/* * Copyright (c) 2003-2013 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright (c) 1982, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in.c 8.2 (Berkeley) 11/15/93 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if PF #include #endif /* PF */ /* * Definitions of some costant IP6 addresses. */ const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT; const struct in6_addr in6addr_nodelocal_allnodes = IN6ADDR_NODELOCAL_ALLNODES_INIT; const struct in6_addr in6addr_linklocal_allnodes = IN6ADDR_LINKLOCAL_ALLNODES_INIT; const struct in6_addr in6addr_linklocal_allrouters = IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; const struct in6_addr in6addr_linklocal_allv2routers = IN6ADDR_LINKLOCAL_ALLV2ROUTERS_INIT; const struct in6_addr in6mask0 = IN6MASK0; const struct in6_addr in6mask7 = IN6MASK7; const struct in6_addr in6mask16 = IN6MASK16; const struct in6_addr in6mask32 = IN6MASK32; const struct in6_addr in6mask64 = IN6MASK64; const struct in6_addr in6mask96 = IN6MASK96; const struct in6_addr in6mask128 = IN6MASK128; const struct sockaddr_in6 sa6_any = { sizeof (sa6_any), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0 }; static int in6ctl_lifaddr(struct ifnet *, u_long, struct if_laddrreq *, boolean_t); static int in6ctl_associd(struct socket *, u_long, caddr_t); static int in6ctl_connid(struct socket *, u_long, caddr_t); static int in6ctl_conninfo(struct socket *, u_long, caddr_t); static int in6ctl_llstart(struct ifnet *, u_long, caddr_t); static int in6ctl_llstop(struct ifnet *); static int in6ctl_cgastart(struct ifnet *, u_long, caddr_t); static int in6ctl_gifaddr(struct ifnet *, struct in6_ifaddr *, u_long, struct in6_ifreq *); static int in6ctl_gifstat(struct ifnet *, u_long, struct in6_ifreq *); static int in6ctl_alifetime(struct in6_ifaddr *, u_long, struct in6_ifreq *, boolean_t); static int in6ctl_aifaddr(struct ifnet *, struct in6_aliasreq *); static void in6ctl_difaddr(struct ifnet *, struct in6_ifaddr *); static int in6_autoconf(struct ifnet *, int); static int in6_setrouter(struct ifnet *, int); static int in6_ifinit(struct ifnet *, struct in6_ifaddr *, int); static int in6_ifaupdate_aux(struct in6_ifaddr *, struct ifnet *, int); static void in6_unlink_ifa(struct in6_ifaddr *, struct ifnet *); static struct in6_ifaddr *in6_ifaddr_alloc(int); static void in6_ifaddr_attached(struct ifaddr *); static void in6_ifaddr_detached(struct ifaddr *); static void in6_ifaddr_free(struct ifaddr *); static void in6_ifaddr_trace(struct ifaddr *, int); #if defined(__LP64__) static void in6_llstartreq_32_to_64(struct in6_llstartreq_32 *, struct in6_llstartreq_64 *); #else static void in6_llstartreq_64_to_32(struct in6_llstartreq_64 *, struct in6_llstartreq_32 *); #endif static struct in6_aliasreq *in6_aliasreq_to_native(void *, int, struct in6_aliasreq *); static struct in6_llstartreq *in6_llstartreq_to_native(void *, int, struct in6_llstartreq *); static int in6_to_kamescope(struct sockaddr_in6 *, struct ifnet *); static void in6_ifaddr_set_dadprogress(struct in6_ifaddr *); static int in6_getassocids(struct socket *, uint32_t *, user_addr_t); static int in6_getconnids(struct socket *, associd_t, uint32_t *, user_addr_t); static int in6_getconninfo(struct socket *, connid_t, uint32_t *, uint32_t *, int32_t *, user_addr_t, socklen_t *, user_addr_t, socklen_t *, uint32_t *, user_addr_t, uint32_t *); static void in6_if_up_dad_start(struct ifnet *); extern lck_mtx_t *nd6_mutex; extern int in6_init2done; #define IN6IFA_TRACE_HIST_SIZE 32 /* size of trace history */ /* For gdb */ __private_extern__ unsigned int in6ifa_trace_hist_size = IN6IFA_TRACE_HIST_SIZE; struct in6_ifaddr_dbg { struct in6_ifaddr in6ifa; /* in6_ifaddr */ struct in6_ifaddr in6ifa_old; /* saved in6_ifaddr */ u_int16_t in6ifa_refhold_cnt; /* # of IFA_ADDREF */ u_int16_t in6ifa_refrele_cnt; /* # of IFA_REMREF */ /* * Alloc and free callers. */ ctrace_t in6ifa_alloc; ctrace_t in6ifa_free; /* * Circular lists of IFA_ADDREF and IFA_REMREF callers. */ ctrace_t in6ifa_refhold[IN6IFA_TRACE_HIST_SIZE]; ctrace_t in6ifa_refrele[IN6IFA_TRACE_HIST_SIZE]; /* * Trash list linkage */ TAILQ_ENTRY(in6_ifaddr_dbg) in6ifa_trash_link; }; /* List of trash in6_ifaddr entries protected by in6ifa_trash_lock */ static TAILQ_HEAD(, in6_ifaddr_dbg) in6ifa_trash_head; static decl_lck_mtx_data(, in6ifa_trash_lock); #if DEBUG static unsigned int in6ifa_debug = 1; /* debugging (enabled) */ #else static unsigned int in6ifa_debug; /* debugging (disabled) */ #endif /* !DEBUG */ static unsigned int in6ifa_size; /* size of zone element */ static struct zone *in6ifa_zone; /* zone for in6_ifaddr */ #define IN6IFA_ZONE_MAX 64 /* maximum elements in zone */ #define IN6IFA_ZONE_NAME "in6_ifaddr" /* zone name */ /* * Subroutine for in6_ifaddloop() and in6_ifremloop(). * This routine does actual work. */ static void in6_ifloop_request(int cmd, struct ifaddr *ifa) { struct sockaddr_in6 all1_sa; struct rtentry *nrt = NULL; int e; bzero(&all1_sa, sizeof (all1_sa)); all1_sa.sin6_family = AF_INET6; all1_sa.sin6_len = sizeof (struct sockaddr_in6); all1_sa.sin6_addr = in6mask128; /* * We specify the address itself as the gateway, and set the * RTF_LLINFO flag, so that the corresponding host route would have * the flag, and thus applications that assume traditional behavior * would be happy. Note that we assume the caller of the function * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest, * which changes the outgoing interface to the loopback interface. * ifa_addr for INET6 is set once during init; no need to hold lock. */ lck_mtx_lock(rnh_lock); e = rtrequest_locked(cmd, ifa->ifa_addr, ifa->ifa_addr, (struct sockaddr *)&all1_sa, RTF_UP|RTF_HOST|RTF_LLINFO, &nrt); if (e != 0) { log(LOG_ERR, "in6_ifloop_request: " "%s operation failed for %s (errno=%d)\n", cmd == RTM_ADD ? "ADD" : "DELETE", ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr), e); } if (nrt != NULL) RT_LOCK(nrt); /* * Make sure rt_ifa be equal to IFA, the second argument of the * function. * We need this because when we refer to rt_ifa->ia6_flags in * ip6_input, we assume that the rt_ifa points to the address instead * of the loopback address. */ if (cmd == RTM_ADD && nrt && ifa != nrt->rt_ifa) { rtsetifa(nrt, ifa); } /* * Report the addition/removal of the address to the routing socket. * XXX: since we called rtinit for a p2p interface with a destination, * we end up reporting twice in such a case. Should we rather * omit the second report? */ if (nrt != NULL) { rt_newaddrmsg(cmd, ifa, e, nrt); if (cmd == RTM_DELETE) { RT_UNLOCK(nrt); rtfree_locked(nrt); } else { /* the cmd must be RTM_ADD here */ RT_REMREF_LOCKED(nrt); RT_UNLOCK(nrt); } } lck_mtx_unlock(rnh_lock); } /* * Add ownaddr as loopback rtentry. We previously add the route only if * necessary (ex. on a p2p link). However, since we now manage addresses * separately from prefixes, we should always add the route. We can't * rely on the cloning mechanism from the corresponding interface route * any more. */ static void in6_ifaddloop(struct ifaddr *ifa) { struct rtentry *rt; /* * If there is no loopback entry, allocate one. ifa_addr for * INET6 is set once during init; no need to hold lock. */ rt = rtalloc1(ifa->ifa_addr, 0, 0); if (rt != NULL) RT_LOCK(rt); if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 || (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { if (rt != NULL) { RT_REMREF_LOCKED(rt); RT_UNLOCK(rt); } in6_ifloop_request(RTM_ADD, ifa); } else if (rt != NULL) { RT_REMREF_LOCKED(rt); RT_UNLOCK(rt); } } /* * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(), * if it exists. */ static void in6_ifremloop(struct ifaddr *ifa) { struct in6_ifaddr *ia; struct rtentry *rt; int ia_count = 0; /* * Some of BSD variants do not remove cloned routes * from an interface direct route, when removing the direct route * (see comments in net/net_osdep.h). Even for variants that do remove * cloned routes, they could fail to remove the cloned routes when * we handle multple addresses that share a common prefix. * So, we should remove the route corresponding to the deleted address * regardless of the result of in6_is_ifloop_auto(). */ /* * Delete the entry only if exact one ifa exists. More than one ifa * can exist if we assign a same single address to multiple * (probably p2p) interfaces. * XXX: we should avoid such a configuration in IPv6... */ lck_rw_lock_exclusive(&in6_ifaddr_rwlock); for (ia = in6_ifaddrs; ia; ia = ia->ia_next) { IFA_LOCK(&ia->ia_ifa); if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) { ia_count++; if (ia_count > 1) { IFA_UNLOCK(&ia->ia_ifa); break; } } IFA_UNLOCK(&ia->ia_ifa); } lck_rw_done(&in6_ifaddr_rwlock); if (ia_count == 1) { /* * Before deleting, check if a corresponding loopbacked host * route surely exists. With this check, we can avoid to * delete an interface direct route whose destination is same * as the address being removed. This can happen when removing * a subnet-router anycast address on an interface attahced * to a shared medium. ifa_addr for INET6 is set once during * init; no need to hold lock. */ rt = rtalloc1(ifa->ifa_addr, 0, 0); if (rt != NULL) { RT_LOCK(rt); if ((rt->rt_flags & RTF_HOST) != 0 && (rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { RT_REMREF_LOCKED(rt); RT_UNLOCK(rt); in6_ifloop_request(RTM_DELETE, ifa); } else { RT_UNLOCK(rt); } } } } int in6_mask2len(mask, lim0) struct in6_addr *mask; u_char *lim0; { int x = 0, y; u_char *lim = lim0, *p; /* ignore the scope_id part */ if (lim0 == NULL || lim0 - (u_char *)mask > sizeof (*mask)) lim = (u_char *)mask + sizeof (*mask); for (p = (u_char *)mask; p < lim; x++, p++) { if (*p != 0xff) break; } y = 0; if (p < lim) { for (y = 0; y < 8; y++) { if ((*p & (0x80 >> y)) == 0) break; } } /* * when the limit pointer is given, do a stricter check on the * remaining bits. */ if (p < lim) { if (y != 0 && (*p & (0x00ff >> y)) != 0) return (-1); for (p = p + 1; p < lim; p++) if (*p != 0) return (-1); } return (x * 8 + y); } void in6_len2mask(mask, len) struct in6_addr *mask; int len; { int i; bzero(mask, sizeof (*mask)); for (i = 0; i < len / 8; i++) mask->s6_addr8[i] = 0xff; if (len % 8) mask->s6_addr8[i] = (0xff00 >> (len % 8)) & 0xff; } void in6_aliasreq_64_to_32(struct in6_aliasreq_64 *src, struct in6_aliasreq_32 *dst) { bzero(dst, sizeof (*dst)); bcopy(src->ifra_name, dst->ifra_name, sizeof (dst->ifra_name)); dst->ifra_addr = src->ifra_addr; dst->ifra_dstaddr = src->ifra_dstaddr; dst->ifra_prefixmask = src->ifra_prefixmask; dst->ifra_flags = src->ifra_flags; dst->ifra_lifetime.ia6t_expire = src->ifra_lifetime.ia6t_expire; dst->ifra_lifetime.ia6t_preferred = src->ifra_lifetime.ia6t_preferred; dst->ifra_lifetime.ia6t_vltime = src->ifra_lifetime.ia6t_vltime; dst->ifra_lifetime.ia6t_pltime = src->ifra_lifetime.ia6t_pltime; } void in6_aliasreq_32_to_64(struct in6_aliasreq_32 *src, struct in6_aliasreq_64 *dst) { bzero(dst, sizeof (*dst)); bcopy(src->ifra_name, dst->ifra_name, sizeof (dst->ifra_name)); dst->ifra_addr = src->ifra_addr; dst->ifra_dstaddr = src->ifra_dstaddr; dst->ifra_prefixmask = src->ifra_prefixmask; dst->ifra_flags = src->ifra_flags; dst->ifra_lifetime.ia6t_expire = src->ifra_lifetime.ia6t_expire; dst->ifra_lifetime.ia6t_preferred = src->ifra_lifetime.ia6t_preferred; dst->ifra_lifetime.ia6t_vltime = src->ifra_lifetime.ia6t_vltime; dst->ifra_lifetime.ia6t_pltime = src->ifra_lifetime.ia6t_pltime; } #if defined(__LP64__) void in6_llstartreq_32_to_64(struct in6_llstartreq_32 *src, struct in6_llstartreq_64 *dst) { bzero(dst, sizeof (*dst)); bcopy(src->llsr_name, dst->llsr_name, sizeof (dst->llsr_name)); dst->llsr_flags = src->llsr_flags; bcopy(src->llsr_cgaprep.cga_modifier.octets, dst->llsr_cgaprep.cga_modifier.octets, sizeof (dst->llsr_cgaprep.cga_modifier.octets)); dst->llsr_cgaprep.cga_security_level = src->llsr_cgaprep.cga_security_level; dst->llsr_lifetime.ia6t_expire = src->llsr_lifetime.ia6t_expire; dst->llsr_lifetime.ia6t_preferred = src->llsr_lifetime.ia6t_preferred; dst->llsr_lifetime.ia6t_vltime = src->llsr_lifetime.ia6t_vltime; dst->llsr_lifetime.ia6t_pltime = src->llsr_lifetime.ia6t_pltime; } #endif #if !defined(__LP64__) void in6_llstartreq_64_to_32(struct in6_llstartreq_64 *src, struct in6_llstartreq_32 *dst) { bzero(dst, sizeof (*dst)); bcopy(src->llsr_name, dst->llsr_name, sizeof (dst->llsr_name)); dst->llsr_flags = src->llsr_flags; bcopy(src->llsr_cgaprep.cga_modifier.octets, dst->llsr_cgaprep.cga_modifier.octets, sizeof (dst->llsr_cgaprep.cga_modifier.octets)); dst->llsr_cgaprep.cga_security_level = src->llsr_cgaprep.cga_security_level; dst->llsr_lifetime.ia6t_expire = src->llsr_lifetime.ia6t_expire; dst->llsr_lifetime.ia6t_preferred = src->llsr_lifetime.ia6t_preferred; dst->llsr_lifetime.ia6t_vltime = src->llsr_lifetime.ia6t_vltime; dst->llsr_lifetime.ia6t_pltime = src->llsr_lifetime.ia6t_pltime; } #endif static struct in6_aliasreq * in6_aliasreq_to_native(void *data, int data_is_64, struct in6_aliasreq *dst) { #if defined(__LP64__) if (data_is_64) bcopy(data, dst, sizeof (*dst)); else in6_aliasreq_32_to_64((struct in6_aliasreq_32 *)data, (struct in6_aliasreq_64 *)dst); #else if (data_is_64) in6_aliasreq_64_to_32((struct in6_aliasreq_64 *)data, (struct in6_aliasreq_32 *)dst); else bcopy(data, dst, sizeof (*dst)); #endif /* __LP64__ */ return (dst); } static struct in6_llstartreq * in6_llstartreq_to_native(void *data, int is64, struct in6_llstartreq *dst) { #if defined(__LP64__) if (is64) bcopy(data, dst, sizeof (*dst)); else in6_llstartreq_32_to_64((struct in6_llstartreq_32 *)data, (struct in6_llstartreq_64 *)dst); #else if (is64) in6_llstartreq_64_to_32((struct in6_llstartreq_64 *)data, (struct in6_llstartreq_32 *)dst); else bcopy(data, dst, sizeof (*dst)); #endif /* __LP64__ */ return (dst); } static __attribute__((noinline)) int in6ctl_associd(struct socket *so, u_long cmd, caddr_t data) { int error = 0; union { struct so_aidreq32 a32; struct so_aidreq64 a64; } u; VERIFY(so != NULL); switch (cmd) { case SIOCGASSOCIDS32: { /* struct so_aidreq32 */ bcopy(data, &u.a32, sizeof (u.a32)); error = in6_getassocids(so, &u.a32.sar_cnt, u.a32.sar_aidp); if (error == 0) bcopy(&u.a32, data, sizeof (u.a32)); break; } case SIOCGASSOCIDS64: { /* struct so_aidreq64 */ bcopy(data, &u.a64, sizeof (u.a64)); error = in6_getassocids(so, &u.a64.sar_cnt, u.a64.sar_aidp); if (error == 0) bcopy(&u.a64, data, sizeof (u.a64)); break; } default: VERIFY(0); /* NOTREACHED */ } return (error); } static __attribute__((noinline)) int in6ctl_connid(struct socket *so, u_long cmd, caddr_t data) { int error = 0; union { struct so_cidreq32 c32; struct so_cidreq64 c64; } u; VERIFY(so != NULL); switch (cmd) { case SIOCGCONNIDS32: { /* struct so_cidreq32 */ bcopy(data, &u.c32, sizeof (u.c32)); error = in6_getconnids(so, u.c32.scr_aid, &u.c32.scr_cnt, u.c32.scr_cidp); if (error == 0) bcopy(&u.c32, data, sizeof (u.c32)); break; } case SIOCGCONNIDS64: { /* struct so_cidreq64 */ bcopy(data, &u.c64, sizeof (u.c64)); error = in6_getconnids(so, u.c64.scr_aid, &u.c64.scr_cnt, u.c64.scr_cidp); if (error == 0) bcopy(&u.c64, data, sizeof (u.c64)); break; } default: VERIFY(0); /* NOTREACHED */ } return (error); } static __attribute__((noinline)) int in6ctl_conninfo(struct socket *so, u_long cmd, caddr_t data) { int error = 0; union { struct so_cinforeq32 ci32; struct so_cinforeq64 ci64; } u; VERIFY(so != NULL); switch (cmd) { case SIOCGCONNINFO32: { /* struct so_cinforeq32 */ bcopy(data, &u.ci32, sizeof (u.ci32)); error = in6_getconninfo(so, u.ci32.scir_cid, &u.ci32.scir_flags, &u.ci32.scir_ifindex, &u.ci32.scir_error, u.ci32.scir_src, &u.ci32.scir_src_len, u.ci32.scir_dst, &u.ci32.scir_dst_len, &u.ci32.scir_aux_type, u.ci32.scir_aux_data, &u.ci32.scir_aux_len); if (error == 0) bcopy(&u.ci32, data, sizeof (u.ci32)); break; } case SIOCGCONNINFO64: { /* struct so_cinforeq64 */ bcopy(data, &u.ci64, sizeof (u.ci64)); error = in6_getconninfo(so, u.ci64.scir_cid, &u.ci64.scir_flags, &u.ci64.scir_ifindex, &u.ci64.scir_error, u.ci64.scir_src, &u.ci64.scir_src_len, u.ci64.scir_dst, &u.ci64.scir_dst_len, &u.ci64.scir_aux_type, u.ci64.scir_aux_data, &u.ci64.scir_aux_len); if (error == 0) bcopy(&u.ci64, data, sizeof (u.ci64)); break; } default: VERIFY(0); /* NOTREACHED */ } return (error); } static __attribute__((noinline)) int in6ctl_llstart(struct ifnet *ifp, u_long cmd, caddr_t data) { struct in6_aliasreq sifra, *ifra = NULL; boolean_t is64; int error = 0; VERIFY(ifp != NULL); switch (cmd) { case SIOCLL_START_32: /* struct in6_aliasreq_32 */ case SIOCLL_START_64: /* struct in6_aliasreq_64 */ is64 = (cmd == SIOCLL_START_64); /* * Convert user ifra to the kernel form, when appropriate. * This allows the conversion between different data models * to be centralized, so that it can be passed around to other * routines that are expecting the kernel form. */ ifra = in6_aliasreq_to_native(data, is64, &sifra); /* * NOTE: All the interface specific DLIL attachements should * be done here. They are currently done in in6_ifattach_aux() * for the interfaces that need it. */ if ((ifp->if_eflags & IFEF_NOAUTOIPV6LL) != 0 && ifra->ifra_addr.sin6_family == AF_INET6 && /* Only check ifra_dstaddr if valid */ (ifra->ifra_dstaddr.sin6_len == 0 || ifra->ifra_dstaddr.sin6_family == AF_INET6)) { /* some interfaces may provide LinkLocal addresses */ error = in6_ifattach_aliasreq(ifp, NULL, ifra); } else { error = in6_ifattach_aliasreq(ifp, NULL, NULL); } if (error == 0) in6_if_up_dad_start(ifp); break; default: VERIFY(0); /* NOTREACHED */ } return (error); } static __attribute__((noinline)) int in6ctl_llstop(struct ifnet *ifp) { struct in6_ifaddr *ia; VERIFY(ifp != NULL); /* Remove link local addresses from interface */ lck_rw_lock_exclusive(&in6_ifaddr_rwlock); ia = in6_ifaddrs; while (ia != NULL) { if (ia->ia_ifa.ifa_ifp != ifp) { ia = ia->ia_next; continue; } IFA_LOCK(&ia->ia_ifa); if (IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr)) { IFA_ADDREF_LOCKED(&ia->ia_ifa); /* for us */ IFA_UNLOCK(&ia->ia_ifa); lck_rw_done(&in6_ifaddr_rwlock); in6_purgeaddr(&ia->ia_ifa); IFA_REMREF(&ia->ia_ifa); /* for us */ lck_rw_lock_exclusive(&in6_ifaddr_rwlock); /* * Purging the address caused in6_ifaddr_rwlock * to be dropped and reacquired; * therefore search again from the beginning * of in6_ifaddrs list. */ ia = in6_ifaddrs; continue; } IFA_UNLOCK(&ia->ia_ifa); ia = ia->ia_next; } lck_rw_done(&in6_ifaddr_rwlock); return (0); } static __attribute__((noinline)) int in6ctl_cgastart(struct ifnet *ifp, u_long cmd, caddr_t data) { struct in6_llstartreq llsr; int is64, error = 0; VERIFY(ifp != NULL); switch (cmd) { case SIOCLL_CGASTART_32: /* struct in6_llstartreq_32 */ case SIOCLL_CGASTART_64: /* struct in6_llstartreq_64 */ is64 = (cmd == SIOCLL_CGASTART_64); /* * Convert user llstartreq to the kernel form, when appropriate. * This allows the conversion between different data models * to be centralized, so that it can be passed around to other * routines that are expecting the kernel form. */ in6_llstartreq_to_native(data, is64, &llsr); /* * NOTE: All the interface specific DLIL attachements * should be done here. They are currently done in * in6_ifattach_llstartreq() for the interfaces that * need it. */ error = in6_ifattach_llstartreq(ifp, &llsr); if (error == 0) in6_if_up_dad_start(ifp); break; default: VERIFY(0); /* NOTREACHED */ } return (error); } /* * Caller passes in the ioctl data pointer directly via "ifr", with the * expectation that this routine always uses bcopy() or other byte-aligned * memory accesses. */ static __attribute__((noinline)) int in6ctl_gifaddr(struct ifnet *ifp, struct in6_ifaddr *ia, u_long cmd, struct in6_ifreq *ifr) { struct sockaddr_in6 addr; int error = 0; VERIFY(ifp != NULL); if (ia == NULL) return (EADDRNOTAVAIL); switch (cmd) { case SIOCGIFADDR_IN6: /* struct in6_ifreq */ IFA_LOCK(&ia->ia_ifa); bcopy(&ia->ia_addr, &addr, sizeof (addr)); IFA_UNLOCK(&ia->ia_ifa); if ((error = sa6_recoverscope(&addr, TRUE)) != 0) break; bcopy(&addr, &ifr->ifr_addr, sizeof (addr)); break; case SIOCGIFDSTADDR_IN6: /* struct in6_ifreq */ if (!(ifp->if_flags & IFF_POINTOPOINT)) { error = EINVAL; break; } /* * XXX: should we check if ifa_dstaddr is NULL and return * an error? */ IFA_LOCK(&ia->ia_ifa); bcopy(&ia->ia_dstaddr, &addr, sizeof (addr)); IFA_UNLOCK(&ia->ia_ifa); if ((error = sa6_recoverscope(&addr, TRUE)) != 0) break; bcopy(&addr, &ifr->ifr_dstaddr, sizeof (addr)); break; default: VERIFY(0); /* NOTREACHED */ } return (error); } /* * Caller passes in the ioctl data pointer directly via "ifr", with the * expectation that this routine always uses bcopy() or other byte-aligned * memory accesses. */ static __attribute__((noinline)) int in6ctl_gifstat(struct ifnet *ifp, u_long cmd, struct in6_ifreq *ifr) { int error = 0, index; VERIFY(ifp != NULL); index = ifp->if_index; switch (cmd) { case SIOCGIFSTAT_IN6: /* struct in6_ifreq */ /* N.B.: if_inet6data is never freed once set. */ if (IN6_IFEXTRA(ifp) == NULL) { /* return (EAFNOSUPPORT)? */ bzero(&ifr->ifr_ifru.ifru_stat, sizeof (ifr->ifr_ifru.ifru_stat)); } else { bcopy(&IN6_IFEXTRA(ifp)->in6_ifstat, &ifr->ifr_ifru.ifru_stat, sizeof (ifr->ifr_ifru.ifru_stat)); } break; case SIOCGIFSTAT_ICMP6: /* struct in6_ifreq */ /* N.B.: if_inet6data is never freed once set. */ if (IN6_IFEXTRA(ifp) == NULL) { /* return (EAFNOSUPPORT)? */ bzero(&ifr->ifr_ifru.ifru_stat, sizeof (ifr->ifr_ifru.ifru_icmp6stat)); } else { bcopy(&IN6_IFEXTRA(ifp)->icmp6_ifstat, &ifr->ifr_ifru.ifru_icmp6stat, sizeof (ifr->ifr_ifru.ifru_icmp6stat)); } break; default: VERIFY(0); /* NOTREACHED */ } return (error); } /* * Caller passes in the ioctl data pointer directly via "ifr", with the * expectation that this routine always uses bcopy() or other byte-aligned * memory accesses. */ static __attribute__((noinline)) int in6ctl_alifetime(struct in6_ifaddr *ia, u_long cmd, struct in6_ifreq *ifr, boolean_t p64) { uint64_t timenow = net_uptime(); struct in6_addrlifetime ia6_lt; struct timeval caltime; int error = 0; if (ia == NULL) return (EADDRNOTAVAIL); switch (cmd) { case SIOCGIFALIFETIME_IN6: /* struct in6_ifreq */ IFA_LOCK(&ia->ia_ifa); /* retrieve time as calendar time (last arg is 1) */ in6ifa_getlifetime(ia, &ia6_lt, 1); if (p64) { struct in6_addrlifetime_64 lt; bzero(<, sizeof (lt)); lt.ia6t_expire = ia6_lt.ia6t_expire; lt.ia6t_preferred = ia6_lt.ia6t_preferred; lt.ia6t_vltime = ia6_lt.ia6t_vltime; lt.ia6t_pltime = ia6_lt.ia6t_pltime; bcopy(<, &ifr->ifr_ifru.ifru_lifetime, sizeof (lt)); } else { struct in6_addrlifetime_32 lt; bzero(<, sizeof (lt)); lt.ia6t_expire = (uint32_t)ia6_lt.ia6t_expire; lt.ia6t_preferred = (uint32_t)ia6_lt.ia6t_preferred; lt.ia6t_vltime = (uint32_t)ia6_lt.ia6t_vltime; lt.ia6t_pltime = (uint32_t)ia6_lt.ia6t_pltime; bcopy(<, &ifr->ifr_ifru.ifru_lifetime, sizeof (lt)); } IFA_UNLOCK(&ia->ia_ifa); break; case SIOCSIFALIFETIME_IN6: /* struct in6_ifreq */ getmicrotime(&caltime); /* sanity for overflow - beware unsigned */ if (p64) { struct in6_addrlifetime_64 lt; bcopy(&ifr->ifr_ifru.ifru_lifetime, <, sizeof (lt)); if (lt.ia6t_vltime != ND6_INFINITE_LIFETIME && lt.ia6t_vltime + caltime.tv_sec < caltime.tv_sec) { error = EINVAL; break; } if (lt.ia6t_pltime != ND6_INFINITE_LIFETIME && lt.ia6t_pltime + caltime.tv_sec < caltime.tv_sec) { error = EINVAL; break; } } else { struct in6_addrlifetime_32 lt; bcopy(&ifr->ifr_ifru.ifru_lifetime, <, sizeof (lt)); if (lt.ia6t_vltime != ND6_INFINITE_LIFETIME && lt.ia6t_vltime + caltime.tv_sec < caltime.tv_sec) { error = EINVAL; break; } if (lt.ia6t_pltime != ND6_INFINITE_LIFETIME && lt.ia6t_pltime + caltime.tv_sec < caltime.tv_sec) { error = EINVAL; break; } } IFA_LOCK(&ia->ia_ifa); if (p64) { struct in6_addrlifetime_64 lt; bcopy(&ifr->ifr_ifru.ifru_lifetime, <, sizeof (lt)); ia6_lt.ia6t_expire = lt.ia6t_expire; ia6_lt.ia6t_preferred = lt.ia6t_preferred; ia6_lt.ia6t_vltime = lt.ia6t_vltime; ia6_lt.ia6t_pltime = lt.ia6t_pltime; } else { struct in6_addrlifetime_32 lt; bcopy(&ifr->ifr_ifru.ifru_lifetime, <, sizeof (lt)); ia6_lt.ia6t_expire = (uint32_t)lt.ia6t_expire; ia6_lt.ia6t_preferred = (uint32_t)lt.ia6t_preferred; ia6_lt.ia6t_vltime = lt.ia6t_vltime; ia6_lt.ia6t_pltime = lt.ia6t_pltime; } /* for sanity */ if (ia6_lt.ia6t_vltime != ND6_INFINITE_LIFETIME) ia6_lt.ia6t_expire = timenow + ia6_lt.ia6t_vltime; else ia6_lt.ia6t_expire = 0; if (ia6_lt.ia6t_pltime != ND6_INFINITE_LIFETIME) ia6_lt.ia6t_preferred = timenow + ia6_lt.ia6t_pltime; else ia6_lt.ia6t_preferred = 0; in6ifa_setlifetime(ia, &ia6_lt); IFA_UNLOCK(&ia->ia_ifa); break; default: VERIFY(0); /* NOTREACHED */ } return (error); } #define ifa2ia6(ifa) ((struct in6_ifaddr *)(void *)(ifa)) /* * Generic INET6 control operations (ioctl's). * * ifp is NULL if not an interface-specific ioctl. * * Most of the routines called to handle the ioctls would end up being * tail-call optimized, which unfortunately causes this routine to * consume too much stack space; this is the reason for the "noinline" * attribute used on those routines. * * If called directly from within the networking stack (as opposed to via * pru_control), the socket parameter may be NULL. */ int in6_control(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp, struct proc *p) { struct in6_ifreq *ifr = (struct in6_ifreq *)(void *)data; struct in6_aliasreq sifra, *ifra = NULL; struct in6_ifaddr *ia = NULL; struct sockaddr_in6 sin6, *sa6 = NULL; boolean_t privileged = (proc_suser(p) == 0); boolean_t p64 = proc_is64bit(p); boolean_t so_unlocked = FALSE; int intval, error = 0; /* In case it's NULL, make sure it came from the kernel */ VERIFY(so != NULL || p == kernproc); /* * ioctls which don't require ifp, may require socket. */ switch (cmd) { #if MROUTING case SIOCGETSGCNT_IN6: /* struct sioc_sg_req6 */ case SIOCGETMIFCNT_IN6_32: /* struct sioc_mif_req6_32 */ case SIOCGETMIFCNT_IN6_64: /* struct sioc_mif_req6_64 */ return (mrt6_ioctl(cmd, data)); /* NOTREACHED */ #endif /* MROUTING */ case SIOCAADDRCTL_POLICY: /* struct in6_addrpolicy */ case SIOCDADDRCTL_POLICY: /* struct in6_addrpolicy */ if (!privileged) return (EPERM); return (in6_src_ioctl(cmd, data)); /* NOTREACHED */ case SIOCDRADD_IN6_32: /* struct in6_defrouter_32 */ case SIOCDRADD_IN6_64: /* struct in6_defrouter_64 */ case SIOCDRDEL_IN6_32: /* struct in6_defrouter_32 */ case SIOCDRDEL_IN6_64: /* struct in6_defrouter_64 */ if (!privileged) return (EPERM); return (defrtrlist_ioctl(cmd, data)); /* NOTREACHED */ case SIOCGASSOCIDS32: /* struct so_aidreq32 */ case SIOCGASSOCIDS64: /* struct so_aidreq64 */ return (in6ctl_associd(so, cmd, data)); /* NOTREACHED */ case SIOCGCONNIDS32: /* struct so_cidreq32 */ case SIOCGCONNIDS64: /* struct so_cidreq64 */ return (in6ctl_connid(so, cmd, data)); /* NOTREACHED */ case SIOCGCONNINFO32: /* struct so_cinforeq32 */ case SIOCGCONNINFO64: /* struct so_cinforeq64 */ return (in6ctl_conninfo(so, cmd, data)); /* NOTREACHED */ } /* * The rest of ioctls require ifp; reject if we don't have one; * return ENXIO to be consistent with ifioctl(). */ if (ifp == NULL) return (ENXIO); /* * ioctls which require ifp but not interface address. */ switch (cmd) { case SIOCAUTOCONF_START: /* struct in6_ifreq */ if (!privileged) return (EPERM); return (in6_autoconf(ifp, TRUE)); /* NOTREACHED */ case SIOCAUTOCONF_STOP: /* struct in6_ifreq */ if (!privileged) return (EPERM); return (in6_autoconf(ifp, FALSE)); /* NOTREACHED */ case SIOCLL_START_32: /* struct in6_aliasreq_32 */ case SIOCLL_START_64: /* struct in6_aliasreq_64 */ if (!privileged) return (EPERM); return (in6ctl_llstart(ifp, cmd, data)); /* NOTREACHED */ case SIOCLL_STOP: /* struct in6_ifreq */ if (!privileged) return (EPERM); return (in6ctl_llstop(ifp)); /* NOTREACHED */ case SIOCSETROUTERMODE_IN6: /* struct in6_ifreq */ if (!privileged) return (EPERM); bcopy(&((struct in6_ifreq *)(void *)data)->ifr_intval, &intval, sizeof (intval)); return (in6_setrouter(ifp, intval)); /* NOTREACHED */ case SIOCPROTOATTACH_IN6_32: /* struct in6_aliasreq_32 */ case SIOCPROTOATTACH_IN6_64: /* struct in6_aliasreq_64 */ if (!privileged) return (EPERM); return (in6_domifattach(ifp)); /* NOTREACHED */ case SIOCPROTODETACH_IN6: /* struct in6_ifreq */ if (!privileged) return (EPERM); /* Cleanup interface routes and addresses */ in6_purgeif(ifp); if ((error = proto_unplumb(PF_INET6, ifp))) log(LOG_ERR, "SIOCPROTODETACH_IN6: %s error=%d\n", if_name(ifp), error); return (error); /* NOTREACHED */ case SIOCSNDFLUSH_IN6: /* struct in6_ifreq */ case SIOCSPFXFLUSH_IN6: /* struct in6_ifreq */ case SIOCSRTRFLUSH_IN6: /* struct in6_ifreq */ case SIOCSDEFIFACE_IN6_32: /* struct in6_ndifreq_32 */ case SIOCSDEFIFACE_IN6_64: /* struct in6_ndifreq_64 */ case SIOCSIFINFO_FLAGS: /* struct in6_ndireq */ if (!privileged) return (EPERM); /* FALLTHRU */ case OSIOCGIFINFO_IN6: /* struct in6_ondireq */ case SIOCGIFINFO_IN6: /* struct in6_ondireq */ case SIOCGDRLST_IN6_32: /* struct in6_drlist_32 */ case SIOCGDRLST_IN6_64: /* struct in6_drlist_64 */ case SIOCGPRLST_IN6_32: /* struct in6_prlist_32 */ case SIOCGPRLST_IN6_64: /* struct in6_prlist_64 */ case SIOCGNBRINFO_IN6_32: /* struct in6_nbrinfo_32 */ case SIOCGNBRINFO_IN6_64: /* struct in6_nbrinfo_64 */ case SIOCGDEFIFACE_IN6_32: /* struct in6_ndifreq_32 */ case SIOCGDEFIFACE_IN6_64: /* struct in6_ndifreq_64 */ return (nd6_ioctl(cmd, data, ifp)); /* NOTREACHED */ case SIOCSIFPREFIX_IN6: /* struct in6_prefixreq (deprecated) */ case SIOCDIFPREFIX_IN6: /* struct in6_prefixreq (deprecated) */ case SIOCAIFPREFIX_IN6: /* struct in6_rrenumreq (deprecated) */ case SIOCCIFPREFIX_IN6: /* struct in6_rrenumreq (deprecated) */ case SIOCSGIFPREFIX_IN6: /* struct in6_rrenumreq (deprecated) */ case SIOCGIFPREFIX_IN6: /* struct in6_prefixreq (deprecated) */ log(LOG_NOTICE, "prefix ioctls are now invalidated. " "please use ifconfig.\n"); return (EOPNOTSUPP); /* NOTREACHED */ case SIOCSSCOPE6: /* struct in6_ifreq (deprecated) */ case SIOCGSCOPE6: /* struct in6_ifreq (deprecated) */ case SIOCGSCOPE6DEF: /* struct in6_ifreq (deprecated) */ return (EOPNOTSUPP); /* NOTREACHED */ case SIOCALIFADDR: /* struct if_laddrreq */ case SIOCDLIFADDR: /* struct if_laddrreq */ if (!privileged) return (EPERM); /* FALLTHRU */ case SIOCGLIFADDR: { /* struct if_laddrreq */ struct if_laddrreq iflr; bcopy(data, &iflr, sizeof (iflr)); error = in6ctl_lifaddr(ifp, cmd, &iflr, p64); bcopy(&iflr, data, sizeof (iflr)); return (error); /* NOTREACHED */ } case SIOCLL_CGASTART_32: /* struct in6_llstartreq_32 */ case SIOCLL_CGASTART_64: /* struct in6_llstartreq_64 */ if (!privileged) return (EPERM); return (in6ctl_cgastart(ifp, cmd, data)); /* NOTREACHED */ case SIOCGIFSTAT_IN6: /* struct in6_ifreq */ case SIOCGIFSTAT_ICMP6: /* struct in6_ifreq */ return (in6ctl_gifstat(ifp, cmd, ifr)); /* NOTREACHED */ } /* * ioctls which require interface address; obtain sockaddr_in6. */ switch (cmd) { case SIOCSIFADDR_IN6: /* struct in6_ifreq (deprecated) */ case SIOCSIFDSTADDR_IN6: /* struct in6_ifreq (deprecated) */ case SIOCSIFNETMASK_IN6: /* struct in6_ifreq (deprecated) */ /* * Since IPv6 allows a node to assign multiple addresses * on a single interface, SIOCSIFxxx ioctls are deprecated. */ /* we decided to obsolete this command (20000704) */ return (EOPNOTSUPP); /* NOTREACHED */ case SIOCAIFADDR_IN6_32: /* struct in6_aliasreq_32 */ case SIOCAIFADDR_IN6_64: /* struct in6_aliasreq_64 */ if (!privileged) return (EPERM); /* * Convert user ifra to the kernel form, when appropriate. * This allows the conversion between different data models * to be centralized, so that it can be passed around to other * routines that are expecting the kernel form. */ ifra = in6_aliasreq_to_native(data, (cmd == SIOCAIFADDR_IN6_64), &sifra); bcopy(&ifra->ifra_addr, &sin6, sizeof (sin6)); sa6 = &sin6; break; case SIOCDIFADDR_IN6: /* struct in6_ifreq */ case SIOCSIFALIFETIME_IN6: /* struct in6_ifreq */ if (!privileged) return (EPERM); /* FALLTHRU */ case SIOCGIFADDR_IN6: /* struct in6_ifreq */ case SIOCGIFDSTADDR_IN6: /* struct in6_ifreq */ case SIOCGIFNETMASK_IN6: /* struct in6_ifreq */ case SIOCGIFAFLAG_IN6: /* struct in6_ifreq */ case SIOCGIFALIFETIME_IN6: /* struct in6_ifreq */ bcopy(&ifr->ifr_addr, &sin6, sizeof (sin6)); sa6 = &sin6; break; } /* * Find address for this interface, if it exists. * * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation * only, and used the first interface address as the target of other * operations (without checking ifra_addr). This was because netinet * code/API assumed at most 1 interface address per interface. * Since IPv6 allows a node to assign multiple addresses * on a single interface, we almost always look and check the * presence of ifra_addr, and reject invalid ones here. * It also decreases duplicated code among SIOC*_IN6 operations. */ VERIFY(ia == NULL); if (sa6 != NULL && sa6->sin6_family == AF_INET6) { if (IN6_IS_ADDR_LINKLOCAL(&sa6->sin6_addr)) { if (sa6->sin6_addr.s6_addr16[1] == 0) { /* link ID is not embedded by the user */ sa6->sin6_addr.s6_addr16[1] = htons(ifp->if_index); } else if (sa6->sin6_addr.s6_addr16[1] != htons(ifp->if_index)) { return (EINVAL); /* link ID contradicts */ } if (sa6->sin6_scope_id) { if (sa6->sin6_scope_id != (u_int32_t)ifp->if_index) return (EINVAL); sa6->sin6_scope_id = 0; /* XXX: good way? */ } } /* * Any failures from this point on must take into account * a non-NULL "ia" with an outstanding reference count, and * therefore requires IFA_REMREF. Jump to "done" label * instead of calling return if "ia" is valid. */ ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr); } /* * SIOCDIFADDR_IN6/SIOCAIFADDR_IN6 specific tests. */ switch (cmd) { case SIOCDIFADDR_IN6: /* struct in6_ifreq */ if (ia == NULL) return (EADDRNOTAVAIL); /* FALLTHROUGH */ case SIOCAIFADDR_IN6_32: /* struct in6_aliasreq_32 */ case SIOCAIFADDR_IN6_64: /* struct in6_aliasreq_64 */ VERIFY(sa6 != NULL); /* * We always require users to specify a valid IPv6 address for * the corresponding operation. Use "sa6" instead of "ifra" * since SIOCDIFADDR_IN6 falls thru above. */ if (sa6->sin6_family != AF_INET6 || sa6->sin6_len != sizeof (struct sockaddr_in6)) { error = EAFNOSUPPORT; goto done; } break; } /* * Unlock the socket since ifnet_ioctl() may be invoked by * one of the ioctl handlers below. Socket will be re-locked * prior to returning. */ if (so != NULL) { socket_unlock(so, 0); so_unlocked = TRUE; } /* * And finally process address-related ioctls. */ switch (cmd) { case SIOCGIFADDR_IN6: /* struct in6_ifreq */ /* This interface is basically deprecated. use SIOCGIFCONF. */ /* FALLTHRU */ case SIOCGIFDSTADDR_IN6: /* struct in6_ifreq */ error = in6ctl_gifaddr(ifp, ia, cmd, ifr); break; case SIOCGIFNETMASK_IN6: /* struct in6_ifreq */ if (ia != NULL) { IFA_LOCK(&ia->ia_ifa); bcopy(&ia->ia_prefixmask, &ifr->ifr_addr, sizeof (struct sockaddr_in6)); IFA_UNLOCK(&ia->ia_ifa); } else { error = EADDRNOTAVAIL; } break; case SIOCGIFAFLAG_IN6: /* struct in6_ifreq */ if (ia != NULL) { IFA_LOCK(&ia->ia_ifa); bcopy(&ia->ia6_flags, &ifr->ifr_ifru.ifru_flags6, sizeof (ifr->ifr_ifru.ifru_flags6)); IFA_UNLOCK(&ia->ia_ifa); } else { error = EADDRNOTAVAIL; } break; case SIOCGIFALIFETIME_IN6: /* struct in6_ifreq */ case SIOCSIFALIFETIME_IN6: /* struct in6_ifreq */ error = in6ctl_alifetime(ia, cmd, ifr, p64); break; case SIOCAIFADDR_IN6_32: /* struct in6_aliasreq_32 */ case SIOCAIFADDR_IN6_64: /* struct in6_aliasreq_64 */ error = in6ctl_aifaddr(ifp, ifra); break; case SIOCDIFADDR_IN6: in6ctl_difaddr(ifp, ia); break; default: error = ifnet_ioctl(ifp, PF_INET6, cmd, data); break; } done: if (ia != NULL) IFA_REMREF(&ia->ia_ifa); if (so_unlocked) socket_lock(so, 0); return (error); } static __attribute__((noinline)) int in6ctl_aifaddr(struct ifnet *ifp, struct in6_aliasreq *ifra) { int i, error, addtmp, plen; struct nd_prefix pr0, *pr; struct in6_ifaddr *ia; VERIFY(ifp != NULL && ifra != NULL); ia = NULL; /* Attempt to attach the protocol, in case it isn't attached */ error = in6_domifattach(ifp); if (error == 0) { /* PF_INET6 wasn't previously attached */ error = in6_ifattach_aliasreq(ifp, NULL, NULL); if (error != 0) goto done; in6_if_up_dad_start(ifp); } else if (error != EEXIST) { goto done; } /* * First, make or update the interface address structure, and link it * to the list. */ error = in6_update_ifa(ifp, ifra, 0, &ia); if (error != 0) goto done; VERIFY(ia != NULL); /* Now, make the prefix on-link on the interface. */ plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, NULL); if (plen == 128) goto done; /* * NOTE: We'd rather create the prefix before the address, but we need * at least one address to install the corresponding interface route, * so we configure the address first. */ /* * Convert mask to prefix length (prefixmask has already been validated * in in6_update_ifa(). */ bzero(&pr0, sizeof (pr0)); pr0.ndpr_plen = plen; pr0.ndpr_ifp = ifp; pr0.ndpr_prefix = ifra->ifra_addr; pr0.ndpr_mask = ifra->ifra_prefixmask.sin6_addr; /* apply the mask for safety. */ for (i = 0; i < 4; i++) { pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= ifra->ifra_prefixmask.sin6_addr.s6_addr32[i]; } /* * Since we don't have an API to set prefix (not address) lifetimes, we * just use the same lifetimes as addresses. The (temporarily) * installed lifetimes can be overridden by later advertised RAs (when * accept_rtadv is non 0), which is an intended behavior. */ pr0.ndpr_raf_onlink = 1; /* should be configurable? */ pr0.ndpr_raf_auto = !!(ifra->ifra_flags & IN6_IFF_AUTOCONF); pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime; pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime; pr0.ndpr_stateflags |= NDPRF_STATIC; lck_mtx_init(&pr0.ndpr_lock, ifa_mtx_grp, ifa_mtx_attr); /* add the prefix if there's one. */ if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { /* * nd6_prelist_add will install the corresponding interface * route. */ error = nd6_prelist_add(&pr0, NULL, &pr, FALSE); if (error != 0) goto done; if (pr == NULL) { log(LOG_ERR, "%s: nd6_prelist_add okay, but" " no prefix.\n", __func__); error = EINVAL; goto done; } } IFA_LOCK(&ia->ia_ifa); /* if this is a new autoconfed addr */ addtmp = FALSE; if ((ia->ia6_flags & IN6_IFF_AUTOCONF) != 0 && ia->ia6_ndpr == NULL) { NDPR_LOCK(pr); ++pr->ndpr_addrcnt; VERIFY(pr->ndpr_addrcnt != 0); ia->ia6_ndpr = pr; NDPR_ADDREF_LOCKED(pr); /* for addr reference */ /* * If this is the first autoconf address from the prefix, * create a temporary address as well (when specified). */ addtmp = (ip6_use_tempaddr && pr->ndpr_addrcnt == 1); NDPR_UNLOCK(pr); } IFA_UNLOCK(&ia->ia_ifa); if (addtmp) { int e; e = in6_tmpifadd(ia, 1); if (e != 0) log(LOG_NOTICE, "%s: failed to create a" " temporary address, error=%d\n", __func__, e); } /* * This might affect the status of autoconfigured addresses, that is, * this address might make other addresses detached. */ lck_mtx_lock(nd6_mutex); pfxlist_onlink_check(); lck_mtx_unlock(nd6_mutex); /* Drop use count held above during lookup/add */ NDPR_REMREF(pr); done: if (ia != NULL) IFA_REMREF(&ia->ia_ifa); return (error); } static __attribute__((noinline)) void in6ctl_difaddr(struct ifnet *ifp, struct in6_ifaddr *ia) { int i = 0; struct nd_prefix pr0, *pr; VERIFY(ifp != NULL && ia != NULL); /* * If the address being deleted is the only one that owns * the corresponding prefix, expire the prefix as well. * XXX: theoretically, we don't have to worry about such * relationship, since we separate the address management * and the prefix management. We do this, however, to provide * as much backward compatibility as possible in terms of * the ioctl operation. * Note that in6_purgeaddr() will decrement ndpr_addrcnt. */ IFA_LOCK(&ia->ia_ifa); bzero(&pr0, sizeof (pr0)); pr0.ndpr_ifp = ifp; pr0.ndpr_plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); if (pr0.ndpr_plen == 128) { IFA_UNLOCK(&ia->ia_ifa); goto purgeaddr; } pr0.ndpr_prefix = ia->ia_addr; pr0.ndpr_mask = ia->ia_prefixmask.sin6_addr; for (i = 0; i < 4; i++) { pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= ia->ia_prefixmask.sin6_addr.s6_addr32[i]; } IFA_UNLOCK(&ia->ia_ifa); /* * The logic of the following condition is a bit complicated. * We expire the prefix when * 1. the address obeys autoconfiguration and it is the * only owner of the associated prefix, or * 2. the address does not obey autoconf and there is no * other owner of the prefix. */ if ((pr = nd6_prefix_lookup(&pr0)) != NULL) { IFA_LOCK(&ia->ia_ifa); NDPR_LOCK(pr); if (((ia->ia6_flags & IN6_IFF_AUTOCONF) != 0 && pr->ndpr_addrcnt == 1) || ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0 && pr->ndpr_addrcnt == 0)) { /* XXX: just for expiration */ pr->ndpr_expire = 1; } NDPR_UNLOCK(pr); IFA_UNLOCK(&ia->ia_ifa); /* Drop use count held above during lookup */ NDPR_REMREF(pr); } purgeaddr: in6_purgeaddr(&ia->ia_ifa); } static __attribute__((noinline)) int in6_autoconf(struct ifnet *ifp, int enable) { int error = 0; VERIFY(ifp != NULL); if (ifp->if_flags & IFF_LOOPBACK) return (EINVAL); if (enable) { /* * An interface in IPv6 router mode implies that it * is either configured with a static IP address or * autoconfigured via a locally-generated RA. Prevent * SIOCAUTOCONF_START from being set in that mode. */ ifnet_lock_exclusive(ifp); if (ifp->if_eflags & IFEF_IPV6_ROUTER) { ifp->if_eflags &= ~IFEF_ACCEPT_RTADV; error = EBUSY; } else { ifp->if_eflags |= IFEF_ACCEPT_RTADV; } ifnet_lock_done(ifp); } else { struct in6_ifaddr *ia = NULL; ifnet_lock_exclusive(ifp); ifp->if_eflags &= ~IFEF_ACCEPT_RTADV; ifnet_lock_done(ifp); /* Remove autoconfigured address from interface */ lck_rw_lock_exclusive(&in6_ifaddr_rwlock); ia = in6_ifaddrs; while (ia != NULL) { if (ia->ia_ifa.ifa_ifp != ifp) { ia = ia->ia_next; continue; } IFA_LOCK(&ia->ia_ifa); if (ia->ia6_flags & IN6_IFF_AUTOCONF) { IFA_ADDREF_LOCKED(&ia->ia_ifa); /* for us */ IFA_UNLOCK(&ia->ia_ifa); lck_rw_done(&in6_ifaddr_rwlock); in6_purgeaddr(&ia->ia_ifa); IFA_REMREF(&ia->ia_ifa); /* for us */ lck_rw_lock_exclusive(&in6_ifaddr_rwlock); /* * Purging the address caused in6_ifaddr_rwlock * to be dropped and reacquired; * therefore search again from the beginning * of in6_ifaddrs list. */ ia = in6_ifaddrs; continue; } IFA_UNLOCK(&ia->ia_ifa); ia = ia->ia_next; } lck_rw_done(&in6_ifaddr_rwlock); } return (error); } /* * Handle SIOCSETROUTERMODE_IN6 to set or clear the IPv6 router mode flag on * the interface. Entering or exiting this mode will result in the removal of * autoconfigured IPv6 addresses on the interface. */ static __attribute__((noinline)) int in6_setrouter(struct ifnet *ifp, int enable) { VERIFY(ifp != NULL); if (ifp->if_flags & IFF_LOOPBACK) return (ENODEV); if (enable) { struct nd_ifinfo *ndi; lck_rw_lock_shared(nd_if_rwlock); ndi = ND_IFINFO(ifp); if (ndi != NULL && ndi->initialized) { lck_mtx_lock(&ndi->lock); if (ndi->flags & ND6_IFF_PROXY_PREFIXES) { /* No proxy if we are an advertising router */ ndi->flags &= ~ND6_IFF_PROXY_PREFIXES; lck_mtx_unlock(&ndi->lock); lck_rw_done(nd_if_rwlock); (void) nd6_if_prproxy(ifp, FALSE); } else { lck_mtx_unlock(&ndi->lock); lck_rw_done(nd_if_rwlock); } } else { lck_rw_done(nd_if_rwlock); } } ifnet_lock_exclusive(ifp); if (enable) { ifp->if_eflags |= IFEF_IPV6_ROUTER; } else { ifp->if_eflags &= ~IFEF_IPV6_ROUTER; } ifnet_lock_done(ifp); lck_mtx_lock(nd6_mutex); defrouter_select(ifp); lck_mtx_unlock(nd6_mutex); if_allmulti(ifp, enable); return (in6_autoconf(ifp, FALSE)); } static int in6_to_kamescope(struct sockaddr_in6 *sin6, struct ifnet *ifp) { struct sockaddr_in6 tmp; int error, id; VERIFY(sin6 != NULL); tmp = *sin6; error = in6_recoverscope(&tmp, &sin6->sin6_addr, ifp); if (error != 0) return (error); id = in6_addr2scopeid(ifp, &tmp.sin6_addr); if (tmp.sin6_scope_id == 0) tmp.sin6_scope_id = id; else if (tmp.sin6_scope_id != id) return (EINVAL); /* scope ID mismatch. */ error = in6_embedscope(&tmp.sin6_addr, &tmp, NULL, NULL, NULL); if (error != 0) return (error); tmp.sin6_scope_id = 0; *sin6 = tmp; return (0); } static int in6_ifaupdate_aux(struct in6_ifaddr *ia, struct ifnet *ifp, int ifaupflags) { struct sockaddr_in6 mltaddr, mltmask; struct in6_addr llsol; struct ifaddr *ifa; struct in6_multi *in6m_sol; struct in6_multi_mship *imm; struct rtentry *rt; int delay, error; VERIFY(ifp != NULL && ia != NULL); ifa = &ia->ia_ifa; in6m_sol = NULL; /* * Mark the address as tentative before joining multicast addresses, * so that corresponding MLD responses would not have a tentative * source address. */ ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /* safety */ if (in6if_do_dad(ifp)) in6_ifaddr_set_dadprogress(ia); /* Join necessary multicast groups */ if ((ifp->if_flags & IFF_MULTICAST) != 0) { /* join solicited multicast addr for new host id */ bzero(&llsol, sizeof (struct in6_addr)); llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL; llsol.s6_addr32[1] = 0; llsol.s6_addr32[2] = htonl(1); llsol.s6_addr32[3] = ia->ia_addr.sin6_addr.s6_addr32[3]; llsol.s6_addr8[12] = 0xff; if ((error = in6_setscope(&llsol, ifp, NULL)) != 0) { /* XXX: should not happen */ log(LOG_ERR, "%s: in6_setscope failed\n", __func__); goto unwind; } delay = 0; if ((ifaupflags & IN6_IFAUPDATE_DADDELAY)) { /* * We need a random delay for DAD on the address * being configured. It also means delaying * transmission of the corresponding MLD report to * avoid report collision. [RFC 4862] */ delay = random() % MAX_RTR_SOLICITATION_DELAY; } imm = in6_joingroup(ifp, &llsol, &error, delay); if (imm == NULL) { nd6log((LOG_WARNING, "%s: addmulti failed for %s on %s (errno=%d)\n", __func__, ip6_sprintf(&llsol), if_name(ifp), error)); VERIFY(error != 0); goto unwind; } in6m_sol = imm->i6mm_maddr; /* take a refcount for this routine */ IN6M_ADDREF(in6m_sol); IFA_LOCK_SPIN(ifa); LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); IFA_UNLOCK(ifa); bzero(&mltmask, sizeof (mltmask)); mltmask.sin6_len = sizeof (struct sockaddr_in6); mltmask.sin6_family = AF_INET6; mltmask.sin6_addr = in6mask32; #define MLTMASK_LEN 4 /* mltmask's masklen (=32bit=4octet) */ /* * join link-local all-nodes address */ bzero(&mltaddr, sizeof (mltaddr)); mltaddr.sin6_len = sizeof (struct sockaddr_in6); mltaddr.sin6_family = AF_INET6; mltaddr.sin6_addr = in6addr_linklocal_allnodes; if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 0) goto unwind; /* XXX: should not fail */ /* * XXX: do we really need this automatic routes? * We should probably reconsider this stuff. Most applications * actually do not need the routes, since they usually specify * the outgoing interface. */ rt = rtalloc1_scoped((struct sockaddr *)&mltaddr, 0, 0UL, ia->ia_ifp->if_index); if (rt) { if (memcmp(&mltaddr.sin6_addr, &((struct sockaddr_in6 *) (void *)rt_key(rt))->sin6_addr, MLTMASK_LEN)) { rtfree(rt); rt = NULL; } } if (!rt) { error = rtrequest_scoped(RTM_ADD, (struct sockaddr *)&mltaddr, (struct sockaddr *)&ia->ia_addr, (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING, NULL, ia->ia_ifp->if_index); if (error) goto unwind; } else { rtfree(rt); } imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0); if (!imm) { nd6log((LOG_WARNING, "%s: addmulti failed for %s on %s (errno=%d)\n", __func__, ip6_sprintf(&mltaddr.sin6_addr), if_name(ifp), error)); VERIFY(error != 0); goto unwind; } IFA_LOCK_SPIN(ifa); LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); IFA_UNLOCK(ifa); /* * join node information group address */ #define hostnamelen strlen(hostname) delay = 0; if ((ifaupflags & IN6_IFAUPDATE_DADDELAY)) { /* * The spec doesn't say anything about delay for this * group, but the same logic should apply. */ delay = random() % MAX_RTR_SOLICITATION_DELAY; } if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr.sin6_addr) == 0) { imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, delay); /* XXX jinmei */ if (!imm) { nd6log((LOG_WARNING, "%s: addmulti failed for %s on %s " "(errno=%d)\n", __func__, ip6_sprintf(&mltaddr.sin6_addr), if_name(ifp), error)); /* XXX not very fatal, go on... */ error = 0; } else { IFA_LOCK_SPIN(ifa); LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); IFA_UNLOCK(ifa); } } #undef hostnamelen /* * join interface-local all-nodes address. * (ff01::1%ifN, and ff01::%ifN/32) */ mltaddr.sin6_addr = in6addr_nodelocal_allnodes; if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 0) goto unwind; /* XXX: should not fail */ /* XXX: again, do we really need the route? */ rt = rtalloc1_scoped((struct sockaddr *)&mltaddr, 0, 0UL, ia->ia_ifp->if_index); if (rt) { if (memcmp(&mltaddr.sin6_addr, &((struct sockaddr_in6 *) (void *)rt_key(rt))->sin6_addr, MLTMASK_LEN)) { rtfree(rt); rt = NULL; } } if (!rt) { error = rtrequest_scoped(RTM_ADD, (struct sockaddr *)&mltaddr, (struct sockaddr *)&ia->ia_addr, (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING, NULL, ia->ia_ifp->if_index); if (error) goto unwind; } else rtfree(rt); imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0); if (!imm) { nd6log((LOG_WARNING, "%s: addmulti failed for %s on %s (errno=%d)\n", __func__, ip6_sprintf(&mltaddr.sin6_addr), if_name(ifp), error)); VERIFY(error != 0); goto unwind; } IFA_LOCK(ifa); LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); IFA_UNLOCK(ifa); } #undef MLTMASK_LEN /* * Make sure to initialize ND6 information. this is to workaround * issues with interfaces with IPv6 addresses, which have never brought * up. We are assuming that it is safe to nd6_ifattach multiple times. * NOTE: this is how stf0 gets initialized */ if ((error = nd6_ifattach(ifp)) != 0) goto unwind; /* Ensure nd6_service() is scheduled as soon as it's convenient */ ++nd6_sched_timeout_want; /* * Perform DAD, if needed. * XXX It may be of use, if we can administratively * disable DAD. */ IFA_LOCK_SPIN(ifa); if (in6if_do_dad(ifp) && ((ifa->ifa_flags & IN6_IFF_NODAD) == 0) && (ia->ia6_flags & IN6_IFF_DADPROGRESS)) { int mindelay, maxdelay; int *delayptr, delayval; IFA_UNLOCK(ifa); delayptr = NULL; if ((ifaupflags & IN6_IFAUPDATE_DADDELAY)) { /* * We need to impose a delay before sending an NS * for DAD. Check if we also needed a delay for the * corresponding MLD message. If we did, the delay * should be larger than the MLD delay (this could be * relaxed a bit, but this simple logic is at least * safe). */ mindelay = 0; if (in6m_sol != NULL) { IN6M_LOCK(in6m_sol); if (in6m_sol->in6m_state == MLD_REPORTING_MEMBER) mindelay = in6m_sol->in6m_timer; IN6M_UNLOCK(in6m_sol); } maxdelay = MAX_RTR_SOLICITATION_DELAY * hz; if (maxdelay - mindelay == 0) delayval = 0; else { delayval = (random() % (maxdelay - mindelay)) + mindelay; } delayptr = &delayval; } nd6_dad_start((struct ifaddr *)ia, delayptr); } else { IFA_UNLOCK(ifa); } goto done; unwind: VERIFY(error != 0); in6_purgeaddr(&ia->ia_ifa); done: /* release reference held for this routine */ if (in6m_sol != NULL) IN6M_REMREF(in6m_sol); return (error); } /* * Request an IPv6 interface address. If the address is new, then it will be * constructed and appended to the interface address chains. The interface * address structure is optionally returned with a reference for the caller. */ int in6_update_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, int ifaupflags, struct in6_ifaddr **iar) { struct in6_addrlifetime ia6_lt; struct in6_ifaddr *ia; struct ifaddr *ifa; struct ifaddr *xifa; struct in6_addrlifetime *lt; uint64_t timenow; int plen, error; /* Sanity check parameters and initialize locals */ VERIFY(ifp != NULL && ifra != NULL && iar != NULL); ia = NULL; ifa = NULL; error = 0; /* * We always require users to specify a valid IPv6 address for * the corresponding operation. */ if (ifra->ifra_addr.sin6_family != AF_INET6 || ifra->ifra_addr.sin6_len != sizeof (struct sockaddr_in6)) { error = EAFNOSUPPORT; goto unwind; } /* Validate ifra_prefixmask.sin6_len is properly bounded. */ if (ifra->ifra_prefixmask.sin6_len == 0 || ifra->ifra_prefixmask.sin6_len > sizeof (struct sockaddr_in6)) { error = EINVAL; goto unwind; } /* Validate prefix length extracted from ifra_prefixmask structure. */ plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, (u_char *)&ifra->ifra_prefixmask + ifra->ifra_prefixmask.sin6_len); if (plen <= 0) { error = EINVAL; goto unwind; } /* Validate lifetimes */ lt = &ifra->ifra_lifetime; if (lt->ia6t_pltime > lt->ia6t_vltime) { log(LOG_INFO, "%s: pltime 0x%x > vltime 0x%x for %s\n", __func__, lt->ia6t_pltime, lt->ia6t_vltime, ip6_sprintf(&ifra->ifra_addr.sin6_addr)); error = EINVAL; goto unwind; } if (lt->ia6t_vltime == 0) { /* * the following log might be noisy, but this is a typical * configuration mistake or a tool's bug. */ log(LOG_INFO, "%s: valid lifetime is 0 for %s\n", __func__, ip6_sprintf(&ifra->ifra_addr.sin6_addr)); } /* * Before we lock the ifnet structure, we first check to see if the * address already exists. If so, then we don't allocate and link a * new one here. */ ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr); if (ia != NULL) ifa = &ia->ia_ifa; /* * Validate destination address on interface types that require it. */ if ((ifp->if_flags & (IFF_LOOPBACK|IFF_POINTOPOINT)) != 0) { switch (ifra->ifra_dstaddr.sin6_family) { case AF_INET6: if (plen != 128) { /* noisy message for diagnostic purposes */ log(LOG_INFO, "%s: prefix length < 128 with" " explicit dstaddr.\n", __func__); error = EINVAL; goto unwind; } break; case AF_UNSPEC: break; default: error = EAFNOSUPPORT; goto unwind; } } else if (ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) { log(LOG_INFO, "%s: dstaddr valid only on p2p and loopback interfaces.\n", __func__); error = EINVAL; goto unwind; } timenow = net_uptime(); if (ia == NULL) { int how; /* Is this the first new IPv6 address for the interface? */ ifaupflags |= IN6_IFAUPDATE_NEWADDR; /* Allocate memory for IPv6 interface address structure. */ how = !(ifaupflags & IN6_IFAUPDATE_NOWAIT) ? M_WAITOK : 0; ia = in6_ifaddr_alloc(how); if (ia == NULL) { error = ENOBUFS; goto unwind; } ifa = &ia->ia_ifa; /* * Initialize interface address structure. * * Note well: none of these sockaddr_in6 structures contain a * valid sin6_port, sin6_flowinfo or even a sin6_scope_id field. * We still embed link-local scope identifiers at the end of an * arbitrary fe80::/32 prefix, for historical reasons. Also, the * ifa_dstaddr field is always non-NULL on point-to-point and * loopback interfaces, and conventionally points to a socket * address of AF_UNSPEC family when there is no destination. * * Please enjoy the dancing sea turtle. */ IFA_ADDREF(ifa); /* for this and optionally for caller */ ifa->ifa_addr = (struct sockaddr *)&ia->ia_addr; if (ifra->ifra_dstaddr.sin6_family == AF_INET6 || (ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) ifa->ifa_dstaddr = (struct sockaddr *)&ia->ia_dstaddr; ifa->ifa_netmask = (struct sockaddr *)&ia->ia_prefixmask; ifa->ifa_ifp = ifp; ifa->ifa_metric = ifp->if_metric; ifa->ifa_rtrequest = nd6_rtrequest; LIST_INIT(&ia->ia6_memberships); ia->ia_addr.sin6_family = AF_INET6; ia->ia_addr.sin6_len = sizeof (ia->ia_addr); ia->ia_addr.sin6_addr = ifra->ifra_addr.sin6_addr; ia->ia_prefixmask.sin6_family = AF_INET6; ia->ia_prefixmask.sin6_len = sizeof (ia->ia_prefixmask); ia->ia_prefixmask.sin6_addr = ifra->ifra_prefixmask.sin6_addr; error = in6_to_kamescope(&ia->ia_addr, ifp); if (error != 0) goto unwind; if (ifa->ifa_dstaddr != NULL) { ia->ia_dstaddr = ifra->ifra_dstaddr; error = in6_to_kamescope(&ia->ia_dstaddr, ifp); if (error != 0) goto unwind; } /* Append to address chains */ ifnet_lock_exclusive(ifp); ifaupflags |= IN6_IFAUPDATE_1STADDR; TAILQ_FOREACH(xifa, &ifp->if_addrlist, ifa_list) { IFA_LOCK_SPIN(xifa); if (xifa->ifa_addr->sa_family != AF_INET6) { IFA_UNLOCK(xifa); ifaupflags &= ~IN6_IFAUPDATE_1STADDR; break; } IFA_UNLOCK(xifa); } IFA_LOCK_SPIN(ifa); if_attach_ifa(ifp, ifa); /* holds reference for ifnet link */ IFA_UNLOCK(ifa); ifnet_lock_done(ifp); lck_rw_lock_exclusive(&in6_ifaddr_rwlock); if (in6_ifaddrs != NULL) { struct in6_ifaddr *iac; for (iac = in6_ifaddrs; iac->ia_next != NULL; iac = iac->ia_next) continue; iac->ia_next = ia; } else { in6_ifaddrs = ia; } IFA_ADDREF(ifa); /* hold for in6_ifaddrs link */ lck_rw_done(&in6_ifaddr_rwlock); } else { ifa = &ia->ia_ifa; ifaupflags &= ~(IN6_IFAUPDATE_NEWADDR|IN6_IFAUPDATE_1STADDR); } VERIFY(ia != NULL && ifa == &ia->ia_ifa); IFA_LOCK(ifa); /* * Set lifetimes. We do not refer to ia6t_expire and ia6t_preferred * to see if the address is deprecated or invalidated, but initialize * these members for applications. */ ia->ia6_updatetime = ia->ia6_createtime = timenow; ia6_lt = *lt; if (ia6_lt.ia6t_vltime != ND6_INFINITE_LIFETIME) ia6_lt.ia6t_expire = timenow + ia6_lt.ia6t_vltime; else ia6_lt.ia6t_expire = 0; if (ia6_lt.ia6t_pltime != ND6_INFINITE_LIFETIME) ia6_lt.ia6t_preferred = timenow + ia6_lt.ia6t_pltime; else ia6_lt.ia6t_preferred = 0; in6ifa_setlifetime(ia, &ia6_lt); /* * Backward compatibility - if IN6_IFF_DEPRECATED is set from the * userland, make it deprecated. */ if ((ia->ia6_flags & IN6_IFF_DEPRECATED) != 0) { ia->ia6_lifetime.ia6ti_pltime = 0; ia->ia6_lifetime.ia6ti_preferred = timenow; } /* * Do not delay sending neighbor solicitations when using optimistic * duplicate address detection, c.f. RFC 4429. */ if ((ia->ia6_flags & IN6_IFF_OPTIMISTIC) == 0) ifaupflags |= IN6_IFAUPDATE_DADDELAY; /* * Update flag or prefix length */ ia->ia_plen = plen; ia->ia6_flags = ifra->ifra_flags; /* Release locks (new address available to concurrent tasks) */ IFA_UNLOCK(ifa); /* Further initialization of the interface address */ error = in6_ifinit(ifp, ia, ifaupflags); if (error != 0) goto unwind; /* Finish updating the address while other tasks are working with it */ error = in6_ifaupdate_aux(ia, ifp, ifaupflags); if (error != 0) goto unwind; /* Return success (optionally w/ address for caller). */ VERIFY(error == 0); (void) ifnet_notify_address(ifp, AF_INET6); goto done; unwind: VERIFY(error != 0); if (ia != NULL) { VERIFY(ifa == &ia->ia_ifa); IFA_REMREF(ifa); ia = NULL; } done: *iar = ia; return (error); } void in6_purgeaddr(struct ifaddr *ifa) { struct ifnet *ifp = ifa->ifa_ifp; struct in6_ifaddr *ia = (struct in6_ifaddr *)ifa; struct in6_multi_mship *imm; lck_mtx_assert(nd6_mutex, LCK_MTX_ASSERT_NOTOWNED); /* stop DAD processing */ nd6_dad_stop(ifa); /* * delete route to the destination of the address being purged. * The interface must be p2p or loopback in this case. */ IFA_LOCK(ifa); if ((ia->ia_flags & IFA_ROUTE) && ia->ia_plen == 128) { int error, rtf; IFA_UNLOCK(ifa); rtf = (ia->ia_dstaddr.sin6_family == AF_INET6) ? RTF_HOST : 0; error = rtinit(&(ia->ia_ifa), RTM_DELETE, rtf); if (error != 0) { log(LOG_ERR, "in6_purgeaddr: failed to remove " "a route to the p2p destination: %s on %s, " "errno=%d\n", ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp), error); /* proceed anyway... */ } IFA_LOCK_SPIN(ifa); ia->ia_flags &= ~IFA_ROUTE; } IFA_UNLOCK(ifa); /* Remove ownaddr's loopback rtentry, if it exists. */ in6_ifremloop(&(ia->ia_ifa)); /* * leave from multicast groups we have joined for the interface */ IFA_LOCK(ifa); while ((imm = ia->ia6_memberships.lh_first) != NULL) { LIST_REMOVE(imm, i6mm_chain); IFA_UNLOCK(ifa); in6_leavegroup(imm); IFA_LOCK(ifa); } IFA_UNLOCK(ifa); /* in6_unlink_ifa() will need exclusive access */ in6_unlink_ifa(ia, ifp); in6_post_msg(ifp, KEV_INET6_ADDR_DELETED, ia); (void) ifnet_notify_address(ifp, AF_INET6); } static void in6_unlink_ifa(struct in6_ifaddr *ia, struct ifnet *ifp) { struct in6_ifaddr *oia; struct ifaddr *ifa; int unlinked; lck_mtx_assert(nd6_mutex, LCK_MTX_ASSERT_NOTOWNED); ifa = &ia->ia_ifa; IFA_ADDREF(ifa); ifnet_lock_exclusive(ifp); IFA_LOCK(ifa); if (ifa->ifa_debug & IFD_ATTACHED) if_detach_ifa(ifp, ifa); IFA_UNLOCK(ifa); ifnet_lock_done(ifp); unlinked = 1; lck_rw_lock_exclusive(&in6_ifaddr_rwlock); oia = ia; if (oia == (ia = in6_ifaddrs)) { in6_ifaddrs = ia->ia_next; } else { while (ia->ia_next && (ia->ia_next != oia)) ia = ia->ia_next; if (ia->ia_next) { ia->ia_next = oia->ia_next; } else { /* search failed */ log(LOG_NOTICE, "%s: search failed.\n", __func__); unlinked = 0; } } /* * When an autoconfigured address is being removed, release the * reference to the base prefix. Also, since the release might * affect the status of other (detached) addresses, call * pfxlist_onlink_check(). */ ifa = &oia->ia_ifa; IFA_LOCK(ifa); if ((oia->ia6_flags & IN6_IFF_AUTOCONF) != 0) { if (oia->ia6_ndpr == NULL) { log(LOG_NOTICE, "in6_unlink_ifa: autoconf'ed address " "0x%llx has no prefix\n", (uint64_t)VM_KERNEL_ADDRPERM(oia)); } else { struct nd_prefix *pr = oia->ia6_ndpr; oia->ia6_flags &= ~IN6_IFF_AUTOCONF; oia->ia6_ndpr = NULL; NDPR_LOCK(pr); VERIFY(pr->ndpr_addrcnt != 0); pr->ndpr_addrcnt--; NDPR_UNLOCK(pr); NDPR_REMREF(pr); /* release addr reference */ } IFA_UNLOCK(ifa); lck_rw_done(&in6_ifaddr_rwlock); lck_mtx_lock(nd6_mutex); pfxlist_onlink_check(); lck_mtx_unlock(nd6_mutex); } else { IFA_UNLOCK(ifa); lck_rw_done(&in6_ifaddr_rwlock); } /* * release another refcnt for the link from in6_ifaddrs. * Do this only if it's not already unlinked in the event that we lost * the race, since in6_ifaddr_rwlock was momentarily dropped above. */ if (unlinked) IFA_REMREF(ifa); /* release reference held for this routine */ IFA_REMREF(ifa); /* invalidate route caches */ routegenid_inet6_update(); } void in6_purgeif(struct ifnet *ifp) { struct in6_ifaddr *ia; if (ifp == NULL) return; lck_mtx_assert(nd6_mutex, LCK_MTX_ASSERT_NOTOWNED); lck_rw_lock_exclusive(&in6_ifaddr_rwlock); ia = in6_ifaddrs; while (ia != NULL) { if (ia->ia_ifa.ifa_ifp != ifp) { ia = ia->ia_next; continue; } IFA_ADDREF(&ia->ia_ifa); /* for us */ lck_rw_done(&in6_ifaddr_rwlock); in6_purgeaddr(&ia->ia_ifa); IFA_REMREF(&ia->ia_ifa); /* for us */ lck_rw_lock_exclusive(&in6_ifaddr_rwlock); /* * Purging the address would have caused * in6_ifaddr_rwlock to be dropped and reacquired; * therefore search again from the beginning * of in6_ifaddrs list. */ ia = in6_ifaddrs; } lck_rw_done(&in6_ifaddr_rwlock); in6_ifdetach(ifp); } /* * SIOC[GAD]LIFADDR. * SIOCGLIFADDR: get first address. (?) * SIOCGLIFADDR with IFLR_PREFIX: * get first address that matches the specified prefix. * SIOCALIFADDR: add the specified address. * SIOCALIFADDR with IFLR_PREFIX: * add the specified prefix, filling hostaddr part from * the first link-local address. prefixlen must be <= 64. * SIOCDLIFADDR: delete the specified address. * SIOCDLIFADDR with IFLR_PREFIX: * delete the first address that matches the specified prefix. * return values: * EINVAL on invalid parameters * EADDRNOTAVAIL on prefix match failed/specified address not found * other values may be returned from in6_ioctl() * * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64. * this is to accomodate address naming scheme other than RFC2374, * in the future. * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374 * address encoding scheme. (see figure on page 8) */ static __attribute__((noinline)) int in6ctl_lifaddr(struct ifnet *ifp, u_long cmd, struct if_laddrreq *iflr, boolean_t p64) { struct in6_aliasreq ifra; struct ifaddr *ifa; struct sockaddr *sa; VERIFY(ifp != NULL); switch (cmd) { case SIOCGLIFADDR: /* address must be specified on GET with IFLR_PREFIX */ if (!(iflr->flags & IFLR_PREFIX)) break; /* FALLTHROUGH */ case SIOCALIFADDR: case SIOCDLIFADDR: /* address must be specified on ADD and DELETE */ sa = (struct sockaddr *)&iflr->addr; if (sa->sa_family != AF_INET6) return (EINVAL); if (sa->sa_len != sizeof (struct sockaddr_in6)) return (EINVAL); /* XXX need improvement */ sa = (struct sockaddr *)&iflr->dstaddr; if (sa->sa_family && sa->sa_family != AF_INET6) return (EINVAL); if (sa->sa_len && sa->sa_len != sizeof (struct sockaddr_in6)) return (EINVAL); break; default: /* shouldn't happen */ VERIFY(0); /* NOTREACHED */ } if (sizeof (struct in6_addr) * 8 < iflr->prefixlen) return (EINVAL); switch (cmd) { case SIOCALIFADDR: { struct in6_addr hostaddr; int prefixlen; int hostid_found = 0; if ((iflr->flags & IFLR_PREFIX) != 0) { struct sockaddr_in6 *sin6; /* * hostaddr is to fill in the hostaddr part of the * address. hostaddr points to the first link-local * address attached to the interface. */ ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0); if (!ifa) return (EADDRNOTAVAIL); IFA_LOCK_SPIN(ifa); hostaddr = *IFA_IN6(ifa); IFA_UNLOCK(ifa); hostid_found = 1; IFA_REMREF(ifa); ifa = NULL; /* prefixlen must be <= 64. */ if (64 < iflr->prefixlen) return (EINVAL); prefixlen = iflr->prefixlen; /* hostid part must be zero. */ sin6 = (struct sockaddr_in6 *)&iflr->addr; if (sin6->sin6_addr.s6_addr32[2] != 0 || sin6->sin6_addr.s6_addr32[3] != 0) { return (EINVAL); } } else { prefixlen = iflr->prefixlen; } /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */ bzero(&ifra, sizeof (ifra)); bcopy(iflr->iflr_name, ifra.ifra_name, sizeof (ifra.ifra_name)); bcopy(&iflr->addr, &ifra.ifra_addr, ((struct sockaddr *)&iflr->addr)->sa_len); if (hostid_found) { /* fill in hostaddr part */ ifra.ifra_addr.sin6_addr.s6_addr32[2] = hostaddr.s6_addr32[2]; ifra.ifra_addr.sin6_addr.s6_addr32[3] = hostaddr.s6_addr32[3]; } if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /* XXX */ bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr, ((struct sockaddr *)&iflr->dstaddr)->sa_len); if (hostid_found) { ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] = hostaddr.s6_addr32[2]; ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] = hostaddr.s6_addr32[3]; } } ifra.ifra_prefixmask.sin6_len = sizeof (struct sockaddr_in6); in6_prefixlen2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen); ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX; if (!p64) { #if defined(__LP64__) struct in6_aliasreq_32 ifra_32; /* * Use 32-bit ioctl and structure for 32-bit process. */ in6_aliasreq_64_to_32((struct in6_aliasreq_64 *)&ifra, &ifra_32); return (in6_control(NULL, SIOCAIFADDR_IN6_32, (caddr_t)&ifra_32, ifp, kernproc)); #else return (in6_control(NULL, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, kernproc)); #endif /* __LP64__ */ } else { #if defined(__LP64__) return (in6_control(NULL, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, kernproc)); #else struct in6_aliasreq_64 ifra_64; /* * Use 64-bit ioctl and structure for 64-bit process. */ in6_aliasreq_32_to_64((struct in6_aliasreq_32 *)&ifra, &ifra_64); return (in6_control(NULL, SIOCAIFADDR_IN6_64, (caddr_t)&ifra_64, ifp, kernproc)); #endif /* __LP64__ */ } /* NOTREACHED */ } case SIOCGLIFADDR: case SIOCDLIFADDR: { struct in6_ifaddr *ia; struct in6_addr mask, candidate, match; struct sockaddr_in6 *sin6; int cmp; bzero(&mask, sizeof (mask)); if (iflr->flags & IFLR_PREFIX) { /* lookup a prefix rather than address. */ in6_prefixlen2mask(&mask, iflr->prefixlen); sin6 = (struct sockaddr_in6 *)&iflr->addr; bcopy(&sin6->sin6_addr, &match, sizeof (match)); match.s6_addr32[0] &= mask.s6_addr32[0]; match.s6_addr32[1] &= mask.s6_addr32[1]; match.s6_addr32[2] &= mask.s6_addr32[2]; match.s6_addr32[3] &= mask.s6_addr32[3]; /* if you set extra bits, that's wrong */ if (bcmp(&match, &sin6->sin6_addr, sizeof (match))) return (EINVAL); cmp = 1; } else { if (cmd == SIOCGLIFADDR) { /* on getting an address, take the 1st match */ cmp = 0; /* XXX */ } else { /* on deleting an address, do exact match */ in6_prefixlen2mask(&mask, 128); sin6 = (struct sockaddr_in6 *)&iflr->addr; bcopy(&sin6->sin6_addr, &match, sizeof (match)); cmp = 1; } } ifnet_lock_shared(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { IFA_LOCK(ifa); if (ifa->ifa_addr->sa_family != AF_INET6) { IFA_UNLOCK(ifa); continue; } if (!cmp) { IFA_UNLOCK(ifa); break; } bcopy(IFA_IN6(ifa), &candidate, sizeof (candidate)); IFA_UNLOCK(ifa); /* * XXX: this is adhoc, but is necessary to allow * a user to specify fe80::/64 (not /10) for a * link-local address. */ if (IN6_IS_ADDR_LINKLOCAL(&candidate)) candidate.s6_addr16[1] = 0; candidate.s6_addr32[0] &= mask.s6_addr32[0]; candidate.s6_addr32[1] &= mask.s6_addr32[1]; candidate.s6_addr32[2] &= mask.s6_addr32[2]; candidate.s6_addr32[3] &= mask.s6_addr32[3]; if (IN6_ARE_ADDR_EQUAL(&candidate, &match)) break; } if (ifa != NULL) IFA_ADDREF(ifa); ifnet_lock_done(ifp); if (!ifa) return (EADDRNOTAVAIL); ia = ifa2ia6(ifa); if (cmd == SIOCGLIFADDR) { struct sockaddr_in6 *s6; IFA_LOCK(ifa); /* fill in the if_laddrreq structure */ bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len); s6 = (struct sockaddr_in6 *)&iflr->addr; if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) { s6->sin6_addr.s6_addr16[1] = 0; s6->sin6_scope_id = in6_addr2scopeid(ifp, &s6->sin6_addr); } if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { bcopy(&ia->ia_dstaddr, &iflr->dstaddr, ia->ia_dstaddr.sin6_len); s6 = (struct sockaddr_in6 *)&iflr->dstaddr; if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) { s6->sin6_addr.s6_addr16[1] = 0; s6->sin6_scope_id = in6_addr2scopeid(ifp, &s6->sin6_addr); } } else bzero(&iflr->dstaddr, sizeof (iflr->dstaddr)); iflr->prefixlen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); iflr->flags = ia->ia6_flags; /* XXX */ IFA_UNLOCK(ifa); IFA_REMREF(ifa); return (0); } else { /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */ bzero(&ifra, sizeof (ifra)); bcopy(iflr->iflr_name, ifra.ifra_name, sizeof (ifra.ifra_name)); IFA_LOCK(ifa); bcopy(&ia->ia_addr, &ifra.ifra_addr, ia->ia_addr.sin6_len); if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr, ia->ia_dstaddr.sin6_len); } else { bzero(&ifra.ifra_dstaddr, sizeof (ifra.ifra_dstaddr)); } bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr, ia->ia_prefixmask.sin6_len); ifra.ifra_flags = ia->ia6_flags; IFA_UNLOCK(ifa); IFA_REMREF(ifa); if (!p64) { #if defined(__LP64__) struct in6_aliasreq_32 ifra_32; /* * Use 32-bit structure for 32-bit process. * SIOCDIFADDR_IN6 is encoded with in6_ifreq, * so it stays the same since the size does * not change. The data part of the ioctl, * however, is of a different structure, i.e. * in6_aliasreq. */ in6_aliasreq_64_to_32( (struct in6_aliasreq_64 *)&ifra, &ifra_32); return (in6_control(NULL, SIOCDIFADDR_IN6, (caddr_t)&ifra_32, ifp, kernproc)); #else return (in6_control(NULL, SIOCDIFADDR_IN6, (caddr_t)&ifra, ifp, kernproc)); #endif /* __LP64__ */ } else { #if defined(__LP64__) return (in6_control(NULL, SIOCDIFADDR_IN6, (caddr_t)&ifra, ifp, kernproc)); #else struct in6_aliasreq_64 ifra_64; /* * Use 64-bit structure for 64-bit process. * SIOCDIFADDR_IN6 is encoded with in6_ifreq, * so it stays the same since the size does * not change. The data part of the ioctl, * however, is of a different structure, i.e. * in6_aliasreq. */ in6_aliasreq_32_to_64( (struct in6_aliasreq_32 *)&ifra, &ifra_64); return (in6_control(NULL, SIOCDIFADDR_IN6, (caddr_t)&ifra_64, ifp, kernproc)); #endif /* __LP64__ */ } /* NOTREACHED */ } } } return (EOPNOTSUPP); /* just for safety */ } /* * Initialize an interface's internet6 address and routing table entry. */ static int in6_ifinit(struct ifnet *ifp, struct in6_ifaddr *ia, int ifaupflags) { int error; struct ifaddr *ifa; error = 0; ifa = &ia->ia_ifa; /* * NOTE: SIOCSIFADDR is defined with struct ifreq as parameter, * but here we are sending it down to the interface with a pointer * to struct ifaddr, for legacy reasons. */ if ((ifaupflags & IN6_IFAUPDATE_1STADDR) != 0) { error = ifnet_ioctl(ifp, PF_INET6, SIOCSIFADDR, ia); if (error != 0) { if (error != EOPNOTSUPP) return (error); error = 0; } } IFA_LOCK(ifa); /* * Special case: * If the destination address is specified for a point-to-point * interface, install a route to the destination as an interface * direct route. */ if (!(ia->ia_flags & IFA_ROUTE) && ia->ia_plen == 128 && ia->ia_dstaddr.sin6_family == AF_INET6) { IFA_UNLOCK(ifa); error = rtinit(ifa, RTM_ADD, RTF_UP | RTF_HOST); if (error != 0) return (error); IFA_LOCK(ifa); ia->ia_flags |= IFA_ROUTE; } IFA_LOCK_ASSERT_HELD(ifa); if (ia->ia_plen < 128) { /* * The RTF_CLONING flag is necessary for in6_is_ifloop_auto(). */ ia->ia_flags |= RTF_CLONING; } IFA_UNLOCK(ifa); /* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */ if ((ifaupflags & IN6_IFAUPDATE_NEWADDR) != 0) in6_ifaddloop(ifa); /* invalidate route caches */ routegenid_inet6_update(); VERIFY(error == 0); return (0); } void in6_purgeaddrs(struct ifnet *ifp) { in6_purgeif(ifp); } /* * Find an IPv6 interface link-local address specific to an interface. */ struct in6_ifaddr * in6ifa_ifpforlinklocal(ifp, ignoreflags) struct ifnet *ifp; int ignoreflags; { struct ifaddr *ifa; ifnet_lock_shared(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { IFA_LOCK_SPIN(ifa); if (ifa->ifa_addr->sa_family != AF_INET6) { IFA_UNLOCK(ifa); continue; } if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) { if ((((struct in6_ifaddr *)ifa)->ia6_flags & ignoreflags) != 0) { IFA_UNLOCK(ifa); continue; } IFA_ADDREF_LOCKED(ifa); /* for caller */ IFA_UNLOCK(ifa); break; } IFA_UNLOCK(ifa); } ifnet_lock_done(ifp); return ((struct in6_ifaddr *)ifa); } /* * find the internet address corresponding to a given interface and address. */ struct in6_ifaddr * in6ifa_ifpwithaddr(ifp, addr) struct ifnet *ifp; struct in6_addr *addr; { struct ifaddr *ifa; ifnet_lock_shared(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { IFA_LOCK_SPIN(ifa); if (ifa->ifa_addr->sa_family != AF_INET6) { IFA_UNLOCK(ifa); continue; } if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) { IFA_ADDREF_LOCKED(ifa); /* for caller */ IFA_UNLOCK(ifa); break; } IFA_UNLOCK(ifa); } ifnet_lock_done(ifp); return ((struct in6_ifaddr *)ifa); } struct in6_ifaddr * in6ifa_prproxyaddr(struct in6_addr *addr) { struct in6_ifaddr *ia; lck_rw_lock_shared(&in6_ifaddr_rwlock); for (ia = in6_ifaddrs; ia; ia = ia->ia_next) { IFA_LOCK(&ia->ia_ifa); if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(&ia->ia_ifa))) { IFA_ADDREF_LOCKED(&ia->ia_ifa); /* for caller */ IFA_UNLOCK(&ia->ia_ifa); break; } IFA_UNLOCK(&ia->ia_ifa); } lck_rw_done(&in6_ifaddr_rwlock); if (ia != NULL && !nd6_prproxy_ifaddr(ia)) { IFA_REMREF(&ia->ia_ifa); ia = NULL; } return (ia); } void in6ifa_getlifetime(struct in6_ifaddr *ia6, struct in6_addrlifetime *t_dst, int iscalendar) { struct in6_addrlifetime_i *t_src = &ia6->ia6_lifetime; struct timeval caltime; t_dst->ia6t_vltime = t_src->ia6ti_vltime; t_dst->ia6t_pltime = t_src->ia6ti_pltime; t_dst->ia6t_expire = 0; t_dst->ia6t_preferred = 0; /* account for system time change */ getmicrotime(&caltime); t_src->ia6ti_base_calendartime += NET_CALCULATE_CLOCKSKEW(caltime, t_src->ia6ti_base_calendartime, net_uptime(), t_src->ia6ti_base_uptime); if (iscalendar) { if (t_src->ia6ti_expire != 0 && t_src->ia6ti_vltime != ND6_INFINITE_LIFETIME) t_dst->ia6t_expire = t_src->ia6ti_base_calendartime + t_src->ia6ti_expire - t_src->ia6ti_base_uptime; if (t_src->ia6ti_preferred != 0 && t_src->ia6ti_pltime != ND6_INFINITE_LIFETIME) t_dst->ia6t_preferred = t_src->ia6ti_base_calendartime + t_src->ia6ti_preferred - t_src->ia6ti_base_uptime; } else { if (t_src->ia6ti_expire != 0 && t_src->ia6ti_vltime != ND6_INFINITE_LIFETIME) t_dst->ia6t_expire = t_src->ia6ti_expire; if (t_src->ia6ti_preferred != 0 && t_src->ia6ti_pltime != ND6_INFINITE_LIFETIME) t_dst->ia6t_preferred = t_src->ia6ti_preferred; } } void in6ifa_setlifetime(struct in6_ifaddr *ia6, struct in6_addrlifetime *t_src) { struct in6_addrlifetime_i *t_dst = &ia6->ia6_lifetime; struct timeval caltime; /* account for system time change */ getmicrotime(&caltime); t_dst->ia6ti_base_calendartime += NET_CALCULATE_CLOCKSKEW(caltime, t_dst->ia6ti_base_calendartime, net_uptime(), t_dst->ia6ti_base_uptime); /* trust the caller for the values */ t_dst->ia6ti_expire = t_src->ia6t_expire; t_dst->ia6ti_preferred = t_src->ia6t_preferred; t_dst->ia6ti_vltime = t_src->ia6t_vltime; t_dst->ia6ti_pltime = t_src->ia6t_pltime; } /* * Convert IP6 address to printable (loggable) representation. */ char * ip6_sprintf(const struct in6_addr *addr) { static const char digits[] = "0123456789abcdef"; static int ip6round = 0; static char ip6buf[8][48]; int i; char *cp; const u_short *a = (const u_short *)addr; const u_char *d; u_char n; int dcolon = 0; int zpad = 0; ip6round = (ip6round + 1) & 7; cp = ip6buf[ip6round]; for (i = 0; i < 8; i++) { if (dcolon == 1) { if (*a == 0) { if (i == 7) *cp++ = ':'; a++; continue; } else dcolon = 2; } if (*a == 0) { if (dcolon == 0 && *(a + 1) == 0) { if (i == 0) *cp++ = ':'; *cp++ = ':'; dcolon = 1; } else { *cp++ = '0'; *cp++ = ':'; } a++; continue; } d = (const u_char *)a; zpad = 0; if ((n = *d >> 4) != 0) { *cp++ = digits[n]; zpad = 1; } if ((n = *d++ & 0xf) != 0 || zpad) { *cp++ = digits[n]; zpad = 1; } if ((n = *d >> 4) != 0 || zpad) { *cp++ = digits[n]; zpad = 1; } if ((n = *d & 0xf) != 0 || zpad) *cp++ = digits[n]; *cp++ = ':'; a++; } *--cp = 0; return (ip6buf[ip6round]); } int in6addr_local(struct in6_addr *in6) { struct rtentry *rt; struct sockaddr_in6 sin6; int local = 0; if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_SCOPE_LINKLOCAL(in6)) return (1); sin6.sin6_family = AF_INET6; sin6.sin6_len = sizeof (sin6); bcopy(in6, &sin6.sin6_addr, sizeof (*in6)); rt = rtalloc1((struct sockaddr *)&sin6, 0, 0); if (rt != NULL) { RT_LOCK_SPIN(rt); if (rt->rt_gateway->sa_family == AF_LINK) local = 1; RT_UNLOCK(rt); rtfree(rt); } else { local = in6_localaddr(in6); } return (local); } int in6_localaddr(struct in6_addr *in6) { struct in6_ifaddr *ia; if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6)) return (1); lck_rw_lock_shared(&in6_ifaddr_rwlock); for (ia = in6_ifaddrs; ia; ia = ia->ia_next) { IFA_LOCK_SPIN(&ia->ia_ifa); if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr, &ia->ia_prefixmask.sin6_addr)) { IFA_UNLOCK(&ia->ia_ifa); lck_rw_done(&in6_ifaddr_rwlock); return (1); } IFA_UNLOCK(&ia->ia_ifa); } lck_rw_done(&in6_ifaddr_rwlock); return (0); } int in6_is_addr_deprecated(struct sockaddr_in6 *sa6) { struct in6_ifaddr *ia; lck_rw_lock_shared(&in6_ifaddr_rwlock); for (ia = in6_ifaddrs; ia; ia = ia->ia_next) { IFA_LOCK_SPIN(&ia->ia_ifa); if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr, &sa6->sin6_addr) && (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0) { IFA_UNLOCK(&ia->ia_ifa); lck_rw_done(&in6_ifaddr_rwlock); return (1); /* true */ } /* XXX: do we still have to go thru the rest of the list? */ IFA_UNLOCK(&ia->ia_ifa); } lck_rw_done(&in6_ifaddr_rwlock); return (0); /* false */ } /* * return length of part which dst and src are equal * hard coding... */ int in6_matchlen(src, dst) struct in6_addr *src, *dst; { int match = 0; u_char *s = (u_char *)src, *d = (u_char *)dst; u_char *lim = s + 16, r; while (s < lim) if ((r = (*d++ ^ *s++)) != 0) { while (r < 128) { match++; r <<= 1; } break; } else match += 8; return (match); } /* XXX: to be scope conscious */ int in6_are_prefix_equal(p1, p2, len) struct in6_addr *p1, *p2; int len; { int bytelen, bitlen; /* sanity check */ if (0 > len || len > 128) { log(LOG_ERR, "%s: invalid prefix length(%d)\n", __func__, len); return (0); } bytelen = len / 8; bitlen = len % 8; if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) return (0); if (bitlen != 0 && p1->s6_addr[bytelen] >> (8 - bitlen) != p2->s6_addr[bytelen] >> (8 - bitlen)) return (0); return (1); } void in6_prefixlen2mask(maskp, len) struct in6_addr *maskp; int len; { u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; int bytelen, bitlen, i; /* sanity check */ if (0 > len || len > 128) { log(LOG_ERR, "%s: invalid prefix length(%d)\n", __func__, len); return; } bzero(maskp, sizeof (*maskp)); bytelen = len / 8; bitlen = len % 8; for (i = 0; i < bytelen; i++) maskp->s6_addr[i] = 0xff; if (bitlen) maskp->s6_addr[bytelen] = maskarray[bitlen - 1]; } /* * return the best address out of the same scope */ struct in6_ifaddr * in6_ifawithscope(struct ifnet *oifp, struct in6_addr *dst) { int dst_scope = in6_addrscope(dst), src_scope, best_scope = 0; int blen = -1; struct ifaddr *ifa; struct ifnet *ifp; struct in6_ifaddr *ifa_best = NULL; if (oifp == NULL) { return (NULL); } /* * We search for all addresses on all interfaces from the beginning. * Comparing an interface with the outgoing interface will be done * only at the final stage of tiebreaking. */ ifnet_head_lock_shared(); TAILQ_FOREACH(ifp, &ifnet_head, if_list) { /* * We can never take an address that breaks the scope zone * of the destination. */ if (in6_addr2scopeid(ifp, dst) != in6_addr2scopeid(oifp, dst)) continue; ifnet_lock_shared(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { int tlen = -1, dscopecmp, bscopecmp, matchcmp; IFA_LOCK(ifa); if (ifa->ifa_addr->sa_family != AF_INET6) { IFA_UNLOCK(ifa); continue; } src_scope = in6_addrscope(IFA_IN6(ifa)); /* * Don't use an address before completing DAD * nor a duplicated address. */ if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) { IFA_UNLOCK(ifa); continue; } /* XXX: is there any case to allow anycasts? */ if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) { IFA_UNLOCK(ifa); continue; } if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) { IFA_UNLOCK(ifa); continue; } /* * If this is the first address we find, * keep it anyway. */ if (ifa_best == NULL) goto replace; /* * ifa_best is never NULL beyond this line except * within the block labeled "replace". */ /* * If ifa_best has a smaller scope than dst and * the current address has a larger one than * (or equal to) dst, always replace ifa_best. * Also, if the current address has a smaller scope * than dst, ignore it unless ifa_best also has a * smaller scope. * Consequently, after the two if-clause below, * the followings must be satisfied: * (scope(src) < scope(dst) && * scope(best) < scope(dst)) * OR * (scope(best) >= scope(dst) && * scope(src) >= scope(dst)) */ if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0 && IN6_ARE_SCOPE_CMP(src_scope, dst_scope) >= 0) goto replace; /* (A) */ if (IN6_ARE_SCOPE_CMP(src_scope, dst_scope) < 0 && IN6_ARE_SCOPE_CMP(best_scope, dst_scope) >= 0) { IFA_UNLOCK(ifa); continue; /* (B) */ } /* * A deprecated address SHOULD NOT be used in new * communications if an alternate (non-deprecated) * address is available and has sufficient scope. * RFC 4862, Section 5.5.4. */ if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { /* * Ignore any deprecated addresses if * specified by configuration. */ if (!ip6_use_deprecated) { IFA_UNLOCK(ifa); continue; } /* * If we have already found a non-deprecated * candidate, just ignore deprecated addresses. */ if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) == 0) { IFA_UNLOCK(ifa); continue; } } /* * A non-deprecated address is always preferred * to a deprecated one regardless of scopes and * address matching (Note invariants ensured by the * conditions (A) and (B) above.) */ if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) && (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) == 0) goto replace; /* * When we use temporary addresses described in * RFC 4941, we prefer temporary addresses to * public autoconf addresses. Again, note the * invariants from (A) and (B). Also note that we * don't have any preference between static addresses * and autoconf addresses (despite of whether or not * the latter is temporary or public.) */ if (ip6_use_tempaddr) { struct in6_ifaddr *ifat; ifat = (struct in6_ifaddr *)ifa; if ((ifa_best->ia6_flags & (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) == IN6_IFF_AUTOCONF && (ifat->ia6_flags & (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) { goto replace; } if ((ifa_best->ia6_flags & (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY) && (ifat->ia6_flags & (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) == IN6_IFF_AUTOCONF) { IFA_UNLOCK(ifa); continue; } } /* * At this point, we have two cases: * 1. we are looking at a non-deprecated address, * and ifa_best is also non-deprecated. * 2. we are looking at a deprecated address, * and ifa_best is also deprecated. * Also, we do not have to consider a case where * the scope of if_best is larger(smaller) than dst and * the scope of the current address is smaller(larger) * than dst. Such a case has already been covered. * Tiebreaking is done according to the following * items: * - the scope comparison between the address and * dst (dscopecmp) * - the scope comparison between the address and * ifa_best (bscopecmp) * - if the address match dst longer than ifa_best * (matchcmp) * - if the address is on the outgoing I/F (outI/F) * * Roughly speaking, the selection policy is * - the most important item is scope. The same scope * is best. Then search for a larger scope. * Smaller scopes are the last resort. * - A deprecated address is chosen only when we have * no address that has an enough scope, but is * prefered to any addresses of smaller scopes * (this must be already done above.) * - addresses on the outgoing I/F are preferred to * ones on other interfaces if none of above * tiebreaks. In the table below, the column "bI" * means if the best_ifa is on the outgoing * interface, and the column "sI" means if the ifa * is on the outgoing interface. * - If there is no other reasons to choose one, * longest address match against dst is considered. * * The precise decision table is as follows: * dscopecmp bscopecmp match bI oI | replace? * N/A equal N/A Y N | No (1) * N/A equal N/A N Y | Yes (2) * N/A equal larger N/A | Yes (3) * N/A equal !larger N/A | No (4) * larger larger N/A N/A | No (5) * larger smaller N/A N/A | Yes (6) * smaller larger N/A N/A | Yes (7) * smaller smaller N/A N/A | No (8) * equal smaller N/A N/A | Yes (9) * equal larger (already done at A above) */ dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope); bscopecmp = IN6_ARE_SCOPE_CMP(src_scope, best_scope); if (bscopecmp == 0) { struct ifnet *bifp = ifa_best->ia_ifp; if (bifp == oifp && ifp != oifp) { /* (1) */ IFA_UNLOCK(ifa); continue; } if (bifp != oifp && ifp == oifp) /* (2) */ goto replace; /* * Both bifp and ifp are on the outgoing * interface, or both two are on a different * interface from the outgoing I/F. * now we need address matching against dst * for tiebreaking. */ tlen = in6_matchlen(IFA_IN6(ifa), dst); matchcmp = tlen - blen; if (matchcmp > 0) /* (3) */ goto replace; IFA_UNLOCK(ifa); continue; /* (4) */ } if (dscopecmp > 0) { if (bscopecmp > 0) { /* (5) */ IFA_UNLOCK(ifa); continue; } goto replace; /* (6) */ } if (dscopecmp < 0) { if (bscopecmp > 0) /* (7) */ goto replace; IFA_UNLOCK(ifa); continue; /* (8) */ } /* now dscopecmp must be 0 */ if (bscopecmp < 0) goto replace; /* (9) */ replace: IFA_ADDREF_LOCKED(ifa); /* for ifa_best */ blen = tlen >= 0 ? tlen : in6_matchlen(IFA_IN6(ifa), dst); best_scope = in6_addrscope(&ifa2ia6(ifa)->ia_addr.sin6_addr); IFA_UNLOCK(ifa); if (ifa_best) IFA_REMREF(&ifa_best->ia_ifa); ifa_best = (struct in6_ifaddr *)ifa; } ifnet_lock_done(ifp); } ifnet_head_done(); /* count statistics for future improvements */ if (ifa_best == NULL) ip6stat.ip6s_sources_none++; else { IFA_LOCK_SPIN(&ifa_best->ia_ifa); if (oifp == ifa_best->ia_ifp) ip6stat.ip6s_sources_sameif[best_scope]++; else ip6stat.ip6s_sources_otherif[best_scope]++; if (best_scope == dst_scope) ip6stat.ip6s_sources_samescope[best_scope]++; else ip6stat.ip6s_sources_otherscope[best_scope]++; if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) != 0) ip6stat.ip6s_sources_deprecated[best_scope]++; IFA_UNLOCK(&ifa_best->ia_ifa); } return (ifa_best); } /* * return the best address out of the same scope. if no address was * found, return the first valid address from designated IF. */ struct in6_ifaddr * in6_ifawithifp(struct ifnet *ifp, struct in6_addr *dst) { int dst_scope = in6_addrscope(dst), blen = -1, tlen; struct ifaddr *ifa; struct in6_ifaddr *besta = NULL; struct in6_ifaddr *dep[2]; /* last-resort: deprecated */ dep[0] = dep[1] = NULL; /* * We first look for addresses in the same scope. * If there is one, return it. * If two or more, return one which matches the dst longest. * If none, return one of global addresses assigned other ifs. */ ifnet_lock_shared(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { IFA_LOCK(ifa); if (ifa->ifa_addr->sa_family != AF_INET6) { IFA_UNLOCK(ifa); continue; } if (ifa2ia6(ifa)->ia6_flags & IN6_IFF_ANYCAST) { IFA_UNLOCK(ifa); continue; /* XXX: is there any case to allow anycast? */ } if (ifa2ia6(ifa)->ia6_flags & IN6_IFF_NOTREADY) { IFA_UNLOCK(ifa); continue; /* don't use this interface */ } if (ifa2ia6(ifa)->ia6_flags & IN6_IFF_DETACHED) { IFA_UNLOCK(ifa); continue; } if (ifa2ia6(ifa)->ia6_flags & IN6_IFF_DEPRECATED) { if (ip6_use_deprecated) { IFA_ADDREF_LOCKED(ifa); /* for dep[0] */ IFA_UNLOCK(ifa); if (dep[0] != NULL) IFA_REMREF(&dep[0]->ia_ifa); dep[0] = (struct in6_ifaddr *)ifa; } else { IFA_UNLOCK(ifa); } continue; } if (dst_scope == in6_addrscope(IFA_IN6(ifa))) { /* * call in6_matchlen() as few as possible */ if (besta) { if (blen == -1) { IFA_UNLOCK(ifa); IFA_LOCK(&besta->ia_ifa); blen = in6_matchlen( &besta->ia_addr.sin6_addr, dst); IFA_UNLOCK(&besta->ia_ifa); IFA_LOCK(ifa); } tlen = in6_matchlen(IFA_IN6(ifa), dst); if (tlen > blen) { blen = tlen; IFA_ADDREF_LOCKED(ifa); /* for besta */ IFA_UNLOCK(ifa); IFA_REMREF(&besta->ia_ifa); besta = (struct in6_ifaddr *)ifa; } else { IFA_UNLOCK(ifa); } } else { besta = (struct in6_ifaddr *)ifa; IFA_ADDREF_LOCKED(ifa); /* for besta */ IFA_UNLOCK(ifa); } } else { IFA_UNLOCK(ifa); } } if (besta) { ifnet_lock_done(ifp); if (dep[0] != NULL) IFA_REMREF(&dep[0]->ia_ifa); return (besta); } TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { IFA_LOCK(ifa); if (ifa->ifa_addr->sa_family != AF_INET6) { IFA_UNLOCK(ifa); continue; } if (ifa2ia6(ifa)->ia6_flags & IN6_IFF_ANYCAST) { IFA_UNLOCK(ifa); continue; /* XXX: is there any case to allow anycast? */ } if (ifa2ia6(ifa)->ia6_flags & IN6_IFF_NOTREADY) { IFA_UNLOCK(ifa); continue; /* don't use this interface */ } if (ifa2ia6(ifa)->ia6_flags & IN6_IFF_DETACHED) { IFA_UNLOCK(ifa); continue; } if (ifa2ia6(ifa)->ia6_flags & IN6_IFF_DEPRECATED) { if (ip6_use_deprecated) { IFA_ADDREF_LOCKED(ifa); /* for dep[1] */ IFA_UNLOCK(ifa); if (dep[1] != NULL) IFA_REMREF(&dep[1]->ia_ifa); dep[1] = (struct in6_ifaddr *)ifa; } else { IFA_UNLOCK(ifa); } continue; } IFA_ADDREF_LOCKED(ifa); /* for caller */ IFA_UNLOCK(ifa); ifnet_lock_done(ifp); if (dep[0] != NULL) IFA_REMREF(&dep[0]->ia_ifa); if (dep[1] != NULL) IFA_REMREF(&dep[1]->ia_ifa); return ((struct in6_ifaddr *)ifa); } ifnet_lock_done(ifp); /* use the last-resort values, that are, deprecated addresses */ if (dep[0]) { if (dep[1] != NULL) IFA_REMREF(&dep[1]->ia_ifa); return (dep[0]); } if (dep[1]) return (dep[1]); return (NULL); } /* * perform DAD when interface becomes IFF_UP. */ static void in6_if_up_dad_start(struct ifnet *ifp) { struct ifaddr *ifa; /* start DAD on all the interface addresses */ ifnet_lock_exclusive(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { struct in6_ifaddr *ia6; IFA_LOCK_SPIN(ifa); if (ifa->ifa_addr->sa_family != AF_INET6) { IFA_UNLOCK(ifa); continue; } ia6 = (struct in6_ifaddr *)ifa; if (ia6->ia6_flags & IN6_IFF_DADPROGRESS) { int delay = 0; /* delay ticks before DAD output */ IFA_UNLOCK(ifa); nd6_dad_start(ifa, &delay); } else { IFA_UNLOCK(ifa); } } ifnet_lock_done(ifp); } int in6if_do_dad( struct ifnet *ifp) { if ((ifp->if_flags & IFF_LOOPBACK) != 0) return (0); /* * If we are using the alternative neighbor discovery * interface on this interface, then skip DAD. * * Also, skip it for interfaces marked "local private" * for now, even when not marked as using the alternative * interface. This is for historical reasons. */ if (ifp->if_eflags & (IFEF_IPV6_ND6ALT|IFEF_LOCALNET_PRIVATE)) return (0); switch (ifp->if_type) { #if IFT_DUMMY case IFT_DUMMY: #endif case IFT_FAITH: /* * These interfaces do not have the IFF_LOOPBACK flag, * but loop packets back. We do not have to do DAD on such * interfaces. We should even omit it, because loop-backed * NS would confuse the DAD procedure. */ return (0); default: /* * Our DAD routine requires the interface up and running. * However, some interfaces can be up before the RUNNING * status. Additionaly, users may try to assign addresses * before the interface becomes up (or running). * We simply skip DAD in such a case as a work around. * XXX: we should rather mark "tentative" on such addresses, * and do DAD after the interface becomes ready. */ if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING)) return (0); return (1); } } /* * Calculate max IPv6 MTU through all the interfaces and store it * to in6_maxmtu. */ void in6_setmaxmtu(void) { u_int32_t maxmtu = 0; struct ifnet *ifp; ifnet_head_lock_shared(); TAILQ_FOREACH(ifp, &ifnet_head, if_list) { struct nd_ifinfo *ndi; lck_rw_lock_shared(nd_if_rwlock); if ((ndi = ND_IFINFO(ifp)) != NULL && !ndi->initialized) ndi = NULL; if (ndi != NULL) lck_mtx_lock(&ndi->lock); if ((ifp->if_flags & IFF_LOOPBACK) == 0 && IN6_LINKMTU(ifp) > maxmtu) maxmtu = IN6_LINKMTU(ifp); if (ndi != NULL) lck_mtx_unlock(&ndi->lock); lck_rw_done(nd_if_rwlock); } ifnet_head_done(); if (maxmtu) /* update only when maxmtu is positive */ in6_maxmtu = maxmtu; } /* * Provide the length of interface identifiers to be used for the link attached * to the given interface. The length should be defined in "IPv6 over * xxx-link" document. Note that address architecture might also define * the length for a particular set of address prefixes, regardless of the * link type. Also see RFC 4862 for additional background. */ int in6_if2idlen(struct ifnet *ifp) { switch (ifp->if_type) { case IFT_ETHER: /* RFC2464 */ case IFT_IEEE8023ADLAG: /* IEEE802.3ad Link Aggregate */ #ifdef IFT_PROPVIRTUAL case IFT_PROPVIRTUAL: /* XXX: no RFC. treat it as ether */ #endif #ifdef IFT_L2VLAN case IFT_L2VLAN: /* ditto */ #endif #ifdef IFT_IEEE80211 case IFT_IEEE80211: /* ditto */ #endif #ifdef IFT_MIP case IFT_MIP: /* ditto */ #endif return (64); case IFT_FDDI: /* RFC2467 */ return (64); case IFT_ISO88025: /* RFC2470 (IPv6 over Token Ring) */ return (64); case IFT_PPP: /* RFC2472 */ return (64); case IFT_ARCNET: /* RFC2497 */ return (64); case IFT_FRELAY: /* RFC2590 */ return (64); case IFT_IEEE1394: /* RFC3146 */ return (64); case IFT_GIF: return (64); /* draft-ietf-v6ops-mech-v2-07 */ case IFT_LOOP: return (64); /* XXX: is this really correct? */ case IFT_OTHER: return (64); /* for utun interfaces */ case IFT_CELLULAR: return (64); /* Packet Data over Cellular */ case IFT_BRIDGE: return (64); /* Transparent bridge interface */ default: /* * Unknown link type: * It might be controversial to use the today's common constant * of 64 for these cases unconditionally. For full compliance, * we should return an error in this case. On the other hand, * if we simply miss the standard for the link type or a new * standard is defined for a new link type, the IFID length * is very likely to be the common constant. As a compromise, * we always use the constant, but make an explicit notice * indicating the "unknown" case. */ log(LOG_NOTICE, "%s: unknown link type (%d)\n", __func__, ifp->if_type); return (64); } } /* * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be * v4 mapped addr or v4 compat addr */ void in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) { bzero(sin, sizeof (*sin)); sin->sin_len = sizeof (struct sockaddr_in); sin->sin_family = AF_INET; sin->sin_port = sin6->sin6_port; sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3]; } /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */ void in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) { bzero(sin6, sizeof (*sin6)); sin6->sin6_len = sizeof (struct sockaddr_in6); sin6->sin6_family = AF_INET6; sin6->sin6_port = sin->sin_port; sin6->sin6_addr.s6_addr32[0] = 0; sin6->sin6_addr.s6_addr32[1] = 0; if (sin->sin_addr.s_addr) { sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP; sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr; } else { sin6->sin6_addr.s6_addr32[2] = 0; sin6->sin6_addr.s6_addr32[3] = 0; } } /* Convert sockaddr_in6 into sockaddr_in. */ void in6_sin6_2_sin_in_sock(struct sockaddr *nam) { struct sockaddr_in *sin_p; struct sockaddr_in6 sin6; /* * Save original sockaddr_in6 addr and convert it * to sockaddr_in. */ sin6 = *(struct sockaddr_in6 *)(void *)nam; sin_p = (struct sockaddr_in *)(void *)nam; in6_sin6_2_sin(sin_p, &sin6); } /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */ int in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam) { struct sockaddr_in *sin_p; struct sockaddr_in6 *sin6_p; MALLOC(sin6_p, struct sockaddr_in6 *, sizeof (*sin6_p), M_SONAME, M_WAITOK); if (sin6_p == NULL) return (ENOBUFS); sin_p = (struct sockaddr_in *)(void *)*nam; in6_sin_2_v4mapsin6(sin_p, sin6_p); FREE(*nam, M_SONAME); *nam = (struct sockaddr *)sin6_p; return (0); } /* * Posts in6_event_data message kernel events. * * To get the same size of kev_in6_data between ILP32 and LP64 data models * we are using a special version of the in6_addrlifetime structure that * uses only 32 bits fields to be compatible with Leopard, and that * are large enough to span 68 years. */ void in6_post_msg(struct ifnet *ifp, u_int32_t event_code, struct in6_ifaddr *ifa) { struct kev_msg ev_msg; struct kev_in6_data in6_event_data; struct in6_addrlifetime ia6_lt; bzero(&in6_event_data, sizeof (struct kev_in6_data)); bzero(&ev_msg, sizeof (struct kev_msg)); ev_msg.vendor_code = KEV_VENDOR_APPLE; ev_msg.kev_class = KEV_NETWORK_CLASS; ev_msg.kev_subclass = KEV_INET6_SUBCLASS; ev_msg.event_code = event_code; IFA_LOCK(&ifa->ia_ifa); in6_event_data.ia_addr = ifa->ia_addr; in6_event_data.ia_net = ifa->ia_net; in6_event_data.ia_dstaddr = ifa->ia_dstaddr; in6_event_data.ia_prefixmask = ifa->ia_prefixmask; in6_event_data.ia_plen = ifa->ia_plen; in6_event_data.ia6_flags = (u_int32_t)ifa->ia6_flags; /* retrieve time as calendar time (last arg is 1) */ in6ifa_getlifetime(ifa, &ia6_lt, 1); in6_event_data.ia_lifetime.ia6t_expire = ia6_lt.ia6t_expire; in6_event_data.ia_lifetime.ia6t_preferred = ia6_lt.ia6t_preferred; in6_event_data.ia_lifetime.ia6t_vltime = ia6_lt.ia6t_vltime; in6_event_data.ia_lifetime.ia6t_pltime = ia6_lt.ia6t_pltime; IFA_UNLOCK(&ifa->ia_ifa); if (ifp != NULL) { (void) strncpy(&in6_event_data.link_data.if_name[0], ifp->if_name, IFNAMSIZ); in6_event_data.link_data.if_family = ifp->if_family; in6_event_data.link_data.if_unit = (u_int32_t)ifp->if_unit; } ev_msg.dv[0].data_ptr = &in6_event_data; ev_msg.dv[0].data_length = sizeof (in6_event_data); ev_msg.dv[1].data_length = 0; kev_post_msg(&ev_msg); } /* * Called as part of ip6_init */ void in6_ifaddr_init(void) { in6_cga_init(); in6_multi_init(); PE_parse_boot_argn("ifa_debug", &in6ifa_debug, sizeof (in6ifa_debug)); in6ifa_size = (in6ifa_debug == 0) ? sizeof (struct in6_ifaddr) : sizeof (struct in6_ifaddr_dbg); in6ifa_zone = zinit(in6ifa_size, IN6IFA_ZONE_MAX * in6ifa_size, 0, IN6IFA_ZONE_NAME); if (in6ifa_zone == NULL) { panic("%s: failed allocating %s", __func__, IN6IFA_ZONE_NAME); /* NOTREACHED */ } zone_change(in6ifa_zone, Z_EXPAND, TRUE); zone_change(in6ifa_zone, Z_CALLERACCT, FALSE); lck_mtx_init(&in6ifa_trash_lock, ifa_mtx_grp, ifa_mtx_attr); TAILQ_INIT(&in6ifa_trash_head); } static struct in6_ifaddr * in6_ifaddr_alloc(int how) { struct in6_ifaddr *in6ifa; in6ifa = (how == M_WAITOK) ? zalloc(in6ifa_zone) : zalloc_noblock(in6ifa_zone); if (in6ifa != NULL) { bzero(in6ifa, in6ifa_size); in6ifa->ia_ifa.ifa_free = in6_ifaddr_free; in6ifa->ia_ifa.ifa_debug |= IFD_ALLOC; ifa_lock_init(&in6ifa->ia_ifa); if (in6ifa_debug != 0) { struct in6_ifaddr_dbg *in6ifa_dbg = (struct in6_ifaddr_dbg *)in6ifa; in6ifa->ia_ifa.ifa_debug |= IFD_DEBUG; in6ifa->ia_ifa.ifa_trace = in6_ifaddr_trace; in6ifa->ia_ifa.ifa_attached = in6_ifaddr_attached; in6ifa->ia_ifa.ifa_detached = in6_ifaddr_detached; ctrace_record(&in6ifa_dbg->in6ifa_alloc); } } return (in6ifa); } static void in6_ifaddr_free(struct ifaddr *ifa) { IFA_LOCK_ASSERT_HELD(ifa); if (ifa->ifa_refcnt != 0) { panic("%s: ifa %p bad ref cnt", __func__, ifa); /* NOTREACHED */ } else if (!(ifa->ifa_debug & IFD_ALLOC)) { panic("%s: ifa %p cannot be freed", __func__, ifa); /* NOTREACHED */ } if (ifa->ifa_debug & IFD_DEBUG) { struct in6_ifaddr_dbg *in6ifa_dbg = (struct in6_ifaddr_dbg *)ifa; ctrace_record(&in6ifa_dbg->in6ifa_free); bcopy(&in6ifa_dbg->in6ifa, &in6ifa_dbg->in6ifa_old, sizeof (struct in6_ifaddr)); if (ifa->ifa_debug & IFD_TRASHED) { /* Become a regular mutex, just in case */ IFA_CONVERT_LOCK(ifa); lck_mtx_lock(&in6ifa_trash_lock); TAILQ_REMOVE(&in6ifa_trash_head, in6ifa_dbg, in6ifa_trash_link); lck_mtx_unlock(&in6ifa_trash_lock); ifa->ifa_debug &= ~IFD_TRASHED; } } IFA_UNLOCK(ifa); ifa_lock_destroy(ifa); bzero(ifa, sizeof (struct in6_ifaddr)); zfree(in6ifa_zone, ifa); } static void in6_ifaddr_attached(struct ifaddr *ifa) { struct in6_ifaddr_dbg *in6ifa_dbg = (struct in6_ifaddr_dbg *)ifa; IFA_LOCK_ASSERT_HELD(ifa); if (!(ifa->ifa_debug & IFD_DEBUG)) { panic("%s: ifa %p has no debug structure", __func__, ifa); /* NOTREACHED */ } if (ifa->ifa_debug & IFD_TRASHED) { /* Become a regular mutex, just in case */ IFA_CONVERT_LOCK(ifa); lck_mtx_lock(&in6ifa_trash_lock); TAILQ_REMOVE(&in6ifa_trash_head, in6ifa_dbg, in6ifa_trash_link); lck_mtx_unlock(&in6ifa_trash_lock); ifa->ifa_debug &= ~IFD_TRASHED; } } static void in6_ifaddr_detached(struct ifaddr *ifa) { struct in6_ifaddr_dbg *in6ifa_dbg = (struct in6_ifaddr_dbg *)ifa; IFA_LOCK_ASSERT_HELD(ifa); if (!(ifa->ifa_debug & IFD_DEBUG)) { panic("%s: ifa %p has no debug structure", __func__, ifa); /* NOTREACHED */ } else if (ifa->ifa_debug & IFD_TRASHED) { panic("%s: ifa %p is already in trash list", __func__, ifa); /* NOTREACHED */ } ifa->ifa_debug |= IFD_TRASHED; /* Become a regular mutex, just in case */ IFA_CONVERT_LOCK(ifa); lck_mtx_lock(&in6ifa_trash_lock); TAILQ_INSERT_TAIL(&in6ifa_trash_head, in6ifa_dbg, in6ifa_trash_link); lck_mtx_unlock(&in6ifa_trash_lock); } static void in6_ifaddr_trace(struct ifaddr *ifa, int refhold) { struct in6_ifaddr_dbg *in6ifa_dbg = (struct in6_ifaddr_dbg *)ifa; ctrace_t *tr; u_int32_t idx; u_int16_t *cnt; if (!(ifa->ifa_debug & IFD_DEBUG)) { panic("%s: ifa %p has no debug structure", __func__, ifa); /* NOTREACHED */ } if (refhold) { cnt = &in6ifa_dbg->in6ifa_refhold_cnt; tr = in6ifa_dbg->in6ifa_refhold; } else { cnt = &in6ifa_dbg->in6ifa_refrele_cnt; tr = in6ifa_dbg->in6ifa_refrele; } idx = atomic_add_16_ov(cnt, 1) % IN6IFA_TRACE_HIST_SIZE; ctrace_record(&tr[idx]); } static void in6_ifaddr_set_dadprogress(struct in6_ifaddr *ia) { uint32_t flags = IN6_IFF_TENTATIVE; uint32_t optdad = nd6_optimistic_dad; if (optdad && (ia->ia_ifp->if_eflags & IFEF_IPV6_ROUTER) == 0) { if ((optdad & ND6_OPTIMISTIC_DAD_LINKLOCAL) && IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr)) flags = IN6_IFF_OPTIMISTIC; else if ((optdad & ND6_OPTIMISTIC_DAD_AUTOCONF) && (ia->ia6_flags & IN6_IFF_AUTOCONF)) { if (ia->ia6_flags & IN6_IFF_TEMPORARY) { if (optdad & ND6_OPTIMISTIC_DAD_TEMPORARY) flags = IN6_IFF_OPTIMISTIC; } else if (ia->ia6_flags & IN6_IFF_SECURED) { if (optdad & ND6_OPTIMISTIC_DAD_SECURED) flags = IN6_IFF_OPTIMISTIC; } } else if ((optdad & ND6_OPTIMISTIC_DAD_DYNAMIC) && (ia->ia6_flags & IN6_IFF_DYNAMIC)) { if (ia->ia6_flags & IN6_IFF_TEMPORARY) { if (optdad & ND6_OPTIMISTIC_DAD_TEMPORARY) flags = IN6_IFF_OPTIMISTIC; } else { flags = IN6_IFF_OPTIMISTIC; } } } ia->ia6_flags &= ~(IN6_IFF_DUPLICATED | IN6_IFF_DADPROGRESS); ia->ia6_flags |= flags; } /* * Handle SIOCGASSOCIDS ioctl for PF_INET6 domain. */ static int in6_getassocids(struct socket *so, uint32_t *cnt, user_addr_t aidp) { struct in6pcb *in6p = sotoin6pcb(so); associd_t aid; if (in6p == NULL || in6p->inp_state == INPCB_STATE_DEAD) return (EINVAL); /* IN6PCB has no concept of association */ aid = ASSOCID_ANY; *cnt = 0; /* just asking how many there are? */ if (aidp == USER_ADDR_NULL) return (0); return (copyout(&aid, aidp, sizeof (aid))); } /* * Handle SIOCGCONNIDS ioctl for PF_INET6 domain. */ static int in6_getconnids(struct socket *so, associd_t aid, uint32_t *cnt, user_addr_t cidp) { struct in6pcb *in6p = sotoin6pcb(so); connid_t cid; if (in6p == NULL || in6p->inp_state == INPCB_STATE_DEAD) return (EINVAL); if (aid != ASSOCID_ANY && aid != ASSOCID_ALL) return (EINVAL); /* if connected, return 1 connection count */ *cnt = ((so->so_state & SS_ISCONNECTED) ? 1 : 0); /* just asking how many there are? */ if (cidp == USER_ADDR_NULL) return (0); /* if IN6PCB is connected, assign it connid 1 */ cid = ((*cnt != 0) ? 1 : CONNID_ANY); return (copyout(&cid, cidp, sizeof (cid))); } /* * Handle SIOCGCONNINFO ioctl for PF_INET6 domain. */ static int in6_getconninfo(struct socket *so, connid_t cid, uint32_t *flags, uint32_t *ifindex, int32_t *soerror, user_addr_t src, socklen_t *src_len, user_addr_t dst, socklen_t *dst_len, uint32_t *aux_type, user_addr_t aux_data, uint32_t *aux_len) { #pragma unused(aux_data) struct in6pcb *in6p = sotoin6pcb(so); struct sockaddr_in6 sin6; struct ifnet *ifp = NULL; int error = 0; u_int32_t copy_len = 0; /* * Don't test for INPCB_STATE_DEAD since this may be called * after SOF_PCBCLEARING is set, e.g. after tcp_close(). */ if (in6p == NULL) { error = EINVAL; goto out; } if (cid != CONNID_ANY && cid != CONNID_ALL && cid != 1) { error = EINVAL; goto out; } ifp = in6p->in6p_last_outifp; *ifindex = ((ifp != NULL) ? ifp->if_index : 0); *soerror = so->so_error; *flags = 0; if (so->so_state & SS_ISCONNECTED) *flags |= (CIF_CONNECTED | CIF_PREFERRED); if (in6p->in6p_flags & INP_BOUND_IF) *flags |= CIF_BOUND_IF; if (!(in6p->in6p_flags & INP_IN6ADDR_ANY)) *flags |= CIF_BOUND_IP; if (!(in6p->in6p_flags & INP_ANONPORT)) *flags |= CIF_BOUND_PORT; bzero(&sin6, sizeof (sin6)); sin6.sin6_len = sizeof (sin6); sin6.sin6_family = AF_INET6; /* source address and port */ sin6.sin6_port = in6p->in6p_lport; bcopy(&in6p->in6p_laddr, &sin6.sin6_addr, sizeof (struct in6_addr)); if (*src_len == 0) { *src_len = sin6.sin6_len; } else { if (src != USER_ADDR_NULL) { copy_len = min(*src_len, sizeof (sin6)); error = copyout(&sin6, src, copy_len); if (error != 0) goto out; *src_len = copy_len; } } /* destination address and port */ sin6.sin6_port = in6p->in6p_fport; bcopy(&in6p->in6p_faddr, &sin6.sin6_addr, sizeof (struct in6_addr)); if (*dst_len == 0) { *dst_len = sin6.sin6_len; } else { if (dst != USER_ADDR_NULL) { copy_len = min(*dst_len, sizeof (sin6)); error = copyout(&sin6, dst, copy_len); if (error != 0) goto out; *dst_len = copy_len; } } *aux_type = 0; *aux_len = 0; if (SOCK_PROTO(so) == IPPROTO_TCP) { struct conninfo_tcp tcp_ci; *aux_type = CIAUX_TCP; if (*aux_len == 0) { *aux_len = sizeof (tcp_ci); } else { if (aux_data != USER_ADDR_NULL) { copy_len = min(*aux_len, sizeof (tcp_ci)); bzero(&tcp_ci, sizeof (tcp_ci)); tcp_getconninfo(so, &tcp_ci); error = copyout(&tcp_ci, aux_data, copy_len); if (error != 0) goto out; *aux_len = copy_len; } } } out: return (error); } /* * 'u' group ioctls. * * The switch statement below does nothing at runtime, as it serves as a * compile time check to ensure that all of the socket 'u' ioctls (those * in the 'u' group going thru soo_ioctl) that are made available by the * networking stack is unique. This works as long as this routine gets * updated each time a new interface ioctl gets added. * * Any failures at compile time indicates duplicated ioctl values. */ static __attribute__((unused)) void in6ioctl_cassert(void) { /* * This is equivalent to _CASSERT() and the compiler wouldn't * generate any instructions, thus for compile time only. */ switch ((u_long)0) { case 0: /* bsd/netinet6/in6_var.h */ case SIOCGETSGCNT_IN6: case SIOCGETMIFCNT_IN6_32: case SIOCGETMIFCNT_IN6_64: case SIOCAADDRCTL_POLICY: case SIOCDADDRCTL_POLICY: case SIOCDRADD_IN6_32: case SIOCDRADD_IN6_64: case SIOCDRDEL_IN6_32: case SIOCDRDEL_IN6_64: ; } }