/* * Copyright (c) 2000-2013 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* * Copyright (c) 1982, 1986, 1988, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)raw_ip.c 8.7 (Berkeley) 5/15/95 */ /* * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce * support for mandatory and extensible security protections. This notice * is included in support of clause 2.2 (b) of the Apple Public License, * Version 2.0. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define _IP_VHL #include #include #include #include #include #include #include #if INET6 #include #endif /* INET6 */ #include #if IPSEC #include #endif /*IPSEC*/ #if DUMMYNET #include #endif #if CONFIG_MACF_NET #include #endif /* MAC_NET */ int load_ipfw(void); int rip_detach(struct socket *); int rip_abort(struct socket *); int rip_disconnect(struct socket *); int rip_bind(struct socket *, struct sockaddr *, struct proc *); int rip_connect(struct socket *, struct sockaddr *, struct proc *); int rip_shutdown(struct socket *); #if IPSEC extern int ipsec_bypass; #endif struct inpcbhead ripcb; struct inpcbinfo ripcbinfo; /* control hooks for ipfw and dummynet */ #if IPFIREWALL ip_fw_ctl_t *ip_fw_ctl_ptr; #endif /* IPFIREWALL */ #if DUMMYNET ip_dn_ctl_t *ip_dn_ctl_ptr; #endif /* DUMMYNET */ /* * Nominal space allocated to a raw ip socket. */ #define RIPSNDQ 8192 #define RIPRCVQ 8192 /* * Raw interface to IP protocol. */ /* * Initialize raw connection block q. */ void rip_init(struct protosw *pp, struct domain *dp) { #pragma unused(dp) static int rip_initialized = 0; struct inpcbinfo *pcbinfo; VERIFY((pp->pr_flags & (PR_INITIALIZED|PR_ATTACHED)) == PR_ATTACHED); if (rip_initialized) return; rip_initialized = 1; LIST_INIT(&ripcb); ripcbinfo.ipi_listhead = &ripcb; /* * XXX We don't use the hash list for raw IP, but it's easier * to allocate a one entry hash list than it is to check all * over the place for ipi_hashbase == NULL. */ ripcbinfo.ipi_hashbase = hashinit(1, M_PCB, &ripcbinfo.ipi_hashmask); ripcbinfo.ipi_porthashbase = hashinit(1, M_PCB, &ripcbinfo.ipi_porthashmask); ripcbinfo.ipi_zone = zinit(sizeof(struct inpcb), (4096 * sizeof(struct inpcb)), 4096, "ripzone"); pcbinfo = &ripcbinfo; /* * allocate lock group attribute and group for udp pcb mutexes */ pcbinfo->ipi_lock_grp_attr = lck_grp_attr_alloc_init(); pcbinfo->ipi_lock_grp = lck_grp_alloc_init("ripcb", pcbinfo->ipi_lock_grp_attr); /* * allocate the lock attribute for udp pcb mutexes */ pcbinfo->ipi_lock_attr = lck_attr_alloc_init(); if ((pcbinfo->ipi_lock = lck_rw_alloc_init(pcbinfo->ipi_lock_grp, pcbinfo->ipi_lock_attr)) == NULL) { panic("%s: unable to allocate PCB lock\n", __func__); /* NOTREACHED */ } in_pcbinfo_attach(&ripcbinfo); } static struct sockaddr_in ripsrc = { sizeof(ripsrc), AF_INET , 0, {0}, {0,0,0,0,0,0,0,0,} }; /* * Setup generic address and protocol structures * for raw_input routine, then pass them along with * mbuf chain. */ void rip_input(m, iphlen) struct mbuf *m; int iphlen; { struct ip *ip = mtod(m, struct ip *); struct inpcb *inp; struct inpcb *last = 0; struct mbuf *opts = 0; int skipit = 0, ret = 0; struct ifnet *ifp = m->m_pkthdr.rcvif; /* Expect 32-bit aligned data pointer on strict-align platforms */ MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m); ripsrc.sin_addr = ip->ip_src; lck_rw_lock_shared(ripcbinfo.ipi_lock); LIST_FOREACH(inp, &ripcb, inp_list) { #if INET6 if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_ip_p && (inp->inp_ip_p != ip->ip_p)) continue; if (inp->inp_laddr.s_addr && inp->inp_laddr.s_addr != ip->ip_dst.s_addr) continue; if (inp->inp_faddr.s_addr && inp->inp_faddr.s_addr != ip->ip_src.s_addr) continue; if (inp_restricted(inp, ifp)) continue; if (ifp != NULL && IFNET_IS_CELLULAR(ifp) && (inp->inp_flags & INP_NO_IFT_CELLULAR)) continue; if (last) { struct mbuf *n = m_copy(m, 0, (int)M_COPYALL); skipit = 0; #if IPSEC /* check AH/ESP integrity. */ if (ipsec_bypass == 0 && n) { if (ipsec4_in_reject_so(n, last->inp_socket)) { m_freem(n); IPSEC_STAT_INCREMENT(ipsecstat.in_polvio); /* do not inject data to pcb */ skipit = 1; } } #endif /*IPSEC*/ #if CONFIG_MACF_NET if (n && skipit == 0) { if (mac_inpcb_check_deliver(last, n, AF_INET, SOCK_RAW) != 0) { m_freem(n); skipit = 1; } } #endif if (n && skipit == 0) { int error = 0; if ((last->inp_flags & INP_CONTROLOPTS) != 0 || (last->inp_socket->so_options & SO_TIMESTAMP) != 0 || (last->inp_socket->so_options & SO_TIMESTAMP_MONOTONIC) != 0) { ret = ip_savecontrol(last, &opts, ip, n); if (ret != 0) { m_freem(n); m_freem(opts); last = inp; continue; } } if (last->inp_flags & INP_STRIPHDR) { n->m_len -= iphlen; n->m_pkthdr.len -= iphlen; n->m_data += iphlen; } so_recv_data_stat(last->inp_socket, m, 0); if (sbappendaddr(&last->inp_socket->so_rcv, (struct sockaddr *)&ripsrc, n, opts, &error) != 0) { sorwakeup(last->inp_socket); } else { if (error) { /* should notify about lost packet */ kprintf("rip_input can't append to socket\n"); } } opts = 0; } } last = inp; } skipit = 0; #if IPSEC /* check AH/ESP integrity. */ if (ipsec_bypass == 0 && last) { if (ipsec4_in_reject_so(m, last->inp_socket)) { m_freem(m); IPSEC_STAT_INCREMENT(ipsecstat.in_polvio); OSAddAtomic(1, &ipstat.ips_delivered); /* do not inject data to pcb */ skipit = 1; } } #endif /*IPSEC*/ #if CONFIG_MACF_NET if (last && skipit == 0) { if (mac_inpcb_check_deliver(last, m, AF_INET, SOCK_RAW) != 0) { skipit = 1; m_freem(m); } } #endif if (skipit == 0) { if (last) { if ((last->inp_flags & INP_CONTROLOPTS) != 0 || (last->inp_socket->so_options & SO_TIMESTAMP) != 0 || (last->inp_socket->so_options & SO_TIMESTAMP_MONOTONIC) != 0) { ret = ip_savecontrol(last, &opts, ip, m); if (ret != 0) { m_freem(m); m_freem(opts); goto unlock; } } if (last->inp_flags & INP_STRIPHDR) { m->m_len -= iphlen; m->m_pkthdr.len -= iphlen; m->m_data += iphlen; } so_recv_data_stat(last->inp_socket, m, 0); if (sbappendaddr(&last->inp_socket->so_rcv, (struct sockaddr *)&ripsrc, m, opts, NULL) != 0) { sorwakeup(last->inp_socket); } else { kprintf("rip_input(2) can't append to socket\n"); } } else { m_freem(m); OSAddAtomic(1, &ipstat.ips_noproto); OSAddAtomic(-1, &ipstat.ips_delivered); } } unlock: /* * Keep the list locked because socket filter may force the socket lock * to be released when calling sbappendaddr() -- see rdar://7627704 */ lck_rw_done(ripcbinfo.ipi_lock); } /* * Generate IP header and pass packet to ip_output. * Tack on options user may have setup with control call. */ int rip_output( struct mbuf *m, struct socket *so, u_int32_t dst, struct mbuf *control) { struct ip *ip; struct inpcb *inp = sotoinpcb(so); int flags = (so->so_options & SO_DONTROUTE) | IP_ALLOWBROADCAST; struct ip_out_args ipoa = { IFSCOPE_NONE, { 0 }, IPOAF_SELECT_SRCIF, 0 }; struct ip_moptions *imo; int error = 0; mbuf_svc_class_t msc = MBUF_SC_UNSPEC; if (control != NULL) { msc = mbuf_service_class_from_control(control); m_freem(control); control = NULL; } if (inp == NULL || (inp->inp_flags2 & INP2_WANT_FLOW_DIVERT)) { if (m != NULL) m_freem(m); VERIFY(control == NULL); return (inp == NULL ? EINVAL : EPROTOTYPE); } flags |= IP_OUTARGS; /* If socket was bound to an ifindex, tell ip_output about it */ if (inp->inp_flags & INP_BOUND_IF) { ipoa.ipoa_boundif = inp->inp_boundifp->if_index; ipoa.ipoa_flags |= IPOAF_BOUND_IF; } if (inp->inp_flags & INP_NO_IFT_CELLULAR) ipoa.ipoa_flags |= IPOAF_NO_CELLULAR; if (inp->inp_flowhash == 0) inp->inp_flowhash = inp_calc_flowhash(inp); /* * If the user handed us a complete IP packet, use it. * Otherwise, allocate an mbuf for a header and fill it in. */ if ((inp->inp_flags & INP_HDRINCL) == 0) { if (m->m_pkthdr.len + sizeof(struct ip) > IP_MAXPACKET) { m_freem(m); return(EMSGSIZE); } M_PREPEND(m, sizeof(struct ip), M_WAIT); if (m == NULL) return ENOBUFS; ip = mtod(m, struct ip *); ip->ip_tos = inp->inp_ip_tos; ip->ip_off = 0; ip->ip_p = inp->inp_ip_p; ip->ip_len = m->m_pkthdr.len; ip->ip_src = inp->inp_laddr; ip->ip_dst.s_addr = dst; ip->ip_ttl = inp->inp_ip_ttl; } else { if (m->m_pkthdr.len > IP_MAXPACKET) { m_freem(m); return(EMSGSIZE); } ip = mtod(m, struct ip *); /* don't allow both user specified and setsockopt options, and don't allow packet length sizes that will crash */ if (((IP_VHL_HL(ip->ip_vhl) != (sizeof (*ip) >> 2)) && inp->inp_options) || (ip->ip_len > m->m_pkthdr.len) || (ip->ip_len < (IP_VHL_HL(ip->ip_vhl) << 2))) { m_freem(m); return EINVAL; } if (ip->ip_id == 0) ip->ip_id = ip_randomid(); /* XXX prevent ip_output from overwriting header fields */ flags |= IP_RAWOUTPUT; OSAddAtomic(1, &ipstat.ips_rawout); } if (inp->inp_laddr.s_addr != INADDR_ANY) ipoa.ipoa_flags |= IPOAF_BOUND_SRCADDR; #if IPSEC if (ipsec_bypass == 0 && ipsec_setsocket(m, so) != 0) { m_freem(m); return ENOBUFS; } #endif /*IPSEC*/ if (ROUTE_UNUSABLE(&inp->inp_route)) ROUTE_RELEASE(&inp->inp_route); set_packet_service_class(m, so, msc, 0); m->m_pkthdr.pkt_flowsrc = FLOWSRC_INPCB; m->m_pkthdr.pkt_flowid = inp->inp_flowhash; m->m_pkthdr.pkt_flags |= (PKTF_FLOW_ID | PKTF_FLOW_LOCALSRC | PKTF_FLOW_RAWSOCK); m->m_pkthdr.pkt_proto = inp->inp_ip_p; #if CONFIG_MACF_NET mac_mbuf_label_associate_inpcb(inp, m); #endif imo = inp->inp_moptions; if (imo != NULL) IMO_ADDREF(imo); /* * The domain lock is held across ip_output, so it is okay * to pass the PCB cached route pointer directly to IP and * the modules beneath it. */ error = ip_output(m, inp->inp_options, &inp->inp_route, flags, imo, &ipoa); if (imo != NULL) IMO_REMREF(imo); if (inp->inp_route.ro_rt != NULL) { struct rtentry *rt = inp->inp_route.ro_rt; struct ifnet *outif; if ((rt->rt_flags & (RTF_MULTICAST|RTF_BROADCAST)) || inp->inp_socket == NULL || !(inp->inp_socket->so_state & SS_ISCONNECTED)) { rt = NULL; /* unusable */ } /* * Always discard the cached route for unconnected * socket or if it is a multicast route. */ if (rt == NULL) ROUTE_RELEASE(&inp->inp_route); /* * If this is a connected socket and the destination * route is unicast, update outif with that of the * route interface used by IP. */ if (rt != NULL && (outif = rt->rt_ifp) != inp->inp_last_outifp) inp->inp_last_outifp = outif; } else { ROUTE_RELEASE(&inp->inp_route); } /* * If output interface was cellular, and this socket is denied * access to it, generate an event. */ if (error != 0 && (ipoa.ipoa_retflags & IPOARF_IFDENIED) && (inp->inp_flags & INP_NO_IFT_CELLULAR)) soevent(so, (SO_FILT_HINT_LOCKED|SO_FILT_HINT_IFDENIED)); return (error); } #if IPFIREWALL int load_ipfw(void) { kern_return_t err; ipfw_init(); #if DUMMYNET if (!DUMMYNET_LOADED) ip_dn_init(); #endif /* DUMMYNET */ err = 0; return err == 0 && ip_fw_ctl_ptr == NULL ? -1 : err; } #endif /* IPFIREWALL */ /* * Raw IP socket option processing. */ int rip_ctloutput(so, sopt) struct socket *so; struct sockopt *sopt; { struct inpcb *inp = sotoinpcb(so); int error, optval; /* Allow at this level */ if (sopt->sopt_level != IPPROTO_IP && !(sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_FLUSH)) return (EINVAL); error = 0; switch (sopt->sopt_dir) { case SOPT_GET: switch (sopt->sopt_name) { case IP_HDRINCL: optval = inp->inp_flags & INP_HDRINCL; error = sooptcopyout(sopt, &optval, sizeof optval); break; case IP_STRIPHDR: optval = inp->inp_flags & INP_STRIPHDR; error = sooptcopyout(sopt, &optval, sizeof optval); break; #if IPFIREWALL case IP_FW_ADD: case IP_FW_GET: case IP_OLD_FW_ADD: case IP_OLD_FW_GET: if (ip_fw_ctl_ptr == 0) error = load_ipfw(); if (ip_fw_ctl_ptr && error == 0) error = ip_fw_ctl_ptr(sopt); else error = ENOPROTOOPT; break; #endif /* IPFIREWALL */ #if DUMMYNET case IP_DUMMYNET_GET: if (!DUMMYNET_LOADED) ip_dn_init(); if (DUMMYNET_LOADED) error = ip_dn_ctl_ptr(sopt); else error = ENOPROTOOPT; break ; #endif /* DUMMYNET */ #if MROUTING case MRT_INIT: case MRT_DONE: case MRT_ADD_VIF: case MRT_DEL_VIF: case MRT_ADD_MFC: case MRT_DEL_MFC: case MRT_VERSION: case MRT_ASSERT: error = ip_mrouter_get(so, sopt); break; #endif /* MROUTING */ default: error = ip_ctloutput(so, sopt); break; } break; case SOPT_SET: switch (sopt->sopt_name) { case IP_HDRINCL: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; if (optval) inp->inp_flags |= INP_HDRINCL; else inp->inp_flags &= ~INP_HDRINCL; break; case IP_STRIPHDR: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; if (optval) inp->inp_flags |= INP_STRIPHDR; else inp->inp_flags &= ~INP_STRIPHDR; break; #if IPFIREWALL case IP_FW_ADD: case IP_FW_DEL: case IP_FW_FLUSH: case IP_FW_ZERO: case IP_FW_RESETLOG: case IP_OLD_FW_ADD: case IP_OLD_FW_DEL: case IP_OLD_FW_FLUSH: case IP_OLD_FW_ZERO: case IP_OLD_FW_RESETLOG: if (ip_fw_ctl_ptr == 0) error = load_ipfw(); if (ip_fw_ctl_ptr && error == 0) error = ip_fw_ctl_ptr(sopt); else error = ENOPROTOOPT; break; #endif /* IPFIREWALL */ #if DUMMYNET case IP_DUMMYNET_CONFIGURE: case IP_DUMMYNET_DEL: case IP_DUMMYNET_FLUSH: if (!DUMMYNET_LOADED) ip_dn_init(); if (DUMMYNET_LOADED) error = ip_dn_ctl_ptr(sopt); else error = ENOPROTOOPT ; break ; #endif #if MROUTING case IP_RSVP_ON: error = ip_rsvp_init(so); break; case IP_RSVP_OFF: error = ip_rsvp_done(); break; /* XXX - should be combined */ case IP_RSVP_VIF_ON: error = ip_rsvp_vif_init(so, sopt); break; case IP_RSVP_VIF_OFF: error = ip_rsvp_vif_done(so, sopt); break; case MRT_INIT: case MRT_DONE: case MRT_ADD_VIF: case MRT_DEL_VIF: case MRT_ADD_MFC: case MRT_DEL_MFC: case MRT_VERSION: case MRT_ASSERT: error = ip_mrouter_set(so, sopt); break; #endif /* MROUTING */ case SO_FLUSH: if ((error = sooptcopyin(sopt, &optval, sizeof (optval), sizeof (optval))) != 0) break; error = inp_flush(inp, optval); break; default: error = ip_ctloutput(so, sopt); break; } break; } return (error); } /* * This function exists solely to receive the PRC_IFDOWN messages which * are sent by if_down(). It looks for an ifaddr whose ifa_addr is sa, * and calls in_ifadown() to remove all routes corresponding to that address. * It also receives the PRC_IFUP messages from if_up() and reinstalls the * interface routes. */ void rip_ctlinput( int cmd, struct sockaddr *sa, __unused void *vip) { struct in_ifaddr *ia; struct ifnet *ifp; int err; int flags, done = 0; switch (cmd) { case PRC_IFDOWN: lck_rw_lock_shared(in_ifaddr_rwlock); for (ia = in_ifaddrhead.tqh_first; ia; ia = ia->ia_link.tqe_next) { IFA_LOCK(&ia->ia_ifa); if (ia->ia_ifa.ifa_addr == sa && (ia->ia_flags & IFA_ROUTE)) { done = 1; IFA_ADDREF_LOCKED(&ia->ia_ifa); IFA_UNLOCK(&ia->ia_ifa); lck_rw_done(in_ifaddr_rwlock); lck_mtx_lock(rnh_lock); /* * in_ifscrub kills the interface route. */ in_ifscrub(ia->ia_ifp, ia, 1); /* * in_ifadown gets rid of all the rest of * the routes. This is not quite the right * thing to do, but at least if we are running * a routing process they will come back. */ in_ifadown(&ia->ia_ifa, 1); lck_mtx_unlock(rnh_lock); IFA_REMREF(&ia->ia_ifa); break; } IFA_UNLOCK(&ia->ia_ifa); } if (!done) lck_rw_done(in_ifaddr_rwlock); break; case PRC_IFUP: lck_rw_lock_shared(in_ifaddr_rwlock); for (ia = in_ifaddrhead.tqh_first; ia; ia = ia->ia_link.tqe_next) { IFA_LOCK(&ia->ia_ifa); if (ia->ia_ifa.ifa_addr == sa) { /* keep it locked */ break; } IFA_UNLOCK(&ia->ia_ifa); } if (ia == NULL || (ia->ia_flags & IFA_ROUTE) || (ia->ia_ifa.ifa_debug & IFD_NOTREADY)) { if (ia != NULL) IFA_UNLOCK(&ia->ia_ifa); lck_rw_done(in_ifaddr_rwlock); return; } IFA_ADDREF_LOCKED(&ia->ia_ifa); IFA_UNLOCK(&ia->ia_ifa); lck_rw_done(in_ifaddr_rwlock); flags = RTF_UP; ifp = ia->ia_ifa.ifa_ifp; if ((ifp->if_flags & IFF_LOOPBACK) || (ifp->if_flags & IFF_POINTOPOINT)) flags |= RTF_HOST; err = rtinit(&ia->ia_ifa, RTM_ADD, flags); if (err == 0) { IFA_LOCK_SPIN(&ia->ia_ifa); ia->ia_flags |= IFA_ROUTE; IFA_UNLOCK(&ia->ia_ifa); } IFA_REMREF(&ia->ia_ifa); break; } } u_int32_t rip_sendspace = RIPSNDQ; u_int32_t rip_recvspace = RIPRCVQ; SYSCTL_INT(_net_inet_raw, OID_AUTO, maxdgram, CTLFLAG_RW | CTLFLAG_LOCKED, &rip_sendspace, 0, "Maximum outgoing raw IP datagram size"); SYSCTL_INT(_net_inet_raw, OID_AUTO, recvspace, CTLFLAG_RW | CTLFLAG_LOCKED, &rip_recvspace, 0, "Maximum incoming raw IP datagram size"); SYSCTL_UINT(_net_inet_raw, OID_AUTO, pcbcount, CTLFLAG_RD | CTLFLAG_LOCKED, &ripcbinfo.ipi_count, 0, "Number of active PCBs"); static int rip_attach(struct socket *so, int proto, struct proc *p) { struct inpcb *inp; int error; inp = sotoinpcb(so); if (inp) panic("rip_attach"); if ((so->so_state & SS_PRIV) == 0) return (EPERM); error = soreserve(so, rip_sendspace, rip_recvspace); if (error) return error; error = in_pcballoc(so, &ripcbinfo, p); if (error) return error; inp = (struct inpcb *)so->so_pcb; inp->inp_vflag |= INP_IPV4; inp->inp_ip_p = proto; inp->inp_ip_ttl = ip_defttl; return 0; } __private_extern__ int rip_detach(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); if (inp == 0) panic("rip_detach"); #if MROUTING if (so == ip_mrouter) ip_mrouter_done(); ip_rsvp_force_done(so); if (so == ip_rsvpd) ip_rsvp_done(); #endif /* MROUTING */ in_pcbdetach(inp); return 0; } __private_extern__ int rip_abort(struct socket *so) { soisdisconnected(so); return rip_detach(so); } __private_extern__ int rip_disconnect(struct socket *so) { if ((so->so_state & SS_ISCONNECTED) == 0) return ENOTCONN; return rip_abort(so); } __private_extern__ int rip_bind(struct socket *so, struct sockaddr *nam, struct proc *p) { #pragma unused(p) struct inpcb *inp = sotoinpcb(so); struct sockaddr_in sin; struct ifaddr *ifa = NULL; struct ifnet *outif = NULL; if (inp == NULL || (inp->inp_flags2 & INP2_WANT_FLOW_DIVERT)) return (inp == NULL ? EINVAL : EPROTOTYPE); if (nam->sa_len != sizeof (struct sockaddr_in)) return (EINVAL); /* Sanitized local copy for interface address searches */ bzero(&sin, sizeof (sin)); sin.sin_family = AF_INET; sin.sin_len = sizeof (struct sockaddr_in); sin.sin_addr.s_addr = SIN(nam)->sin_addr.s_addr; if (TAILQ_EMPTY(&ifnet_head) || (sin.sin_family != AF_INET && sin.sin_family != AF_IMPLINK) || (sin.sin_addr.s_addr && (ifa = ifa_ifwithaddr(SA(&sin))) == 0)) { return (EADDRNOTAVAIL); } else if (ifa) { /* * Opportunistically determine the outbound * interface that may be used; this may not * hold true if we end up using a route * going over a different interface, e.g. * when sending to a local address. This * will get updated again after sending. */ IFA_LOCK(ifa); outif = ifa->ifa_ifp; IFA_UNLOCK(ifa); IFA_REMREF(ifa); } inp->inp_laddr = sin.sin_addr; inp->inp_last_outifp = outif; return (0); } __private_extern__ int rip_connect(struct socket *so, struct sockaddr *nam, __unused struct proc *p) { struct inpcb *inp = sotoinpcb(so); struct sockaddr_in *addr = (struct sockaddr_in *)(void *)nam; if (inp == NULL || (inp->inp_flags2 & INP2_WANT_FLOW_DIVERT)) return (inp == NULL ? EINVAL : EPROTOTYPE); if (nam->sa_len != sizeof(*addr)) return EINVAL; if (TAILQ_EMPTY(&ifnet_head)) return EADDRNOTAVAIL; if ((addr->sin_family != AF_INET) && (addr->sin_family != AF_IMPLINK)) return EAFNOSUPPORT; inp->inp_faddr = addr->sin_addr; soisconnected(so); return 0; } __private_extern__ int rip_shutdown(struct socket *so) { socantsendmore(so); return 0; } __private_extern__ int rip_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, struct mbuf *control, struct proc *p) { #pragma unused(flags, p) struct inpcb *inp = sotoinpcb(so); u_int32_t dst; int error = 0; if (inp == NULL || (inp->inp_flags2 & INP2_WANT_FLOW_DIVERT)) { error = (inp == NULL ? EINVAL : EPROTOTYPE); goto bad; } if (so->so_state & SS_ISCONNECTED) { if (nam != NULL) { error = EISCONN; goto bad; } dst = inp->inp_faddr.s_addr; } else { if (nam == NULL) { error = ENOTCONN; goto bad; } dst = ((struct sockaddr_in *)(void *)nam)->sin_addr.s_addr; } return (rip_output(m, so, dst, control)); bad: VERIFY(error != 0); if (m != NULL) m_freem(m); if (control != NULL) m_freem(control); return (error); } /* note: rip_unlock is called from different protos instead of the generic socket_unlock, * it will handle the socket dealloc on last reference * */ int rip_unlock(struct socket *so, int refcount, void *debug) { void *lr_saved; struct inpcb *inp = sotoinpcb(so); if (debug == NULL) lr_saved = __builtin_return_address(0); else lr_saved = debug; if (refcount) { if (so->so_usecount <= 0) { panic("rip_unlock: bad refoucnt so=%p val=%x lrh= %s\n", so, so->so_usecount, solockhistory_nr(so)); /* NOTREACHED */ } so->so_usecount--; if (so->so_usecount == 0 && (inp->inp_wantcnt == WNT_STOPUSING)) { /* cleanup after last reference */ lck_mtx_unlock(so->so_proto->pr_domain->dom_mtx); lck_rw_lock_exclusive(ripcbinfo.ipi_lock); if (inp->inp_state != INPCB_STATE_DEAD) { #if INET6 if (SOCK_CHECK_DOM(so, PF_INET6)) in6_pcbdetach(inp); else #endif /* INET6 */ in_pcbdetach(inp); } in_pcbdispose(inp); lck_rw_done(ripcbinfo.ipi_lock); return(0); } } so->unlock_lr[so->next_unlock_lr] = lr_saved; so->next_unlock_lr = (so->next_unlock_lr+1) % SO_LCKDBG_MAX; lck_mtx_unlock(so->so_proto->pr_domain->dom_mtx); return(0); } static int rip_pcblist SYSCTL_HANDLER_ARGS { #pragma unused(oidp, arg1, arg2) int error, i, n; struct inpcb *inp, **inp_list; inp_gen_t gencnt; struct xinpgen xig; /* * The process of preparing the TCB list is too time-consuming and * resource-intensive to repeat twice on every request. */ lck_rw_lock_exclusive(ripcbinfo.ipi_lock); if (req->oldptr == USER_ADDR_NULL) { n = ripcbinfo.ipi_count; req->oldidx = 2 * (sizeof xig) + (n + n/8) * sizeof(struct xinpcb); lck_rw_done(ripcbinfo.ipi_lock); return 0; } if (req->newptr != USER_ADDR_NULL) { lck_rw_done(ripcbinfo.ipi_lock); return EPERM; } /* * OK, now we're committed to doing something. */ gencnt = ripcbinfo.ipi_gencnt; n = ripcbinfo.ipi_count; bzero(&xig, sizeof(xig)); xig.xig_len = sizeof xig; xig.xig_count = n; xig.xig_gen = gencnt; xig.xig_sogen = so_gencnt; error = SYSCTL_OUT(req, &xig, sizeof xig); if (error) { lck_rw_done(ripcbinfo.ipi_lock); return error; } /* * We are done if there is no pcb */ if (n == 0) { lck_rw_done(ripcbinfo.ipi_lock); return 0; } inp_list = _MALLOC(n * sizeof *inp_list, M_TEMP, M_WAITOK); if (inp_list == 0) { lck_rw_done(ripcbinfo.ipi_lock); return ENOMEM; } for (inp = ripcbinfo.ipi_listhead->lh_first, i = 0; inp && i < n; inp = inp->inp_list.le_next) { if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD) inp_list[i++] = inp; } n = i; error = 0; for (i = 0; i < n; i++) { inp = inp_list[i]; if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD) { struct xinpcb xi; bzero(&xi, sizeof(xi)); xi.xi_len = sizeof xi; /* XXX should avoid extra copy */ inpcb_to_compat(inp, &xi.xi_inp); if (inp->inp_socket) sotoxsocket(inp->inp_socket, &xi.xi_socket); error = SYSCTL_OUT(req, &xi, sizeof xi); } } if (!error) { /* * Give the user an updated idea of our state. * If the generation differs from what we told * her before, she knows that something happened * while we were processing this request, and it * might be necessary to retry. */ bzero(&xig, sizeof(xig)); xig.xig_len = sizeof xig; xig.xig_gen = ripcbinfo.ipi_gencnt; xig.xig_sogen = so_gencnt; xig.xig_count = ripcbinfo.ipi_count; error = SYSCTL_OUT(req, &xig, sizeof xig); } FREE(inp_list, M_TEMP); lck_rw_done(ripcbinfo.ipi_lock); return error; } SYSCTL_PROC(_net_inet_raw, OID_AUTO/*XXX*/, pcblist, CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, rip_pcblist, "S,xinpcb", "List of active raw IP sockets"); static int rip_pcblist64 SYSCTL_HANDLER_ARGS { #pragma unused(oidp, arg1, arg2) int error, i, n; struct inpcb *inp, **inp_list; inp_gen_t gencnt; struct xinpgen xig; /* * The process of preparing the TCB list is too time-consuming and * resource-intensive to repeat twice on every request. */ lck_rw_lock_exclusive(ripcbinfo.ipi_lock); if (req->oldptr == USER_ADDR_NULL) { n = ripcbinfo.ipi_count; req->oldidx = 2 * (sizeof xig) + (n + n/8) * sizeof(struct xinpcb64); lck_rw_done(ripcbinfo.ipi_lock); return 0; } if (req->newptr != USER_ADDR_NULL) { lck_rw_done(ripcbinfo.ipi_lock); return EPERM; } /* * OK, now we're committed to doing something. */ gencnt = ripcbinfo.ipi_gencnt; n = ripcbinfo.ipi_count; bzero(&xig, sizeof(xig)); xig.xig_len = sizeof xig; xig.xig_count = n; xig.xig_gen = gencnt; xig.xig_sogen = so_gencnt; error = SYSCTL_OUT(req, &xig, sizeof xig); if (error) { lck_rw_done(ripcbinfo.ipi_lock); return error; } /* * We are done if there is no pcb */ if (n == 0) { lck_rw_done(ripcbinfo.ipi_lock); return 0; } inp_list = _MALLOC(n * sizeof *inp_list, M_TEMP, M_WAITOK); if (inp_list == 0) { lck_rw_done(ripcbinfo.ipi_lock); return ENOMEM; } for (inp = ripcbinfo.ipi_listhead->lh_first, i = 0; inp && i < n; inp = inp->inp_list.le_next) { if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD) inp_list[i++] = inp; } n = i; error = 0; for (i = 0; i < n; i++) { inp = inp_list[i]; if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD) { struct xinpcb64 xi; bzero(&xi, sizeof(xi)); xi.xi_len = sizeof xi; inpcb_to_xinpcb64(inp, &xi); if (inp->inp_socket) sotoxsocket64(inp->inp_socket, &xi.xi_socket); error = SYSCTL_OUT(req, &xi, sizeof xi); } } if (!error) { /* * Give the user an updated idea of our state. * If the generation differs from what we told * her before, she knows that something happened * while we were processing this request, and it * might be necessary to retry. */ bzero(&xig, sizeof(xig)); xig.xig_len = sizeof xig; xig.xig_gen = ripcbinfo.ipi_gencnt; xig.xig_sogen = so_gencnt; xig.xig_count = ripcbinfo.ipi_count; error = SYSCTL_OUT(req, &xig, sizeof xig); } FREE(inp_list, M_TEMP); lck_rw_done(ripcbinfo.ipi_lock); return error; } SYSCTL_PROC(_net_inet_raw, OID_AUTO, pcblist64, CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, rip_pcblist64, "S,xinpcb64", "List of active raw IP sockets"); static int rip_pcblist_n SYSCTL_HANDLER_ARGS { #pragma unused(oidp, arg1, arg2) int error = 0; error = get_pcblist_n(IPPROTO_IP, req, &ripcbinfo); return error; } SYSCTL_PROC(_net_inet_raw, OID_AUTO, pcblist_n, CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, rip_pcblist_n, "S,xinpcb_n", "List of active raw IP sockets"); struct pr_usrreqs rip_usrreqs = { .pru_abort = rip_abort, .pru_attach = rip_attach, .pru_bind = rip_bind, .pru_connect = rip_connect, .pru_control = in_control, .pru_detach = rip_detach, .pru_disconnect = rip_disconnect, .pru_peeraddr = in_getpeeraddr, .pru_send = rip_send, .pru_shutdown = rip_shutdown, .pru_sockaddr = in_getsockaddr, .pru_sosend = sosend, .pru_soreceive = soreceive, }; /* DSEP Review Done pl-20051213-v02 @3253 */