goto bad; } if (addr->sa_family != AF_INET6) { error = EAFNOSUPPORT; goto bad; } } if (ip6_mapped_addr_on || (inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) { int hasv4addr; struct sockaddr_in6 *sin6 = NULL; if (addr == NULL) { hasv4addr = (inp->inp_vflag & INP_IPV4); } else { sin6 = (struct sockaddr_in6 *)(void *)addr; hasv4addr = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 1 : 0; } if (hasv4addr) { struct pr_usrreqs *pru; if (sin6 != NULL) in6_sin6_2_sin_in_sock(addr); pru = ip_protox[IPPROTO_UDP]->pr_usrreqs; error = ((*pru->pru_send)(so, flags, m, addr, control, p)); /* addr will just be freed in sendit(). */ return (error); } } return (udp6_output(inp, m, addr, control, p)); bad: VERIFY(error != 0); if (m != NULL) m_freem(m); if (control != NULL) m_freem(control); return (error); } /* * Checksum extended UDP header and data. */ static int udp6_input_checksum(struct mbuf *m, struct udphdr *uh, int off, int ulen) { struct ifnet *ifp = m->m_pkthdr.rcvif; struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *); if (uh->uh_sum == 0) { /* UDP/IPv6 checksum is mandatory (RFC2460) */ udpstat.udps_nosum++; goto badsum; } if ((hwcksum_rx || (ifp->if_flags & IFF_LOOPBACK) || (m->m_pkthdr.pkt_flags & PKTF_LOOP)) && (m->m_pkthdr.csum_flags & CSUM_DATA_VALID)) { if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { uh->uh_sum = m->m_pkthdr.csum_rx_val; } else { uint16_t sum = m->m_pkthdr.csum_rx_val; uint16_t start = m->m_pkthdr.csum_rx_start; /* * Perform 1's complement adjustment of octets * that got included/excluded in the hardware- * calculated checksum value. */ if ((m->m_pkthdr.csum_flags & CSUM_PARTIAL) && start != off) { uint16_t s, d; if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) { s = ip6->ip6_src.s6_addr16[1]; ip6->ip6_src.s6_addr16[1] = 0 ; } if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) { d = ip6->ip6_dst.s6_addr16[1]; ip6->ip6_dst.s6_addr16[1] = 0; } /* callee folds in sum */ sum = m_adj_sum16(m, start, off, sum); if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) ip6->ip6_src.s6_addr16[1] = s; if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) ip6->ip6_dst.s6_addr16[1] = d; } uh->uh_sum = in6_pseudo(&ip6->ip6_src, &ip6->ip6_dst, sum + htonl(ulen + IPPROTO_UDP)); } uh->uh_sum ^= 0xffff; } else { udp_in6_cksum_stats(ulen); uh->uh_sum = in6_cksum(m, IPPROTO_UDP, off, ulen); } if (uh->uh_sum != 0) { badsum: udpstat.udps_badsum++; IF_UDP_STATINC(ifp, badchksum); return (-1); } return (0); }