/* * Copyright (c) 2000-2013 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* * Copyright (c) 1982, 1986, 1988, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * From: @(#)tcp_usrreq.c 8.2 (Berkeley) 1/3/94 * $FreeBSD: src/sys/netinet/tcp_usrreq.c,v 1.51.2.9 2001/08/22 00:59:12 silby Exp $ */ #include #include #include #include #include #if INET6 #include #endif /* INET6 */ #include #include #include #include #include #include #include #include #include #include #if INET6 #include #endif #include #if INET6 #include #endif #include #include #if INET6 #include #endif #include #include #include #include #include #include #include #if TCPDEBUG #include #endif #if MPTCP #include #endif /* MPTCP */ #if IPSEC #include #endif /*IPSEC*/ #if FLOW_DIVERT #include #endif /* FLOW_DIVERT */ void tcp_fill_info(struct tcpcb *, struct tcp_info *); errno_t tcp_fill_info_for_info_tuple(struct info_tuple *, struct tcp_info *); int tcp_sysctl_info(struct sysctl_oid *, void *, int , struct sysctl_req *); /* * TCP protocol interface to socket abstraction. */ extern char *tcpstates[]; /* XXX ??? */ static int tcp_attach(struct socket *, struct proc *); static int tcp_connect(struct tcpcb *, struct sockaddr *, struct proc *); #if INET6 static int tcp6_connect(struct tcpcb *, struct sockaddr *, struct proc *); static int tcp6_usr_connect(struct socket *, struct sockaddr *, struct proc *); #endif /* INET6 */ static struct tcpcb * tcp_disconnect(struct tcpcb *); static struct tcpcb * tcp_usrclosed(struct tcpcb *); extern uint32_t tcp_autorcvbuf_max; extern void tcp_sbrcv_trim(struct tcpcb *tp, struct sockbuf *sb); #if TCPDEBUG #define TCPDEBUG0 int ostate = 0 #define TCPDEBUG1() ostate = tp ? tp->t_state : 0 #define TCPDEBUG2(req) if (tp && (so->so_options & SO_DEBUG)) \ tcp_trace(TA_USER, ostate, tp, 0, 0, req) #else #define TCPDEBUG0 #define TCPDEBUG1() #define TCPDEBUG2(req) #endif SYSCTL_PROC(_net_inet_tcp, OID_AUTO, info, CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_ANYBODY | CTLFLAG_KERN, 0 , 0, tcp_sysctl_info, "S", "TCP info per tuple"); /* * TCP attaches to socket via pru_attach(), reserving space, * and an internet control block. * * Returns: 0 Success * EISCONN * tcp_attach:ENOBUFS * tcp_attach:ENOMEM * tcp_attach:??? [IPSEC specific] */ static int tcp_usr_attach(struct socket *so, __unused int proto, struct proc *p) { int error; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp = 0; TCPDEBUG0; TCPDEBUG1(); if (inp) { error = EISCONN; goto out; } error = tcp_attach(so, p); if (error) goto out; if ((so->so_options & SO_LINGER) && so->so_linger == 0) so->so_linger = TCP_LINGERTIME * hz; tp = sototcpcb(so); out: TCPDEBUG2(PRU_ATTACH); return error; } /* * pru_detach() detaches the TCP protocol from the socket. * If the protocol state is non-embryonic, then can't * do this directly: have to initiate a pru_disconnect(), * which may finish later; embryonic TCB's can just * be discarded here. */ static int tcp_usr_detach(struct socket *so) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; TCPDEBUG0; if (inp == 0 || (inp->inp_state == INPCB_STATE_DEAD)) { return EINVAL; /* XXX */ } lck_mtx_assert(&((struct inpcb *)so->so_pcb)->inpcb_mtx, LCK_MTX_ASSERT_OWNED); tp = intotcpcb(inp); /* In case we got disconnected from the peer */ if (tp == NULL) goto out; TCPDEBUG1(); calculate_tcp_clock(); tp = tcp_disconnect(tp); out: TCPDEBUG2(PRU_DETACH); return error; } #define COMMON_START() TCPDEBUG0; \ do { \ if (inp == NULL || inp->inp_state == INPCB_STATE_DEAD) \ return (EINVAL); \ if (inp->inp_flags2 & INP2_WANT_FLOW_DIVERT) \ return (EPROTOTYPE); \ tp = intotcpcb(inp); \ TCPDEBUG1(); \ calculate_tcp_clock(); \ } while (0) #define COMMON_END(req) out: TCPDEBUG2(req); return error; goto out /* * Give the socket an address. * * Returns: 0 Success * EINVAL Invalid argument [COMMON_START] * EAFNOSUPPORT Address family not supported * in_pcbbind:EADDRNOTAVAIL Address not available. * in_pcbbind:EINVAL Invalid argument * in_pcbbind:EAFNOSUPPORT Address family not supported [notdef] * in_pcbbind:EACCES Permission denied * in_pcbbind:EADDRINUSE Address in use * in_pcbbind:EAGAIN Resource unavailable, try again * in_pcbbind:EPERM Operation not permitted */ static int tcp_usr_bind(struct socket *so, struct sockaddr *nam, struct proc *p) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; struct sockaddr_in *sinp; COMMON_START(); if (nam->sa_family != 0 && nam->sa_family != AF_INET) { error = EAFNOSUPPORT; goto out; } /* * Must check for multicast addresses and disallow binding * to them. */ sinp = (struct sockaddr_in *)(void *)nam; if (sinp->sin_family == AF_INET && IN_MULTICAST(ntohl(sinp->sin_addr.s_addr))) { error = EAFNOSUPPORT; goto out; } error = in_pcbbind(inp, nam, p); if (error) goto out; COMMON_END(PRU_BIND); } #if INET6 static int tcp6_usr_bind(struct socket *so, struct sockaddr *nam, struct proc *p) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; struct sockaddr_in6 *sin6p; COMMON_START(); if (nam->sa_family != 0 && nam->sa_family != AF_INET6) { error = EAFNOSUPPORT; goto out; } /* * Must check for multicast addresses and disallow binding * to them. */ sin6p = (struct sockaddr_in6 *)(void *)nam; if (sin6p->sin6_family == AF_INET6 && IN6_IS_ADDR_MULTICAST(&sin6p->sin6_addr)) { error = EAFNOSUPPORT; goto out; } inp->inp_vflag &= ~INP_IPV4; inp->inp_vflag |= INP_IPV6; if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) { if (IN6_IS_ADDR_UNSPECIFIED(&sin6p->sin6_addr)) inp->inp_vflag |= INP_IPV4; else if (IN6_IS_ADDR_V4MAPPED(&sin6p->sin6_addr)) { struct sockaddr_in sin; in6_sin6_2_sin(&sin, sin6p); inp->inp_vflag |= INP_IPV4; inp->inp_vflag &= ~INP_IPV6; error = in_pcbbind(inp, (struct sockaddr *)&sin, p); goto out; } } error = in6_pcbbind(inp, nam, p); if (error) goto out; COMMON_END(PRU_BIND); } #endif /* INET6 */ /* * Prepare to accept connections. * * Returns: 0 Success * EINVAL [COMMON_START] * in_pcbbind:EADDRNOTAVAIL Address not available. * in_pcbbind:EINVAL Invalid argument * in_pcbbind:EAFNOSUPPORT Address family not supported [notdef] * in_pcbbind:EACCES Permission denied * in_pcbbind:EADDRINUSE Address in use * in_pcbbind:EAGAIN Resource unavailable, try again * in_pcbbind:EPERM Operation not permitted */ static int tcp_usr_listen(struct socket *so, struct proc *p) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; COMMON_START(); if (inp->inp_lport == 0) error = in_pcbbind(inp, NULL, p); if (error == 0) tp->t_state = TCPS_LISTEN; COMMON_END(PRU_LISTEN); } #if INET6 static int tcp6_usr_listen(struct socket *so, struct proc *p) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; COMMON_START(); if (inp->inp_lport == 0) { inp->inp_vflag &= ~INP_IPV4; if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) inp->inp_vflag |= INP_IPV4; error = in6_pcbbind(inp, NULL, p); } if (error == 0) tp->t_state = TCPS_LISTEN; COMMON_END(PRU_LISTEN); } #endif /* INET6 */ /* * Initiate connection to peer. * Create a template for use in transmissions on this connection. * Enter SYN_SENT state, and mark socket as connecting. * Start keep-alive timer, and seed output sequence space. * Send initial segment on connection. */ static int tcp_usr_connect(struct socket *so, struct sockaddr *nam, struct proc *p) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; struct sockaddr_in *sinp; TCPDEBUG0; if (inp == NULL) { return EINVAL; } else if (inp->inp_state == INPCB_STATE_DEAD) { if (so->so_error) { error = so->so_error; so->so_error = 0; return error; } else return EINVAL; } #if FLOW_DIVERT else if (inp->inp_flags2 & INP2_WANT_FLOW_DIVERT) { uint32_t fd_ctl_unit = 0; error = flow_divert_check_policy(so, p, FALSE, &fd_ctl_unit); if (error == 0) { if (fd_ctl_unit > 0) { error = flow_divert_pcb_init(so, fd_ctl_unit); if (error == 0) { error = flow_divert_connect_out(so, nam, p); } } else { error = ENETDOWN; } } return error; } #endif /* FLOW_DIVERT */ tp = intotcpcb(inp); TCPDEBUG1(); calculate_tcp_clock(); if (nam->sa_family != 0 && nam->sa_family != AF_INET) { error = EAFNOSUPPORT; goto out; } /* * Must disallow TCP ``connections'' to multicast addresses. */ sinp = (struct sockaddr_in *)(void *)nam; if (sinp->sin_family == AF_INET && IN_MULTICAST(ntohl(sinp->sin_addr.s_addr))) { error = EAFNOSUPPORT; goto out; } if ((error = tcp_connect(tp, nam, p)) != 0) goto out; error = tcp_output(tp); COMMON_END(PRU_CONNECT); } static int tcp_usr_connectx_common(struct socket *so, int af, struct sockaddr_list **src_sl, struct sockaddr_list **dst_sl, struct proc *p, uint32_t ifscope, associd_t aid, connid_t *pcid, uint32_t flags, void *arg, uint32_t arglen) { #pragma unused(aid) #if !MPTCP #pragma unused(flags, arg, arglen) #endif /* !MPTCP */ struct sockaddr_entry *src_se = NULL, *dst_se = NULL; struct inpcb *inp = sotoinpcb(so); int error; if (inp == NULL) return (EINVAL); VERIFY(dst_sl != NULL); /* select source (if specified) and destination addresses */ error = in_selectaddrs(af, src_sl, &src_se, dst_sl, &dst_se); if (error != 0) return (error); VERIFY(*dst_sl != NULL && dst_se != NULL); VERIFY(src_se == NULL || *src_sl != NULL); VERIFY(dst_se->se_addr->sa_family == af); VERIFY(src_se == NULL || src_se->se_addr->sa_family == af); /* * We get here for 2 cases: * * a. From MPTCP, to connect a subflow. There is no need to * bind the socket to the source address and/or interface, * since everything has been taken care of by MPTCP. We * simply check whether or not this is for the initial * MPTCP connection attempt, or to join an existing one. * * b. From the socket layer, to connect a TCP. Perform the * bind to source address and/or interface as necessary. */ #if MPTCP if (flags & TCP_CONNREQF_MPTCP) { struct mptsub_connreq *mpcr = arg; /* Check to make sure this came down from MPTCP */ if (arg == NULL || arglen != sizeof (*mpcr)) return (EOPNOTSUPP); switch (mpcr->mpcr_type) { case MPTSUB_CONNREQ_MP_ENABLE: break; case MPTSUB_CONNREQ_MP_ADD: break; default: return (EOPNOTSUPP); } } else #endif /* MPTCP */ { /* bind socket to the specified interface, if requested */ if (ifscope != IFSCOPE_NONE && (error = inp_bindif(inp, ifscope, NULL)) != 0) return (error); /* if source address and/or port is specified, bind to it */ if (src_se != NULL) { struct sockaddr *sa = src_se->se_addr; error = sobindlock(so, sa, 0); /* already locked */ if (error != 0) return (error); } } switch (af) { case AF_INET: error = tcp_usr_connect(so, dst_se->se_addr, p); break; #if INET6 case AF_INET6: error = tcp6_usr_connect(so, dst_se->se_addr, p); break; #endif /* INET6 */ default: VERIFY(0); /* NOTREACHED */ } if (error == 0 && pcid != NULL) *pcid = 1; /* there is only 1 connection for a TCP */ return (error); } static int tcp_usr_connectx(struct socket *so, struct sockaddr_list **src_sl, struct sockaddr_list **dst_sl, struct proc *p, uint32_t ifscope, associd_t aid, connid_t *pcid, uint32_t flags, void *arg, uint32_t arglen) { return (tcp_usr_connectx_common(so, AF_INET, src_sl, dst_sl, p, ifscope, aid, pcid, flags, arg, arglen)); } #if INET6 static int tcp6_usr_connect(struct socket *so, struct sockaddr *nam, struct proc *p) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; struct sockaddr_in6 *sin6p; TCPDEBUG0; if (inp == NULL) { return EINVAL; } else if (inp->inp_state == INPCB_STATE_DEAD) { if (so->so_error) { error = so->so_error; so->so_error = 0; return error; } else return EINVAL; } #if FLOW_DIVERT else if (inp->inp_flags2 & INP2_WANT_FLOW_DIVERT) { uint32_t fd_ctl_unit = 0; error = flow_divert_check_policy(so, p, FALSE, &fd_ctl_unit); if (error == 0) { if (fd_ctl_unit > 0) { error = flow_divert_pcb_init(so, fd_ctl_unit); if (error == 0) { error = flow_divert_connect_out(so, nam, p); } } else { error = ENETDOWN; } } return error; } #endif /* FLOW_DIVERT */ tp = intotcpcb(inp); TCPDEBUG1(); calculate_tcp_clock(); if (nam->sa_family != 0 && nam->sa_family != AF_INET6) { error = EAFNOSUPPORT; goto out; } /* * Must disallow TCP ``connections'' to multicast addresses. */ sin6p = (struct sockaddr_in6 *)(void *)nam; if (sin6p->sin6_family == AF_INET6 && IN6_IS_ADDR_MULTICAST(&sin6p->sin6_addr)) { error = EAFNOSUPPORT; goto out; } if (IN6_IS_ADDR_V4MAPPED(&sin6p->sin6_addr)) { struct sockaddr_in sin; if ((inp->inp_flags & IN6P_IPV6_V6ONLY) != 0) return (EINVAL); in6_sin6_2_sin(&sin, sin6p); inp->inp_vflag |= INP_IPV4; inp->inp_vflag &= ~INP_IPV6; if ((error = tcp_connect(tp, (struct sockaddr *)&sin, p)) != 0) goto out; error = tcp_output(tp); goto out; } inp->inp_vflag &= ~INP_IPV4; inp->inp_vflag |= INP_IPV6; if ((error = tcp6_connect(tp, nam, p)) != 0) goto out; error = tcp_output(tp); if (error) goto out; COMMON_END(PRU_CONNECT); } static int tcp6_usr_connectx(struct socket *so, struct sockaddr_list **src_sl, struct sockaddr_list **dst_sl, struct proc *p, uint32_t ifscope, associd_t aid, connid_t *pcid, uint32_t flags, void *arg, uint32_t arglen) { return (tcp_usr_connectx_common(so, AF_INET6, src_sl, dst_sl, p, ifscope, aid, pcid, flags, arg, arglen)); } #endif /* INET6 */ /* * Initiate disconnect from peer. * If connection never passed embryonic stage, just drop; * else if don't need to let data drain, then can just drop anyways, * else have to begin TCP shutdown process: mark socket disconnecting, * drain unread data, state switch to reflect user close, and * send segment (e.g. FIN) to peer. Socket will be really disconnected * when peer sends FIN and acks ours. * * SHOULD IMPLEMENT LATER PRU_CONNECT VIA REALLOC TCPCB. */ static int tcp_usr_disconnect(struct socket *so) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; lck_mtx_assert(&((struct inpcb *)so->so_pcb)->inpcb_mtx, LCK_MTX_ASSERT_OWNED); COMMON_START(); /* In case we got disconnected from the peer */ if (tp == NULL) goto out; tp = tcp_disconnect(tp); COMMON_END(PRU_DISCONNECT); } /* * User-protocol pru_disconnectx callback. */ static int tcp_usr_disconnectx(struct socket *so, associd_t aid, connid_t cid) { #pragma unused(cid) if (aid != ASSOCID_ANY && aid != ASSOCID_ALL) return (EINVAL); return (tcp_usr_disconnect(so)); } /* * Accept a connection. Essentially all the work is * done at higher levels; just return the address * of the peer, storing through addr. */ static int tcp_usr_accept(struct socket *so, struct sockaddr **nam) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp = NULL; TCPDEBUG0; in_getpeeraddr(so, nam); if (so->so_state & SS_ISDISCONNECTED) { error = ECONNABORTED; goto out; } if (inp == NULL || inp->inp_state == INPCB_STATE_DEAD) return (EINVAL); else if (inp->inp_flags2 & INP2_WANT_FLOW_DIVERT) return (EPROTOTYPE); tp = intotcpcb(inp); TCPDEBUG1(); calculate_tcp_clock(); COMMON_END(PRU_ACCEPT); } #if INET6 static int tcp6_usr_accept(struct socket *so, struct sockaddr **nam) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp = NULL; TCPDEBUG0; if (so->so_state & SS_ISDISCONNECTED) { error = ECONNABORTED; goto out; } if (inp == NULL || inp->inp_state == INPCB_STATE_DEAD) return (EINVAL); else if (inp->inp_flags2 & INP2_WANT_FLOW_DIVERT) return (EPROTOTYPE); tp = intotcpcb(inp); TCPDEBUG1(); calculate_tcp_clock(); in6_mapped_peeraddr(so, nam); COMMON_END(PRU_ACCEPT); } #endif /* INET6 */ /* * Mark the connection as being incapable of further output. * * Returns: 0 Success * EINVAL [COMMON_START] * tcp_output:EADDRNOTAVAIL * tcp_output:ENOBUFS * tcp_output:EMSGSIZE * tcp_output:EHOSTUNREACH * tcp_output:ENETUNREACH * tcp_output:ENETDOWN * tcp_output:ENOMEM * tcp_output:EACCES * tcp_output:EMSGSIZE * tcp_output:ENOBUFS * tcp_output:??? [ignorable: mostly IPSEC/firewall/DLIL] */ static int tcp_usr_shutdown(struct socket *so) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; TCPDEBUG0; if (inp == NULL || inp->inp_state == INPCB_STATE_DEAD) return (EINVAL); socantsendmore(so); /* * In case we got disconnected from the peer, or if this is * a socket that is to be flow-diverted (but not yet). */ tp = intotcpcb(inp); TCPDEBUG1(); if (tp == NULL || (inp->inp_flags2 & INP2_WANT_FLOW_DIVERT)) { if (tp != NULL) error = EPROTOTYPE; goto out; } calculate_tcp_clock(); tp = tcp_usrclosed(tp); #if MPTCP /* A reset has been sent but socket exists, do not send FIN */ if ((so->so_flags & SOF_MP_SUBFLOW) && (tp) && (tp->t_mpflags & TMPF_RESET)) { goto out; } #endif if (tp) error = tcp_output(tp); COMMON_END(PRU_SHUTDOWN); } /* * After a receive, possibly send window update to peer. */ static int tcp_usr_rcvd(struct socket *so, __unused int flags) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; COMMON_START(); /* In case we got disconnected from the peer */ if (tp == NULL) goto out; tcp_sbrcv_trim(tp, &so->so_rcv); tcp_output(tp); COMMON_END(PRU_RCVD); } /* * Do a send by putting data in output queue and updating urgent * marker if URG set. Possibly send more data. Unlike the other * pru_*() routines, the mbuf chains are our responsibility. We * must either enqueue them or free them. The other pru_* routines * generally are caller-frees. * * Returns: 0 Success * ECONNRESET * EINVAL * ENOBUFS * tcp_connect:EADDRINUSE Address in use * tcp_connect:EADDRNOTAVAIL Address not available. * tcp_connect:EINVAL Invalid argument * tcp_connect:EAFNOSUPPORT Address family not supported [notdef] * tcp_connect:EACCES Permission denied * tcp_connect:EAGAIN Resource unavailable, try again * tcp_connect:EPERM Operation not permitted * tcp_output:EADDRNOTAVAIL * tcp_output:ENOBUFS * tcp_output:EMSGSIZE * tcp_output:EHOSTUNREACH * tcp_output:ENETUNREACH * tcp_output:ENETDOWN * tcp_output:ENOMEM * tcp_output:EACCES * tcp_output:EMSGSIZE * tcp_output:ENOBUFS * tcp_output:??? [ignorable: mostly IPSEC/firewall/DLIL] * tcp6_connect:??? [IPV6 only] */ static int tcp_usr_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, struct mbuf *control, struct proc *p) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; uint32_t msgpri = MSG_PRI_DEFAULT; #if INET6 int isipv6; #endif TCPDEBUG0; if (inp == NULL || inp->inp_state == INPCB_STATE_DEAD || (inp->inp_flags2 & INP2_WANT_FLOW_DIVERT)) { /* * OOPS! we lost a race, the TCP session got reset after * we checked SS_CANTSENDMORE, eg: while doing uiomove or a * network interrupt in the non-splnet() section of sosend(). */ if (m != NULL) m_freem(m); if (control != NULL) { m_freem(control); control = NULL; } if (inp != NULL && (inp->inp_flags2 & INP2_WANT_FLOW_DIVERT)) error = EPROTOTYPE; else error = ECONNRESET; /* XXX EPIPE? */ tp = NULL; TCPDEBUG1(); goto out; } #if INET6 isipv6 = nam && nam->sa_family == AF_INET6; #endif /* INET6 */ tp = intotcpcb(inp); TCPDEBUG1(); calculate_tcp_clock(); if (control != NULL) { if (so->so_flags & SOF_ENABLE_MSGS) { /* Get the msg priority from control mbufs */ error = tcp_get_msg_priority(control, &msgpri); if (error) { m_freem(control); if (m != NULL) m_freem(m); control = NULL; m = NULL; goto out; } m_freem(control); control = NULL; } else if (control->m_len) { /* * if not unordered, TCP should not have * control mbufs */ m_freem(control); if (m != NULL) m_freem(m); control = NULL; m = NULL; error = EINVAL; goto out; } } if (so->so_flags & SOF_ENABLE_MSGS) { VERIFY(m->m_flags & M_PKTHDR); m->m_pkthdr.msg_pri = msgpri; } /* MPTCP sublow socket buffers must not be compressed */ VERIFY(!(so->so_flags & SOF_MP_SUBFLOW) || (so->so_snd.sb_flags & SB_NOCOMPRESS)); if(!(flags & PRUS_OOB)) { /* Call msg send if message delivery is enabled */ if (so->so_flags & SOF_ENABLE_MSGS) sbappendmsg_snd(&so->so_snd, m); else sbappendstream(&so->so_snd, m); if (nam && tp->t_state < TCPS_SYN_SENT) { /* * Do implied connect if not yet connected, * initialize window to default value, and * initialize maxseg/maxopd using peer's cached * MSS. */ #if INET6 if (isipv6) error = tcp6_connect(tp, nam, p); else #endif /* INET6 */ error = tcp_connect(tp, nam, p); if (error) goto out; tp->snd_wnd = TTCP_CLIENT_SND_WND; tcp_mss(tp, -1, IFSCOPE_NONE); } if (flags & PRUS_EOF) { /* * Close the send side of the connection after * the data is sent. */ socantsendmore(so); tp = tcp_usrclosed(tp); } if (tp != NULL) { if (flags & PRUS_MORETOCOME) tp->t_flags |= TF_MORETOCOME; error = tcp_output(tp); if (flags & PRUS_MORETOCOME) tp->t_flags &= ~TF_MORETOCOME; } } else { if (sbspace(&so->so_snd) == 0) { /* if no space is left in sockbuf, * do not try to squeeze in OOB traffic */ m_freem(m); error = ENOBUFS; goto out; } /* * According to RFC961 (Assigned Protocols), * the urgent pointer points to the last octet * of urgent data. We continue, however, * to consider it to indicate the first octet * of data past the urgent section. * Otherwise, snd_up should be one lower. */ sbappendstream(&so->so_snd, m); if (nam && tp->t_state < TCPS_SYN_SENT) { /* * Do implied connect if not yet connected, * initialize window to default value, and * initialize maxseg/maxopd using peer's cached * MSS. */ #if INET6 if (isipv6) error = tcp6_connect(tp, nam, p); else #endif /* INET6 */ error = tcp_connect(tp, nam, p); if (error) goto out; tp->snd_wnd = TTCP_CLIENT_SND_WND; tcp_mss(tp, -1, IFSCOPE_NONE); } tp->snd_up = tp->snd_una + so->so_snd.sb_cc; tp->t_force = 1; error = tcp_output(tp); tp->t_force = 0; } COMMON_END((flags & PRUS_OOB) ? PRU_SENDOOB : ((flags & PRUS_EOF) ? PRU_SEND_EOF : PRU_SEND)); } /* * Abort the TCP. */ static int tcp_usr_abort(struct socket *so) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; COMMON_START(); /* In case we got disconnected from the peer */ if (tp == NULL) goto out; tp = tcp_drop(tp, ECONNABORTED); so->so_usecount--; COMMON_END(PRU_ABORT); } /* * Receive out-of-band data. * * Returns: 0 Success * EINVAL [COMMON_START] * EINVAL * EWOULDBLOCK */ static int tcp_usr_rcvoob(struct socket *so, struct mbuf *m, int flags) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; COMMON_START(); if ((so->so_oobmark == 0 && (so->so_state & SS_RCVATMARK) == 0) || so->so_options & SO_OOBINLINE || tp->t_oobflags & TCPOOB_HADDATA) { error = EINVAL; goto out; } if ((tp->t_oobflags & TCPOOB_HAVEDATA) == 0) { error = EWOULDBLOCK; goto out; } m->m_len = 1; *mtod(m, caddr_t) = tp->t_iobc; if ((flags & MSG_PEEK) == 0) tp->t_oobflags ^= (TCPOOB_HAVEDATA | TCPOOB_HADDATA); COMMON_END(PRU_RCVOOB); } /* xxx - should be const */ struct pr_usrreqs tcp_usrreqs = { .pru_abort = tcp_usr_abort, .pru_accept = tcp_usr_accept, .pru_attach = tcp_usr_attach, .pru_bind = tcp_usr_bind, .pru_connect = tcp_usr_connect, .pru_connectx = tcp_usr_connectx, .pru_control = in_control, .pru_detach = tcp_usr_detach, .pru_disconnect = tcp_usr_disconnect, .pru_disconnectx = tcp_usr_disconnectx, .pru_listen = tcp_usr_listen, .pru_peeraddr = in_getpeeraddr, .pru_rcvd = tcp_usr_rcvd, .pru_rcvoob = tcp_usr_rcvoob, .pru_send = tcp_usr_send, .pru_shutdown = tcp_usr_shutdown, .pru_sockaddr = in_getsockaddr, .pru_sosend = sosend, .pru_soreceive = soreceive, }; #if INET6 struct pr_usrreqs tcp6_usrreqs = { .pru_abort = tcp_usr_abort, .pru_accept = tcp6_usr_accept, .pru_attach = tcp_usr_attach, .pru_bind = tcp6_usr_bind, .pru_connect = tcp6_usr_connect, .pru_connectx = tcp6_usr_connectx, .pru_control = in6_control, .pru_detach = tcp_usr_detach, .pru_disconnect = tcp_usr_disconnect, .pru_disconnectx = tcp_usr_disconnectx, .pru_listen = tcp6_usr_listen, .pru_peeraddr = in6_mapped_peeraddr, .pru_rcvd = tcp_usr_rcvd, .pru_rcvoob = tcp_usr_rcvoob, .pru_send = tcp_usr_send, .pru_shutdown = tcp_usr_shutdown, .pru_sockaddr = in6_mapped_sockaddr, .pru_sosend = sosend, .pru_soreceive = soreceive, }; #endif /* INET6 */ /* * Common subroutine to open a TCP connection to remote host specified * by struct sockaddr_in in mbuf *nam. Call in_pcbbind to assign a local * port number if needed. Call in_pcbladdr to do the routing and to choose * a local host address (interface). If there is an existing incarnation * of the same connection in TIME-WAIT state and if the remote host was * sending CC options and if the connection duration was < MSL, then * truncate the previous TIME-WAIT state and proceed. * Initialize connection parameters and enter SYN-SENT state. * * Returns: 0 Success * EADDRINUSE * EINVAL * in_pcbbind:EADDRNOTAVAIL Address not available. * in_pcbbind:EINVAL Invalid argument * in_pcbbind:EAFNOSUPPORT Address family not supported [notdef] * in_pcbbind:EACCES Permission denied * in_pcbbind:EADDRINUSE Address in use * in_pcbbind:EAGAIN Resource unavailable, try again * in_pcbbind:EPERM Operation not permitted * in_pcbladdr:EINVAL Invalid argument * in_pcbladdr:EAFNOSUPPORT Address family not supported * in_pcbladdr:EADDRNOTAVAIL Address not available */ static int tcp_connect(tp, nam, p) register struct tcpcb *tp; struct sockaddr *nam; struct proc *p; { struct inpcb *inp = tp->t_inpcb, *oinp; struct socket *so = inp->inp_socket; struct tcpcb *otp; struct sockaddr_in *sin = (struct sockaddr_in *)(void *)nam; struct in_addr laddr; struct rmxp_tao *taop; struct rmxp_tao tao_noncached; int error = 0; struct ifnet *outif = NULL; if (inp->inp_lport == 0) { error = in_pcbbind(inp, NULL, p); if (error) goto done; } /* * Cannot simply call in_pcbconnect, because there might be an * earlier incarnation of this same connection still in * TIME_WAIT state, creating an ADDRINUSE error. */ error = in_pcbladdr(inp, nam, &laddr, IFSCOPE_NONE, &outif); if (error) goto done; tcp_unlock(inp->inp_socket, 0, 0); oinp = in_pcblookup_hash(inp->inp_pcbinfo, sin->sin_addr, sin->sin_port, inp->inp_laddr.s_addr != INADDR_ANY ? inp->inp_laddr : laddr, inp->inp_lport, 0, NULL); tcp_lock(inp->inp_socket, 0, 0); if (oinp) { if (oinp != inp) /* 4143933: avoid deadlock if inp == oinp */ tcp_lock(oinp->inp_socket, 1, 0); if (in_pcb_checkstate(oinp, WNT_RELEASE, 1) == WNT_STOPUSING) { if (oinp != inp) tcp_unlock(oinp->inp_socket, 1, 0); goto skip_oinp; } if (oinp != inp && (otp = intotcpcb(oinp)) != NULL && otp->t_state == TCPS_TIME_WAIT && ((int)(tcp_now - otp->t_starttime)) < tcp_msl && (otp->t_flags & TF_RCVD_CC)) { otp = tcp_close(otp); } else { printf("tcp_connect: inp=0x%llx err=EADDRINUSE\n", (uint64_t)VM_KERNEL_ADDRPERM(inp)); if (oinp != inp) tcp_unlock(oinp->inp_socket, 1, 0); error = EADDRINUSE; goto done; } if (oinp != inp) tcp_unlock(oinp->inp_socket, 1, 0); } skip_oinp: if ((inp->inp_laddr.s_addr == INADDR_ANY ? laddr.s_addr : inp->inp_laddr.s_addr) == sin->sin_addr.s_addr && inp->inp_lport == sin->sin_port) { error = EINVAL; goto done; } if (!lck_rw_try_lock_exclusive(inp->inp_pcbinfo->ipi_lock)) { /*lock inversion issue, mostly with udp multicast packets */ socket_unlock(inp->inp_socket, 0); lck_rw_lock_exclusive(inp->inp_pcbinfo->ipi_lock); socket_lock(inp->inp_socket, 0); } if (inp->inp_laddr.s_addr == INADDR_ANY) { inp->inp_laddr = laddr; /* no reference needed */ inp->inp_last_outifp = outif; inp->inp_flags |= INP_INADDR_ANY; } inp->inp_faddr = sin->sin_addr; inp->inp_fport = sin->sin_port; in_pcbrehash(inp); lck_rw_done(inp->inp_pcbinfo->ipi_lock); if (inp->inp_flowhash == 0) inp->inp_flowhash = inp_calc_flowhash(inp); tcp_set_max_rwinscale(tp, so); soisconnecting(so); tcpstat.tcps_connattempt++; tp->t_state = TCPS_SYN_SENT; tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp, TCP_CONN_KEEPINIT(tp)); tp->iss = tcp_new_isn(tp); tcp_sendseqinit(tp); if (nstat_collect) nstat_route_connect_attempt(inp->inp_route.ro_rt); /* * Generate a CC value for this connection and * check whether CC or CCnew should be used. */ if ((taop = tcp_gettaocache(tp->t_inpcb)) == NULL) { taop = &tao_noncached; bzero(taop, sizeof(*taop)); } tp->cc_send = CC_INC(tcp_ccgen); if (taop->tao_ccsent != 0 && CC_GEQ(tp->cc_send, taop->tao_ccsent)) { taop->tao_ccsent = tp->cc_send; } else { taop->tao_ccsent = 0; tp->t_flags |= TF_SENDCCNEW; } done: if (outif != NULL) ifnet_release(outif); return (error); } #if INET6 static int tcp6_connect(tp, nam, p) register struct tcpcb *tp; struct sockaddr *nam; struct proc *p; { struct inpcb *inp = tp->t_inpcb, *oinp; struct socket *so = inp->inp_socket; struct tcpcb *otp; struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)(void *)nam; struct in6_addr addr6; struct rmxp_tao *taop; struct rmxp_tao tao_noncached; int error = 0; struct ifnet *outif = NULL; if (inp->inp_lport == 0) { error = in6_pcbbind(inp, NULL, p); if (error) goto done; } /* * Cannot simply call in_pcbconnect, because there might be an * earlier incarnation of this same connection still in * TIME_WAIT state, creating an ADDRINUSE error. * * in6_pcbladdr() might return an ifp with its reference held * even in the error case, so make sure that it's released * whenever it's non-NULL. */ error = in6_pcbladdr(inp, nam, &addr6, &outif); if (error) goto done; tcp_unlock(inp->inp_socket, 0, 0); oinp = in6_pcblookup_hash(inp->inp_pcbinfo, &sin6->sin6_addr, sin6->sin6_port, IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr) ? &addr6 : &inp->in6p_laddr, inp->inp_lport, 0, NULL); tcp_lock(inp->inp_socket, 0, 0); if (oinp) { if (oinp != inp && (otp = intotcpcb(oinp)) != NULL && otp->t_state == TCPS_TIME_WAIT && ((int)(tcp_now - otp->t_starttime)) < tcp_msl && (otp->t_flags & TF_RCVD_CC)) { otp = tcp_close(otp); } else { error = EADDRINUSE; goto done; } } if (!lck_rw_try_lock_exclusive(inp->inp_pcbinfo->ipi_lock)) { /*lock inversion issue, mostly with udp multicast packets */ socket_unlock(inp->inp_socket, 0); lck_rw_lock_exclusive(inp->inp_pcbinfo->ipi_lock); socket_lock(inp->inp_socket, 0); } if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { inp->in6p_laddr = addr6; inp->in6p_last_outifp = outif; /* no reference needed */ inp->in6p_flags |= INP_IN6ADDR_ANY; } inp->in6p_faddr = sin6->sin6_addr; inp->inp_fport = sin6->sin6_port; if ((sin6->sin6_flowinfo & IPV6_FLOWINFO_MASK) != 0) inp->inp_flow = sin6->sin6_flowinfo; in_pcbrehash(inp); lck_rw_done(inp->inp_pcbinfo->ipi_lock); if (inp->inp_flowhash == 0) inp->inp_flowhash = inp_calc_flowhash(inp); /* update flowinfo - RFC 6437 */ if (inp->inp_flow == 0 && inp->in6p_flags & IN6P_AUTOFLOWLABEL) { inp->inp_flow &= ~IPV6_FLOWLABEL_MASK; inp->inp_flow |= (htonl(inp->inp_flowhash) & IPV6_FLOWLABEL_MASK); } tcp_set_max_rwinscale(tp, so); soisconnecting(so); tcpstat.tcps_connattempt++; tp->t_state = TCPS_SYN_SENT; tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp, TCP_CONN_KEEPINIT(tp)); tp->iss = tcp_new_isn(tp); tcp_sendseqinit(tp); if (nstat_collect) nstat_route_connect_attempt(inp->inp_route.ro_rt); /* * Generate a CC value for this connection and * check whether CC or CCnew should be used. */ if ((taop = tcp_gettaocache(tp->t_inpcb)) == NULL) { taop = &tao_noncached; bzero(taop, sizeof(*taop)); } tp->cc_send = CC_INC(tcp_ccgen); if (taop->tao_ccsent != 0 && CC_GEQ(tp->cc_send, taop->tao_ccsent)) { taop->tao_ccsent = tp->cc_send; } else { taop->tao_ccsent = 0; tp->t_flags |= TF_SENDCCNEW; } done: if (outif != NULL) ifnet_release(outif); return (error); } #endif /* INET6 */ /* * Export TCP internal state information via a struct tcp_info */ __private_extern__ void tcp_fill_info(struct tcpcb *tp, struct tcp_info *ti) { struct inpcb *inp = tp->t_inpcb; bzero(ti, sizeof(*ti)); ti->tcpi_state = tp->t_state; if (tp->t_state > TCPS_LISTEN) { if ((tp->t_flags & TF_REQ_TSTMP) && (tp->t_flags & TF_RCVD_TSTMP)) ti->tcpi_options |= TCPI_OPT_TIMESTAMPS; if (tp->t_flags & TF_SACK_PERMIT) ti->tcpi_options |= TCPI_OPT_SACK; if ((tp->t_flags & TF_REQ_SCALE) && (tp->t_flags & TF_RCVD_SCALE)) { ti->tcpi_options |= TCPI_OPT_WSCALE; ti->tcpi_snd_wscale = tp->snd_scale; ti->tcpi_rcv_wscale = tp->rcv_scale; } /* Are we in retranmission episode */ if (tp->snd_max != tp->snd_nxt) ti->tcpi_flags |= TCPI_FLAG_LOSSRECOVERY; else ti->tcpi_flags &= ~TCPI_FLAG_LOSSRECOVERY; ti->tcpi_rto = tp->t_timer[TCPT_REXMT] ? tp->t_rxtcur : 0; ti->tcpi_snd_mss = tp->t_maxseg; ti->tcpi_rcv_mss = tp->t_maxseg; ti->tcpi_rttcur = tp->t_rttcur; ti->tcpi_srtt = tp->t_srtt >> TCP_RTT_SHIFT; ti->tcpi_rttvar = tp->t_rttvar >> TCP_RTTVAR_SHIFT; ti->tcpi_rttbest = tp->t_rttbest >> TCP_RTT_SHIFT; ti->tcpi_snd_ssthresh = tp->snd_ssthresh; ti->tcpi_snd_cwnd = tp->snd_cwnd; ti->tcpi_snd_sbbytes = tp->t_inpcb->inp_socket->so_snd.sb_cc; ti->tcpi_rcv_space = tp->rcv_wnd; ti->tcpi_snd_wnd = tp->snd_wnd; ti->tcpi_snd_nxt = tp->snd_nxt; ti->tcpi_rcv_nxt = tp->rcv_nxt; /* convert bytes/msec to bits/sec */ if ((tp->t_flagsext & TF_MEASURESNDBW) != 0 && tp->t_bwmeas != NULL) { ti->tcpi_snd_bw = (tp->t_bwmeas->bw_sndbw * 8000); } ti->tcpi_last_outif = (tp->t_inpcb->inp_last_outifp == NULL) ? 0 : tp->t_inpcb->inp_last_outifp->if_index; //atomic_get_64(ti->tcpi_txbytes, &inp->inp_stat->txbytes); ti->tcpi_txpackets = inp->inp_stat->txpackets; ti->tcpi_txbytes = inp->inp_stat->txbytes; ti->tcpi_txretransmitbytes = tp->t_stat.txretransmitbytes; ti->tcpi_txunacked = tp->snd_max - tp->snd_una; //atomic_get_64(ti->tcpi_rxbytes, &inp->inp_stat->rxbytes); ti->tcpi_rxpackets = inp->inp_stat->rxpackets; ti->tcpi_rxbytes = inp->inp_stat->rxbytes; ti->tcpi_rxduplicatebytes = tp->t_stat.rxduplicatebytes; ti->tcpi_rxoutoforderbytes = tp->t_stat.rxoutoforderbytes; if (tp->t_state > TCPS_LISTEN) { ti->tcpi_synrexmits = tp->t_stat.synrxtshift; } ti->tcpi_cell_rxpackets = inp->inp_cstat->rxpackets; ti->tcpi_cell_rxbytes = inp->inp_cstat->rxbytes; ti->tcpi_cell_txpackets = inp->inp_cstat->txpackets; ti->tcpi_cell_txbytes = inp->inp_cstat->txbytes; ti->tcpi_wifi_rxpackets = inp->inp_wstat->rxpackets; ti->tcpi_wifi_rxbytes = inp->inp_wstat->rxbytes; ti->tcpi_wifi_txpackets = inp->inp_wstat->txpackets; ti->tcpi_wifi_txbytes = inp->inp_wstat->txbytes; } } __private_extern__ errno_t tcp_fill_info_for_info_tuple(struct info_tuple *itpl, struct tcp_info *ti) { struct inpcbinfo *pcbinfo = NULL; struct inpcb *inp = NULL; struct socket *so; struct tcpcb *tp; if (itpl->itpl_proto == IPPROTO_TCP) pcbinfo = &tcbinfo; else return EINVAL; if (itpl->itpl_local_sa.sa_family == AF_INET && itpl->itpl_remote_sa.sa_family == AF_INET) { inp = in_pcblookup_hash(pcbinfo, itpl->itpl_remote_sin.sin_addr, itpl->itpl_remote_sin.sin_port, itpl->itpl_local_sin.sin_addr, itpl->itpl_local_sin.sin_port, 0, NULL); } else if (itpl->itpl_local_sa.sa_family == AF_INET6 && itpl->itpl_remote_sa.sa_family == AF_INET6) { struct in6_addr ina6_local; struct in6_addr ina6_remote; ina6_local = itpl->itpl_local_sin6.sin6_addr; if (IN6_IS_SCOPE_LINKLOCAL(&ina6_local) && itpl->itpl_local_sin6.sin6_scope_id) ina6_local.s6_addr16[1] = htons(itpl->itpl_local_sin6.sin6_scope_id); ina6_remote = itpl->itpl_remote_sin6.sin6_addr; if (IN6_IS_SCOPE_LINKLOCAL(&ina6_remote) && itpl->itpl_remote_sin6.sin6_scope_id) ina6_remote.s6_addr16[1] = htons(itpl->itpl_remote_sin6.sin6_scope_id); inp = in6_pcblookup_hash(pcbinfo, &ina6_remote, itpl->itpl_remote_sin6.sin6_port, &ina6_local, itpl->itpl_local_sin6.sin6_port, 0, NULL); } else { return EINVAL; } if (inp == NULL || (so = inp->inp_socket) == NULL) return ENOENT; socket_lock(so, 0); if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) { socket_unlock(so, 0); return ENOENT; } tp = intotcpcb(inp); tcp_fill_info(tp, ti); socket_unlock(so, 0); return 0; } __private_extern__ int tcp_sysctl_info(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int error; struct tcp_info ti; struct info_tuple itpl; proc_t caller = PROC_NULL; proc_t caller_parent = PROC_NULL; char command_name[MAXCOMLEN + 1] = ""; char parent_name[MAXCOMLEN + 1] = ""; if ((caller = proc_self()) != PROC_NULL) { /* get process name */ strlcpy(command_name, caller->p_comm, sizeof(command_name)); /* get parent process name if possible */ if ((caller_parent = proc_find(caller->p_ppid)) != PROC_NULL) { strlcpy(parent_name, caller_parent->p_comm, sizeof(parent_name)); proc_rele(caller_parent); } if ((escape_str(command_name, strlen(command_name), sizeof(command_name)) == 0) && (escape_str(parent_name, strlen(parent_name), sizeof(parent_name)) == 0)) { kern_asl_msg(LOG_DEBUG, "messagetracer", 5, "com.apple.message.domain", "com.apple.kernel.tcpstat", /* 1 */ "com.apple.message.signature", "tcpinfo", /* 2 */ "com.apple.message.signature2", command_name, /* 3 */ "com.apple.message.signature3", parent_name, /* 4 */ "com.apple.message.summarize", "YES", /* 5 */ NULL); } } if (caller != PROC_NULL) proc_rele(caller); if (req->newptr == USER_ADDR_NULL) { return EINVAL; } if (req->newlen < sizeof(struct info_tuple)) { return EINVAL; } error = SYSCTL_IN(req, &itpl, sizeof(struct info_tuple)); if (error != 0) { return error; } error = tcp_fill_info_for_info_tuple(&itpl, &ti); if (error != 0) { return error; } error = SYSCTL_OUT(req, &ti, sizeof(struct tcp_info)); if (error != 0) { return error; } return 0; } static int tcp_lookup_peer_pid_locked(struct socket *so, pid_t *out_pid) { int error = EHOSTUNREACH; *out_pid = -1; if ((so->so_state & SS_ISCONNECTED) == 0) return ENOTCONN; struct inpcb *inp = (struct inpcb*)so->so_pcb; uint16_t lport = inp->inp_lport; uint16_t fport = inp->inp_fport; struct inpcb *finp = NULL; if (inp->inp_vflag & INP_IPV6) { struct in6_addr laddr6 = inp->in6p_laddr; struct in6_addr faddr6 = inp->in6p_faddr; socket_unlock(so, 0); finp = in6_pcblookup_hash(&tcbinfo, &laddr6, lport, &faddr6, fport, 0, NULL); socket_lock(so, 0); } else if (inp->inp_vflag & INP_IPV4) { struct in_addr laddr4 = inp->inp_laddr; struct in_addr faddr4 = inp->inp_faddr; socket_unlock(so, 0); finp = in_pcblookup_hash(&tcbinfo, laddr4, lport, faddr4, fport, 0, NULL); socket_lock(so, 0); } if (finp) { *out_pid = finp->inp_socket->last_pid; error = 0; in_pcb_checkstate(finp, WNT_RELEASE, 0); } return error; } void tcp_getconninfo(struct socket *so, struct conninfo_tcp *tcp_ci) { (void) tcp_lookup_peer_pid_locked(so, &tcp_ci->tcpci_peer_pid); tcp_fill_info(sototcpcb(so), &tcp_ci->tcpci_tcp_info); } /* * The new sockopt interface makes it possible for us to block in the * copyin/out step (if we take a page fault). Taking a page fault at * splnet() is probably a Bad Thing. (Since sockets and pcbs both now * use TSM, there probably isn't any need for this function to run at * splnet() any more. This needs more examination.) */ int tcp_ctloutput(so, sopt) struct socket *so; struct sockopt *sopt; { int error, opt, optval; struct inpcb *inp; struct tcpcb *tp; error = 0; inp = sotoinpcb(so); if (inp == NULL) { return (ECONNRESET); } /* Allow at this level */ if (sopt->sopt_level != IPPROTO_TCP && !(sopt->sopt_level == SOL_SOCKET && (sopt->sopt_name == SO_FLUSH || sopt->sopt_name == SO_TRAFFIC_MGT_BACKGROUND))) { #if INET6 if (SOCK_CHECK_DOM(so, PF_INET6)) error = ip6_ctloutput(so, sopt); else #endif /* INET6 */ error = ip_ctloutput(so, sopt); return (error); } tp = intotcpcb(inp); if (tp == NULL) { return (ECONNRESET); } calculate_tcp_clock(); switch (sopt->sopt_dir) { case SOPT_SET: switch (sopt->sopt_name) { case TCP_NODELAY: case TCP_NOOPT: case TCP_NOPUSH: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; switch (sopt->sopt_name) { case TCP_NODELAY: opt = TF_NODELAY; break; case TCP_NOOPT: opt = TF_NOOPT; break; case TCP_NOPUSH: opt = TF_NOPUSH; break; default: opt = 0; /* dead code to fool gcc */ break; } if (optval) tp->t_flags |= opt; else tp->t_flags &= ~opt; break; case TCP_RXT_FINDROP: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; opt = TF_RXTFINDROP; if (optval) tp->t_flagsext |= opt; else tp->t_flagsext &= ~opt; break; case TCP_MEASURE_SND_BW: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; opt = TF_MEASURESNDBW; if (optval) { if (tp->t_bwmeas == NULL) { tp->t_bwmeas = tcp_bwmeas_alloc(tp); if (tp->t_bwmeas == NULL) { error = ENOMEM; break; } } tp->t_flagsext |= opt; } else { tp->t_flagsext &= ~opt; /* Reset snd bw measurement state */ tp->t_flagsext &= ~(TF_BWMEAS_INPROGRESS); if (tp->t_bwmeas != NULL) { tcp_bwmeas_free(tp); } } break; case TCP_MEASURE_BW_BURST: { struct tcp_measure_bw_burst in; uint32_t minpkts, maxpkts; bzero(&in, sizeof(in)); error = sooptcopyin(sopt, &in, sizeof(in), sizeof(in)); if (error) break; if ((tp->t_flagsext & TF_MEASURESNDBW) == 0 || tp->t_bwmeas == NULL) { error = EINVAL; break; } minpkts = (in.min_burst_size != 0) ? in.min_burst_size : tp->t_bwmeas->bw_minsizepkts; maxpkts = (in.max_burst_size != 0) ? in.max_burst_size : tp->t_bwmeas->bw_maxsizepkts; if (minpkts > maxpkts) { error = EINVAL; break; } tp->t_bwmeas->bw_minsizepkts = minpkts; tp->t_bwmeas->bw_maxsizepkts = maxpkts; tp->t_bwmeas->bw_minsize = (minpkts * tp->t_maxseg); tp->t_bwmeas->bw_maxsize = (maxpkts * tp->t_maxseg); break; } case TCP_MAXSEG: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; if (optval > 0 && optval <= tp->t_maxseg && optval + 40 >= tcp_minmss) tp->t_maxseg = optval; else error = EINVAL; break; case TCP_KEEPALIVE: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; if (optval < 0 || optval > UINT32_MAX/TCP_RETRANSHZ) { error = EINVAL; } else { tp->t_keepidle = optval * TCP_RETRANSHZ; /* reset the timer to new value */ tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp, TCP_CONN_KEEPIDLE(tp)); tcp_check_timer_state(tp); } break; case TCP_CONNECTIONTIMEOUT: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; if (optval < 0 || optval > UINT32_MAX/TCP_RETRANSHZ) { error = EINVAL; } else { tp->t_keepinit = optval * TCP_RETRANSHZ; if (tp->t_state == TCPS_SYN_RECEIVED || tp->t_state == TCPS_SYN_SENT) { tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp, TCP_CONN_KEEPINIT(tp)); tcp_check_timer_state(tp); } } break; case TCP_KEEPINTVL: error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) break; if (optval < 0 || optval > UINT32_MAX/TCP_RETRANSHZ) { error = EINVAL; } else { tp->t_keepintvl = optval * TCP_RETRANSHZ; if (tp->t_state == TCPS_FIN_WAIT_2 && TCP_CONN_MAXIDLE(tp) > 0) { tp->t_timer[TCPT_2MSL] = OFFSET_FROM_START(tp, TCP_CONN_MAXIDLE(tp)); tcp_check_timer_state(tp); } } break; case TCP_KEEPCNT: error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) break; if (optval < 0 || optval > INT32_MAX) { error = EINVAL; } else { tp->t_keepcnt = optval; if (tp->t_state == TCPS_FIN_WAIT_2 && TCP_CONN_MAXIDLE(tp) > 0) { tp->t_timer[TCPT_2MSL] = OFFSET_FROM_START(tp, TCP_CONN_MAXIDLE(tp)); tcp_check_timer_state(tp); } } break; case PERSIST_TIMEOUT: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; if (optval < 0) error = EINVAL; else tp->t_persist_timeout = optval * TCP_RETRANSHZ; break; case TCP_RXT_CONNDROPTIME: error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) break; if (optval < 0) error = EINVAL; else tp->t_rxt_conndroptime = optval * TCP_RETRANSHZ; break; case TCP_NOTSENT_LOWAT: error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) break; if (optval < 0) { error = EINVAL; break; } else { if (optval == 0) { so->so_flags &= ~(SOF_NOTSENT_LOWAT); tp->t_notsent_lowat = 0; } else { so->so_flags |= SOF_NOTSENT_LOWAT; tp->t_notsent_lowat = optval; } } break; case TCP_ADAPTIVE_READ_TIMEOUT: error = sooptcopyin(sopt, &optval, sizeof (optval), sizeof(optval)); if (error) break; if (optval < 0 || optval > TCP_ADAPTIVE_TIMEOUT_MAX) { error = EINVAL; break; } else if (optval == 0) { tp->t_adaptive_rtimo = 0; tcp_keepalive_reset(tp); } else { tp->t_adaptive_rtimo = optval; } break; case TCP_ADAPTIVE_WRITE_TIMEOUT: error = sooptcopyin(sopt, &optval, sizeof (optval), sizeof (optval)); if (error) break; if (optval < 0 || optval > TCP_ADAPTIVE_TIMEOUT_MAX) { error = EINVAL; break; } else { tp->t_adaptive_wtimo = optval; } break; case TCP_ENABLE_MSGS: error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) break; if (optval < 0 || optval > 1) { error = EINVAL; } else if (optval == 1) { /* * Check if messages option is already * enabled, if so return. */ if (so->so_flags & SOF_ENABLE_MSGS) { VERIFY(so->so_msg_state != NULL); break; } /* * allocate memory for storing message * related state */ VERIFY(so->so_msg_state == NULL); MALLOC(so->so_msg_state, struct msg_state *, sizeof(struct msg_state), M_TEMP, M_WAITOK | M_ZERO); if (so->so_msg_state == NULL) { error = ENOMEM; break; } /* Enable message delivery */ so->so_flags |= SOF_ENABLE_MSGS; } else { /* * Can't disable message delivery on socket * because of restrictions imposed by * encoding/decoding */ error = EINVAL; } break; case TCP_SENDMOREACKS: error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) break; if (optval < 0 || optval > 1) { error = EINVAL; } else if (optval == 0) { tp->t_flagsext &= ~(TF_NOSTRETCHACK); } else { tp->t_flagsext |= TF_NOSTRETCHACK; } break; case SO_FLUSH: if ((error = sooptcopyin(sopt, &optval, sizeof (optval), sizeof (optval))) != 0) break; error = inp_flush(inp, optval); break; case SO_TRAFFIC_MGT_BACKGROUND: if ((error = sooptcopyin(sopt, &optval, sizeof (optval), sizeof (optval))) != 0) break; if (optval) { socket_set_traffic_mgt_flags_locked(so, TRAFFIC_MGT_SO_BACKGROUND); } else { socket_clear_traffic_mgt_flags_locked(so, TRAFFIC_MGT_SO_BACKGROUND); } break; default: error = ENOPROTOOPT; break; } break; case SOPT_GET: switch (sopt->sopt_name) { case TCP_NODELAY: optval = tp->t_flags & TF_NODELAY; break; case TCP_MAXSEG: optval = tp->t_maxseg; break; case TCP_KEEPALIVE: optval = tp->t_keepidle / TCP_RETRANSHZ; break; case TCP_KEEPINTVL: optval = tp->t_keepintvl / TCP_RETRANSHZ; break; case TCP_KEEPCNT: optval = tp->t_keepcnt; break; case TCP_NOOPT: optval = tp->t_flags & TF_NOOPT; break; case TCP_NOPUSH: optval = tp->t_flags & TF_NOPUSH; break; case TCP_CONNECTIONTIMEOUT: optval = tp->t_keepinit / TCP_RETRANSHZ; break; case PERSIST_TIMEOUT: optval = tp->t_persist_timeout / TCP_RETRANSHZ; break; case TCP_RXT_CONNDROPTIME: optval = tp->t_rxt_conndroptime / TCP_RETRANSHZ; break; case TCP_RXT_FINDROP: optval = tp->t_flagsext & TF_RXTFINDROP; break; case TCP_MEASURE_SND_BW: optval = tp->t_flagsext & TF_MEASURESNDBW; break; case TCP_INFO: { struct tcp_info ti; tcp_fill_info(tp, &ti); error = sooptcopyout(sopt, &ti, sizeof(struct tcp_info)); goto done; /* NOT REACHED */ } case TCP_MEASURE_BW_BURST: { struct tcp_measure_bw_burst out; if ((tp->t_flagsext & TF_MEASURESNDBW) == 0 || tp->t_bwmeas == NULL) { error = EINVAL; break; } out.min_burst_size = tp->t_bwmeas->bw_minsizepkts; out.max_burst_size = tp->t_bwmeas->bw_maxsizepkts; error = sooptcopyout(sopt, &out, sizeof(out)); goto done; } case TCP_NOTSENT_LOWAT: if ((so->so_flags & SOF_NOTSENT_LOWAT) != 0) { optval = tp->t_notsent_lowat; } else { optval = 0; } break; case TCP_ENABLE_MSGS: if (so->so_flags & SOF_ENABLE_MSGS) { optval = 1; } else { optval = 0; } break; case TCP_SENDMOREACKS: if (tp->t_flagsext & TF_NOSTRETCHACK) optval = 1; else optval = 0; break; case TCP_PEER_PID: { pid_t pid; error = tcp_lookup_peer_pid_locked(so, &pid); if (error == 0) error = sooptcopyout(sopt, &pid, sizeof(pid)); goto done; } case TCP_ADAPTIVE_READ_TIMEOUT: optval = tp->t_adaptive_rtimo; break; case TCP_ADAPTIVE_WRITE_TIMEOUT: optval = tp->t_adaptive_wtimo; break; case SO_TRAFFIC_MGT_BACKGROUND: optval = (so->so_traffic_mgt_flags & TRAFFIC_MGT_SO_BACKGROUND) ? 1 : 0; break; default: error = ENOPROTOOPT; break; } if (error == 0) error = sooptcopyout(sopt, &optval, sizeof optval); break; } done: return (error); } /* * tcp_sendspace and tcp_recvspace are the default send and receive window * sizes, respectively. These are obsolescent (this information should * be set by the route). */ u_int32_t tcp_sendspace = 1448*256; u_int32_t tcp_recvspace = 1448*384; /* During attach, the size of socket buffer allocated is limited to * sb_max in sbreserve. Disallow setting the tcp send and recv space * to be more than sb_max because that will cause tcp_attach to fail * (see radar 5713060) */ static int sysctl_tcp_sospace(struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { u_int32_t new_value = 0, *space_p = NULL; int changed = 0, error = 0; u_quad_t sb_effective_max = (sb_max / (MSIZE+MCLBYTES)) * MCLBYTES; switch (oidp->oid_number) { case TCPCTL_SENDSPACE: space_p = &tcp_sendspace; break; case TCPCTL_RECVSPACE: space_p = &tcp_recvspace; break; default: return EINVAL; } error = sysctl_io_number(req, *space_p, sizeof(u_int32_t), &new_value, &changed); if (changed) { if (new_value > 0 && new_value <= sb_effective_max) { *space_p = new_value; } else { error = ERANGE; } } return error; } SYSCTL_PROC(_net_inet_tcp, TCPCTL_SENDSPACE, sendspace, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_sendspace , 0, &sysctl_tcp_sospace, "IU", "Maximum outgoing TCP datagram size"); SYSCTL_PROC(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_recvspace , 0, &sysctl_tcp_sospace, "IU", "Maximum incoming TCP datagram size"); /* * Attach TCP protocol to socket, allocating * internet protocol control block, tcp control block, * bufer space, and entering LISTEN state if to accept connections. * * Returns: 0 Success * in_pcballoc:ENOBUFS * in_pcballoc:ENOMEM * in_pcballoc:??? [IPSEC specific] * soreserve:ENOBUFS */ static int tcp_attach(so, p) struct socket *so; struct proc *p; { register struct tcpcb *tp; struct inpcb *inp; int error; #if INET6 int isipv6 = SOCK_CHECK_DOM(so, PF_INET6) != 0; #endif error = in_pcballoc(so, &tcbinfo, p); if (error) return (error); inp = sotoinpcb(so); if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { error = soreserve(so, tcp_sendspace, tcp_recvspace); if (error) return (error); } if ((so->so_rcv.sb_flags & SB_USRSIZE) == 0) so->so_rcv.sb_flags |= SB_AUTOSIZE; if ((so->so_snd.sb_flags & SB_USRSIZE) == 0) so->so_snd.sb_flags |= SB_AUTOSIZE; #if INET6 if (isipv6) { inp->inp_vflag |= INP_IPV6; inp->in6p_hops = -1; /* use kernel default */ } else #endif /* INET6 */ inp->inp_vflag |= INP_IPV4; tp = tcp_newtcpcb(inp); if (tp == NULL) { int nofd = so->so_state & SS_NOFDREF; /* XXX */ so->so_state &= ~SS_NOFDREF; /* don't free the socket yet */ #if INET6 if (isipv6) in6_pcbdetach(inp); else #endif /* INET6 */ in_pcbdetach(inp); so->so_state |= nofd; return (ENOBUFS); } if (nstat_collect) { nstat_tcp_new_pcb(inp); } tp->t_state = TCPS_CLOSED; return (0); } /* * Initiate (or continue) disconnect. * If embryonic state, just send reset (once). * If in ``let data drain'' option and linger null, just drop. * Otherwise (hard), mark socket disconnecting and drop * current input data; switch states based on user close, and * send segment to peer (with FIN). */ static struct tcpcb * tcp_disconnect(tp) register struct tcpcb *tp; { struct socket *so = tp->t_inpcb->inp_socket; if (tp->t_state < TCPS_ESTABLISHED) tp = tcp_close(tp); else if ((so->so_options & SO_LINGER) && so->so_linger == 0) tp = tcp_drop(tp, 0); else { soisdisconnecting(so); sbflush(&so->so_rcv); tp = tcp_usrclosed(tp); #if MPTCP /* A reset has been sent but socket exists, do not send FIN */ if ((so->so_flags & SOF_MP_SUBFLOW) && (tp) && (tp->t_mpflags & TMPF_RESET)) return (tp); #endif if (tp) (void) tcp_output(tp); } return (tp); } /* * User issued close, and wish to trail through shutdown states: * if never received SYN, just forget it. If got a SYN from peer, * but haven't sent FIN, then go to FIN_WAIT_1 state to send peer a FIN. * If already got a FIN from peer, then almost done; go to LAST_ACK * state. In all other cases, have already sent FIN to peer (e.g. * after PRU_SHUTDOWN), and just have to play tedious game waiting * for peer to send FIN or not respond to keep-alives, etc. * We can let the user exit from the close as soon as the FIN is acked. */ static struct tcpcb * tcp_usrclosed(tp) register struct tcpcb *tp; { switch (tp->t_state) { case TCPS_CLOSED: case TCPS_LISTEN: tp = tcp_close(tp); break; case TCPS_SYN_SENT: case TCPS_SYN_RECEIVED: tp->t_flags |= TF_NEEDFIN; break; case TCPS_ESTABLISHED: DTRACE_TCP4(state__change, void, NULL, struct inpcb *, tp->t_inpcb, struct tcpcb *, tp, int32_t, TCPS_FIN_WAIT_1); tp->t_state = TCPS_FIN_WAIT_1; break; case TCPS_CLOSE_WAIT: DTRACE_TCP4(state__change, void, NULL, struct inpcb *, tp->t_inpcb, struct tcpcb *, tp, int32_t, TCPS_LAST_ACK); tp->t_state = TCPS_LAST_ACK; break; } if (tp && tp->t_state >= TCPS_FIN_WAIT_2) { soisdisconnected(tp->t_inpcb->inp_socket); /* To prevent the connection hanging in FIN_WAIT_2 forever. */ if (tp->t_state == TCPS_FIN_WAIT_2) tp->t_timer[TCPT_2MSL] = OFFSET_FROM_START(tp, TCP_CONN_MAXIDLE(tp)); } return (tp); } void tcp_in_cksum_stats(u_int32_t len) { tcpstat.tcps_rcv_swcsum++; tcpstat.tcps_rcv_swcsum_bytes += len; } void tcp_out_cksum_stats(u_int32_t len) { tcpstat.tcps_snd_swcsum++; tcpstat.tcps_snd_swcsum_bytes += len; } #if INET6 void tcp_in6_cksum_stats(u_int32_t len) { tcpstat.tcps_rcv6_swcsum++; tcpstat.tcps_rcv6_swcsum_bytes += len; } void tcp_out6_cksum_stats(u_int32_t len) { tcpstat.tcps_snd6_swcsum++; tcpstat.tcps_snd6_swcsum_bytes += len; } /* * When messages are enabled on a TCP socket, the message priority * is sent as a control message. This function will extract it. */ int tcp_get_msg_priority(struct mbuf *control, uint32_t *msgpri) { struct cmsghdr *cm; if (control == NULL) return(EINVAL); for (cm = M_FIRST_CMSGHDR(control); cm; cm = M_NXT_CMSGHDR(control, cm)) { if (cm->cmsg_len < sizeof(struct cmsghdr) || cm->cmsg_len > control->m_len) { return (EINVAL); } if (cm->cmsg_level == SOL_SOCKET && cm->cmsg_type == SCM_MSG_PRIORITY) { *msgpri = *(unsigned int *)(void *)CMSG_DATA(cm); break; } } VERIFY(*msgpri >= MSG_PRI_MIN && *msgpri <= MSG_PRI_MAX); return (0); } #endif /* INET6 */