/* * Copyright (c) 2000-2013 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* * Copyright (c) 1982, 1986, 1991, 1993, 1995 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 * $FreeBSD: src/sys/netinet/in_pcb.c,v 1.59.2.17 2001/08/13 16:26:17 ume Exp $ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if INET6 #include #include #endif /* INET6 */ #if IPSEC #include #include #endif /* IPSEC */ #include #include #include #include #if FLOW_DIVERT #include #endif static lck_grp_t *inpcb_lock_grp; static lck_attr_t *inpcb_lock_attr; static lck_grp_attr_t *inpcb_lock_grp_attr; decl_lck_mtx_data(static, inpcb_lock); /* global INPCB lock */ decl_lck_mtx_data(static, inpcb_timeout_lock); static TAILQ_HEAD(, inpcbinfo) inpcb_head = TAILQ_HEAD_INITIALIZER(inpcb_head); static u_int16_t inpcb_timeout_run = 0; /* INPCB timer is scheduled to run */ static boolean_t inpcb_garbage_collecting = FALSE; /* gc timer is scheduled */ static boolean_t inpcb_ticking = FALSE; /* "slow" timer is scheduled */ static boolean_t inpcb_fast_timer_on = FALSE; static void inpcb_sched_timeout(struct timeval *); static void inpcb_timeout(void *); int inpcb_timeout_lazy = 10; /* 10 seconds leeway for lazy timers */ extern int tvtohz(struct timeval *); #if CONFIG_PROC_UUID_POLICY static void inp_update_cellular_policy(struct inpcb *, boolean_t); #if FLOW_DIVERT static void inp_update_flow_divert_policy(struct inpcb *, boolean_t); #endif /* FLOW_DIVERT */ #endif /* !CONFIG_PROC_UUID_POLICY */ #if IPSEC extern int ipsec_bypass; #endif /* IPSEC */ #define DBG_FNC_PCB_LOOKUP NETDBG_CODE(DBG_NETTCP, (6 << 8)) #define DBG_FNC_PCB_HLOOKUP NETDBG_CODE(DBG_NETTCP, ((6 << 8) | 1)) /* * These configure the range of local port addresses assigned to * "unspecified" outgoing connections/packets/whatever. */ int ipport_lowfirstauto = IPPORT_RESERVED - 1; /* 1023 */ int ipport_lowlastauto = IPPORT_RESERVEDSTART; /* 600 */ int ipport_firstauto = IPPORT_HIFIRSTAUTO; /* 49152 */ int ipport_lastauto = IPPORT_HILASTAUTO; /* 65535 */ int ipport_hifirstauto = IPPORT_HIFIRSTAUTO; /* 49152 */ int ipport_hilastauto = IPPORT_HILASTAUTO; /* 65535 */ #define RANGECHK(var, min, max) \ if ((var) < (min)) { (var) = (min); } \ else if ((var) > (max)) { (var) = (max); } static int sysctl_net_ipport_check SYSCTL_HANDLER_ARGS { #pragma unused(arg1, arg2) int error; error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req); if (!error) { RANGECHK(ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); RANGECHK(ipport_lowlastauto, 1, IPPORT_RESERVED - 1); RANGECHK(ipport_firstauto, IPPORT_RESERVED, USHRT_MAX); RANGECHK(ipport_lastauto, IPPORT_RESERVED, USHRT_MAX); RANGECHK(ipport_hifirstauto, IPPORT_RESERVED, USHRT_MAX); RANGECHK(ipport_hilastauto, IPPORT_RESERVED, USHRT_MAX); } return (error); } #undef RANGECHK SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW|CTLFLAG_LOCKED, 0, "IP Ports"); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, CTLTYPE_INT|CTLFLAG_RW | CTLFLAG_LOCKED, &ipport_lowfirstauto, 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, CTLTYPE_INT|CTLFLAG_RW | CTLFLAG_LOCKED, &ipport_lowlastauto, 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, CTLTYPE_INT|CTLFLAG_RW | CTLFLAG_LOCKED, &ipport_firstauto, 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, CTLTYPE_INT|CTLFLAG_RW | CTLFLAG_LOCKED, &ipport_lastauto, 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, CTLTYPE_INT|CTLFLAG_RW | CTLFLAG_LOCKED, &ipport_hifirstauto, 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, CTLTYPE_INT|CTLFLAG_RW | CTLFLAG_LOCKED, &ipport_hilastauto, 0, &sysctl_net_ipport_check, "I", ""); extern int udp_use_randomport; extern int tcp_use_randomport; /* Structs used for flowhash computation */ struct inp_flowhash_key_addr { union { struct in_addr v4; struct in6_addr v6; u_int8_t addr8[16]; u_int16_t addr16[8]; u_int32_t addr32[4]; } infha; }; struct inp_flowhash_key { struct inp_flowhash_key_addr infh_laddr; struct inp_flowhash_key_addr infh_faddr; u_int32_t infh_lport; u_int32_t infh_fport; u_int32_t infh_af; u_int32_t infh_proto; u_int32_t infh_rand1; u_int32_t infh_rand2; }; static u_int32_t inp_hash_seed = 0; static int infc_cmp(const struct inpcb *, const struct inpcb *); /* Flags used by inp_fc_getinp */ #define INPFC_SOLOCKED 0x1 #define INPFC_REMOVE 0x2 static struct inpcb *inp_fc_getinp(u_int32_t, u_int32_t); static void inp_fc_feedback(struct inpcb *); extern void tcp_remove_from_time_wait(struct inpcb *inp); decl_lck_mtx_data(static, inp_fc_lck); RB_HEAD(inp_fc_tree, inpcb) inp_fc_tree; RB_PROTOTYPE(inp_fc_tree, inpcb, infc_link, infc_cmp); RB_GENERATE(inp_fc_tree, inpcb, infc_link, infc_cmp); /* * Use this inp as a key to find an inp in the flowhash tree. * Accesses to it are protected by inp_fc_lck. */ struct inpcb key_inp; /* * in_pcb.c: manage the Protocol Control Blocks. */ void in_pcbinit(void) { static int inpcb_initialized = 0; VERIFY(!inpcb_initialized); inpcb_initialized = 1; inpcb_lock_grp_attr = lck_grp_attr_alloc_init(); inpcb_lock_grp = lck_grp_alloc_init("inpcb", inpcb_lock_grp_attr); inpcb_lock_attr = lck_attr_alloc_init(); lck_mtx_init(&inpcb_lock, inpcb_lock_grp, inpcb_lock_attr); lck_mtx_init(&inpcb_timeout_lock, inpcb_lock_grp, inpcb_lock_attr); /* * Initialize data structures required to deliver * flow advisories. */ lck_mtx_init(&inp_fc_lck, inpcb_lock_grp, inpcb_lock_attr); lck_mtx_lock(&inp_fc_lck); RB_INIT(&inp_fc_tree); bzero(&key_inp, sizeof(key_inp)); lck_mtx_unlock(&inp_fc_lck); } #define INPCB_HAVE_TIMER_REQ(req) (((req).intimer_lazy > 0) || \ ((req).intimer_fast > 0) || ((req).intimer_nodelay > 0)) static void inpcb_timeout(void *arg) { #pragma unused(arg) struct inpcbinfo *ipi; boolean_t t, gc; struct intimercount gccnt, tmcnt; struct timeval leeway; /* * Update coarse-grained networking timestamp (in sec.); the idea * is to piggy-back on the timeout callout to update the counter * returnable via net_uptime(). */ net_update_uptime(); lck_mtx_lock_spin(&inpcb_timeout_lock); gc = inpcb_garbage_collecting; inpcb_garbage_collecting = FALSE; bzero(&gccnt, sizeof(gccnt)); bzero(&tmcnt, sizeof(tmcnt)); t = inpcb_ticking; inpcb_ticking = FALSE; if (gc || t) { lck_mtx_unlock(&inpcb_timeout_lock); lck_mtx_lock(&inpcb_lock); TAILQ_FOREACH(ipi, &inpcb_head, ipi_entry) { if (INPCB_HAVE_TIMER_REQ(ipi->ipi_gc_req)) { bzero(&ipi->ipi_gc_req, sizeof(ipi->ipi_gc_req)); if (gc && ipi->ipi_gc != NULL) { ipi->ipi_gc(ipi); gccnt.intimer_lazy += ipi->ipi_gc_req.intimer_lazy; gccnt.intimer_fast += ipi->ipi_gc_req.intimer_fast; gccnt.intimer_nodelay += ipi->ipi_gc_req.intimer_nodelay; } } if (INPCB_HAVE_TIMER_REQ(ipi->ipi_timer_req)) { bzero(&ipi->ipi_timer_req, sizeof(ipi->ipi_timer_req)); if (t && ipi->ipi_timer != NULL) { ipi->ipi_timer(ipi); tmcnt.intimer_lazy += ipi->ipi_timer_req.intimer_lazy; tmcnt.intimer_lazy += ipi->ipi_timer_req.intimer_fast; tmcnt.intimer_nodelay += ipi->ipi_timer_req.intimer_nodelay; } } } lck_mtx_unlock(&inpcb_lock); lck_mtx_lock_spin(&inpcb_timeout_lock); } /* lock was dropped above, so check first before overriding */ if (!inpcb_garbage_collecting) inpcb_garbage_collecting = INPCB_HAVE_TIMER_REQ(gccnt); if (!inpcb_ticking) inpcb_ticking = INPCB_HAVE_TIMER_REQ(tmcnt); /* re-arm the timer if there's work to do */ inpcb_timeout_run--; VERIFY(inpcb_timeout_run >= 0 && inpcb_timeout_run < 2); bzero(&leeway, sizeof(leeway)); leeway.tv_sec = inpcb_timeout_lazy; if (gccnt.intimer_nodelay > 0 || tmcnt.intimer_nodelay > 0) inpcb_sched_timeout(NULL); else if ((gccnt.intimer_fast + tmcnt.intimer_fast) <= 5) /* be lazy when idle with little activity */ inpcb_sched_timeout(&leeway); else inpcb_sched_timeout(NULL); lck_mtx_unlock(&inpcb_timeout_lock); } static void inpcb_sched_timeout(struct timeval *leeway) { lck_mtx_assert(&inpcb_timeout_lock, LCK_MTX_ASSERT_OWNED); if (inpcb_timeout_run == 0 && (inpcb_garbage_collecting || inpcb_ticking)) { lck_mtx_convert_spin(&inpcb_timeout_lock); inpcb_timeout_run++; if (leeway == NULL) { inpcb_fast_timer_on = TRUE; timeout(inpcb_timeout, NULL, hz); } else { inpcb_fast_timer_on = FALSE; timeout_with_leeway(inpcb_timeout, NULL, hz, tvtohz(leeway)); } } else if (inpcb_timeout_run == 1 && leeway == NULL && !inpcb_fast_timer_on) { /* * Since the request was for a fast timer but the * scheduled timer is a lazy timer, try to schedule * another instance of fast timer also */ lck_mtx_convert_spin(&inpcb_timeout_lock); inpcb_timeout_run++; inpcb_fast_timer_on = TRUE; timeout(inpcb_timeout, NULL, hz); } } void inpcb_gc_sched(struct inpcbinfo *ipi, u_int32_t type) { struct timeval leeway; lck_mtx_lock_spin(&inpcb_timeout_lock); inpcb_garbage_collecting = TRUE; switch (type) { case INPCB_TIMER_NODELAY: atomic_add_32(&ipi->ipi_gc_req.intimer_nodelay, 1); inpcb_sched_timeout(NULL); break; case INPCB_TIMER_FAST: atomic_add_32(&ipi->ipi_gc_req.intimer_fast, 1); inpcb_sched_timeout(NULL); break; default: atomic_add_32(&ipi->ipi_gc_req.intimer_lazy, 1); leeway.tv_sec = inpcb_timeout_lazy; leeway.tv_usec = 0; inpcb_sched_timeout(&leeway); break; } lck_mtx_unlock(&inpcb_timeout_lock); } void inpcb_timer_sched(struct inpcbinfo *ipi, u_int32_t type) { struct timeval leeway; lck_mtx_lock_spin(&inpcb_timeout_lock); inpcb_ticking = TRUE; switch (type) { case INPCB_TIMER_NODELAY: atomic_add_32(&ipi->ipi_timer_req.intimer_nodelay, 1); inpcb_sched_timeout(NULL); break; case INPCB_TIMER_FAST: atomic_add_32(&ipi->ipi_timer_req.intimer_fast, 1); inpcb_sched_timeout(NULL); break; default: atomic_add_32(&ipi->ipi_timer_req.intimer_lazy, 1); leeway.tv_sec = inpcb_timeout_lazy; leeway.tv_usec = 0; inpcb_sched_timeout(&leeway); break; } lck_mtx_unlock(&inpcb_timeout_lock); } void in_pcbinfo_attach(struct inpcbinfo *ipi) { struct inpcbinfo *ipi0; lck_mtx_lock(&inpcb_lock); TAILQ_FOREACH(ipi0, &inpcb_head, ipi_entry) { if (ipi0 == ipi) { panic("%s: ipi %p already in the list\n", __func__, ipi); /* NOTREACHED */ } } TAILQ_INSERT_TAIL(&inpcb_head, ipi, ipi_entry); lck_mtx_unlock(&inpcb_lock); } int in_pcbinfo_detach(struct inpcbinfo *ipi) { struct inpcbinfo *ipi0; int error = 0; lck_mtx_lock(&inpcb_lock); TAILQ_FOREACH(ipi0, &inpcb_head, ipi_entry) { if (ipi0 == ipi) break; } if (ipi0 != NULL) TAILQ_REMOVE(&inpcb_head, ipi0, ipi_entry); else error = ENXIO; lck_mtx_unlock(&inpcb_lock); return (error); } /* * Allocate a PCB and associate it with the socket. * * Returns: 0 Success * ENOBUFS * ENOMEM * ipsec_init_policy:??? [IPSEC] */ int in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo, struct proc *p) { #pragma unused(p) struct inpcb *inp; caddr_t temp; #if CONFIG_MACF_NET int mac_error; #endif /* CONFIG_MACF_NET */ if (!so->cached_in_sock_layer) { inp = (struct inpcb *)zalloc(pcbinfo->ipi_zone); if (inp == NULL) return (ENOBUFS); bzero((caddr_t)inp, sizeof (*inp)); } else { inp = (struct inpcb *)(void *)so->so_saved_pcb; temp = inp->inp_saved_ppcb; bzero((caddr_t)inp, sizeof (*inp)); inp->inp_saved_ppcb = temp; } inp->inp_gencnt = ++pcbinfo->ipi_gencnt; inp->inp_pcbinfo = pcbinfo; inp->inp_socket = so; #if CONFIG_MACF_NET mac_error = mac_inpcb_label_init(inp, M_WAITOK); if (mac_error != 0) { if (!so->cached_in_sock_layer) zfree(pcbinfo->ipi_zone, inp); return (mac_error); } mac_inpcb_label_associate(so, inp); #endif /* CONFIG_MACF_NET */ /* make sure inp_stat is always 64-bit aligned */ inp->inp_stat = (struct inp_stat *)P2ROUNDUP(inp->inp_stat_store, sizeof (u_int64_t)); if (((uintptr_t)inp->inp_stat - (uintptr_t)inp->inp_stat_store) + sizeof (*inp->inp_stat) > sizeof (inp->inp_stat_store)) { panic("%s: insufficient space to align inp_stat", __func__); /* NOTREACHED */ } /* make sure inp_cstat is always 64-bit aligned */ inp->inp_cstat = (struct inp_stat *)P2ROUNDUP(inp->inp_cstat_store, sizeof (u_int64_t)); if (((uintptr_t)inp->inp_cstat - (uintptr_t)inp->inp_cstat_store) + sizeof (*inp->inp_cstat) > sizeof (inp->inp_cstat_store)) { panic("%s: insufficient space to align inp_cstat", __func__); /* NOTREACHED */ } /* make sure inp_wstat is always 64-bit aligned */ inp->inp_wstat = (struct inp_stat *)P2ROUNDUP(inp->inp_wstat_store, sizeof (u_int64_t)); if (((uintptr_t)inp->inp_wstat - (uintptr_t)inp->inp_wstat_store) + sizeof (*inp->inp_wstat) > sizeof (inp->inp_wstat_store)) { panic("%s: insufficient space to align inp_wstat", __func__); /* NOTREACHED */ } so->so_pcb = (caddr_t)inp; if (so->so_proto->pr_flags & PR_PCBLOCK) { lck_mtx_init(&inp->inpcb_mtx, pcbinfo->ipi_lock_grp, pcbinfo->ipi_lock_attr); } #if INET6 if (SOCK_DOM(so) == PF_INET6 && !ip6_mapped_addr_on) inp->inp_flags |= IN6P_IPV6_V6ONLY; if (ip6_auto_flowlabel) inp->inp_flags |= IN6P_AUTOFLOWLABEL; #endif /* INET6 */ (void) inp_update_policy(inp); lck_rw_lock_exclusive(pcbinfo->ipi_lock); inp->inp_gencnt = ++pcbinfo->ipi_gencnt; LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); pcbinfo->ipi_count++; lck_rw_done(pcbinfo->ipi_lock); return (0); } /* * in_pcblookup_local_and_cleanup does everything * in_pcblookup_local does but it checks for a socket * that's going away. Since we know that the lock is * held read+write when this funciton is called, we * can safely dispose of this socket like the slow * timer would usually do and return NULL. This is * great for bind. */ struct inpcb * in_pcblookup_local_and_cleanup(struct inpcbinfo *pcbinfo, struct in_addr laddr, u_int lport_arg, int wild_okay) { struct inpcb *inp; /* Perform normal lookup */ inp = in_pcblookup_local(pcbinfo, laddr, lport_arg, wild_okay); /* Check if we found a match but it's waiting to be disposed */ if (inp != NULL && inp->inp_wantcnt == WNT_STOPUSING) { struct socket *so = inp->inp_socket; lck_mtx_lock(&inp->inpcb_mtx); if (so->so_usecount == 0) { if (inp->inp_state != INPCB_STATE_DEAD) in_pcbdetach(inp); in_pcbdispose(inp); /* will unlock & destroy */ inp = NULL; } else { lck_mtx_unlock(&inp->inpcb_mtx); } } return (inp); } static void in_pcb_conflict_post_msg(u_int16_t port) { /* * Radar 5523020 send a kernel event notification if a * non-participating socket tries to bind the port a socket * who has set SOF_NOTIFYCONFLICT owns. */ struct kev_msg ev_msg; struct kev_in_portinuse in_portinuse; bzero(&in_portinuse, sizeof (struct kev_in_portinuse)); bzero(&ev_msg, sizeof (struct kev_msg)); in_portinuse.port = ntohs(port); /* port in host order */ in_portinuse.req_pid = proc_selfpid(); ev_msg.vendor_code = KEV_VENDOR_APPLE; ev_msg.kev_class = KEV_NETWORK_CLASS; ev_msg.kev_subclass = KEV_INET_SUBCLASS; ev_msg.event_code = KEV_INET_PORTINUSE; ev_msg.dv[0].data_ptr = &in_portinuse; ev_msg.dv[0].data_length = sizeof (struct kev_in_portinuse); ev_msg.dv[1].data_length = 0; kev_post_msg(&ev_msg); } /* * Bind an INPCB to an address and/or port. This routine should not alter * the caller-supplied local address "nam". * * Returns: 0 Success * EADDRNOTAVAIL Address not available. * EINVAL Invalid argument * EAFNOSUPPORT Address family not supported [notdef] * EACCES Permission denied * EADDRINUSE Address in use * EAGAIN Resource unavailable, try again * priv_check_cred:EPERM Operation not permitted */ int in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct proc *p) { struct socket *so = inp->inp_socket; unsigned short *lastport; struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; u_short lport = 0, rand_port = 0; int wild = 0, reuseport = (so->so_options & SO_REUSEPORT); int error, randomport, conflict = 0; kauth_cred_t cred; if (TAILQ_EMPTY(&in_ifaddrhead)) /* XXX broken! */ return (EADDRNOTAVAIL); if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) return (EINVAL); if (!(so->so_options & (SO_REUSEADDR|SO_REUSEPORT))) wild = 1; socket_unlock(so, 0); /* keep reference on socket */ lck_rw_lock_exclusive(pcbinfo->ipi_lock); if (nam != NULL) { struct ifnet *outif = NULL; if (nam->sa_len != sizeof (struct sockaddr_in)) { lck_rw_done(pcbinfo->ipi_lock); socket_lock(so, 0); return (EINVAL); } #if 0 /* * We should check the family, but old programs * incorrectly fail to initialize it. */ if (nam->sa_family != AF_INET) { lck_rw_done(pcbinfo->ipi_lock); socket_lock(so, 0); return (EAFNOSUPPORT); } #endif /* 0 */ lport = SIN(nam)->sin_port; if (IN_MULTICAST(ntohl(SIN(nam)->sin_addr.s_addr))) { /* * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; * allow complete duplication of binding if * SO_REUSEPORT is set, or if SO_REUSEADDR is set * and a multicast address is bound on both * new and duplicated sockets. */ if (so->so_options & SO_REUSEADDR) reuseport = SO_REUSEADDR|SO_REUSEPORT; } else if (SIN(nam)->sin_addr.s_addr != INADDR_ANY) { struct sockaddr_in sin; struct ifaddr *ifa; /* Sanitized for interface address searches */ bzero(&sin, sizeof (sin)); sin.sin_family = AF_INET; sin.sin_len = sizeof (struct sockaddr_in); sin.sin_addr.s_addr = SIN(nam)->sin_addr.s_addr; ifa = ifa_ifwithaddr(SA(&sin)); if (ifa == NULL) { lck_rw_done(pcbinfo->ipi_lock); socket_lock(so, 0); return (EADDRNOTAVAIL); } else { /* * Opportunistically determine the outbound * interface that may be used; this may not * hold true if we end up using a route * going over a different interface, e.g. * when sending to a local address. This * will get updated again after sending. */ IFA_LOCK(ifa); outif = ifa->ifa_ifp; IFA_UNLOCK(ifa); IFA_REMREF(ifa); } } if (lport != 0) { struct inpcb *t; uid_t u; /* GROSS */ if (ntohs(lport) < IPPORT_RESERVED) { cred = kauth_cred_proc_ref(p); error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0); kauth_cred_unref(&cred); if (error != 0) { lck_rw_done(pcbinfo->ipi_lock); socket_lock(so, 0); return (EACCES); } } if (!IN_MULTICAST(ntohl(SIN(nam)->sin_addr.s_addr)) && (u = kauth_cred_getuid(so->so_cred)) != 0 && (t = in_pcblookup_local_and_cleanup( inp->inp_pcbinfo, SIN(nam)->sin_addr, lport, INPLOOKUP_WILDCARD)) != NULL && (SIN(nam)->sin_addr.s_addr != INADDR_ANY || t->inp_laddr.s_addr != INADDR_ANY || !(t->inp_socket->so_options & SO_REUSEPORT)) && (u != kauth_cred_getuid(t->inp_socket->so_cred)) && !(t->inp_socket->so_flags & SOF_REUSESHAREUID) && (SIN(nam)->sin_addr.s_addr != INADDR_ANY || t->inp_laddr.s_addr != INADDR_ANY)) { if ((t->inp_socket->so_flags & SOF_NOTIFYCONFLICT) && !(so->so_flags & SOF_NOTIFYCONFLICT)) conflict = 1; lck_rw_done(pcbinfo->ipi_lock); if (conflict) in_pcb_conflict_post_msg(lport); socket_lock(so, 0); return (EADDRINUSE); } t = in_pcblookup_local_and_cleanup(pcbinfo, SIN(nam)->sin_addr, lport, wild); if (t != NULL && (reuseport & t->inp_socket->so_options) == 0) { #if INET6 if (SIN(nam)->sin_addr.s_addr != INADDR_ANY || t->inp_laddr.s_addr != INADDR_ANY || SOCK_DOM(so) != PF_INET6 || SOCK_DOM(t->inp_socket) != PF_INET6) #endif /* INET6 */ { if ((t->inp_socket->so_flags & SOF_NOTIFYCONFLICT) && !(so->so_flags & SOF_NOTIFYCONFLICT)) conflict = 1; lck_rw_done(pcbinfo->ipi_lock); if (conflict) in_pcb_conflict_post_msg(lport); socket_lock(so, 0); return (EADDRINUSE); } } } inp->inp_laddr = SIN(nam)->sin_addr; inp->inp_last_outifp = outif; } if (lport == 0) { u_short first, last; int count; randomport = (so->so_flags & SOF_BINDRANDOMPORT) || (so->so_type == SOCK_STREAM ? tcp_use_randomport : udp_use_randomport); /* * TODO: * * The following should be moved into its own routine and * thus can be shared with in6_pcbsetport(); the latter * currently duplicates the logic. */ inp->inp_flags |= INP_ANONPORT; if (inp->inp_flags & INP_HIGHPORT) { first = ipport_hifirstauto; /* sysctl */ last = ipport_hilastauto; lastport = &pcbinfo->ipi_lasthi; } else if (inp->inp_flags & INP_LOWPORT) { cred = kauth_cred_proc_ref(p); error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0); kauth_cred_unref(&cred); if (error != 0) { lck_rw_done(pcbinfo->ipi_lock); socket_lock(so, 0); return (error); } first = ipport_lowfirstauto; /* 1023 */ last = ipport_lowlastauto; /* 600 */ lastport = &pcbinfo->ipi_lastlow; } else { first = ipport_firstauto; /* sysctl */ last = ipport_lastauto; lastport = &pcbinfo->ipi_lastport; } /* No point in randomizing if only one port is available */ if (first == last) randomport = 0; /* * Simple check to ensure all ports are not used up causing * a deadlock here. * * We split the two cases (up and down) so that the direction * is not being tested on each round of the loop. */ if (first > last) { /* * counting down */ if (randomport) { read_random(&rand_port, sizeof (rand_port)); *lastport = first - (rand_port % (first - last)); } count = first - last; do { if (count-- < 0) { /* completely used? */ lck_rw_done(pcbinfo->ipi_lock); socket_lock(so, 0); inp->inp_laddr.s_addr = INADDR_ANY; inp->inp_last_outifp = NULL; return (EADDRNOTAVAIL); } --*lastport; if (*lastport > first || *lastport < last) *lastport = first; lport = htons(*lastport); } while (in_pcblookup_local_and_cleanup(pcbinfo, inp->inp_laddr, lport, wild)); } else { /* * counting up */ if (randomport) { read_random(&rand_port, sizeof (rand_port)); *lastport = first + (rand_port % (first - last)); } count = last - first; do { if (count-- < 0) { /* completely used? */ lck_rw_done(pcbinfo->ipi_lock); socket_lock(so, 0); inp->inp_laddr.s_addr = INADDR_ANY; inp->inp_last_outifp = NULL; return (EADDRNOTAVAIL); } ++*lastport; if (*lastport < first || *lastport > last) *lastport = first; lport = htons(*lastport); } while (in_pcblookup_local_and_cleanup(pcbinfo, inp->inp_laddr, lport, wild)); } } socket_lock(so, 0); inp->inp_lport = lport; if (in_pcbinshash(inp, 1) != 0) { inp->inp_laddr.s_addr = INADDR_ANY; inp->inp_lport = 0; inp->inp_last_outifp = NULL; lck_rw_done(pcbinfo->ipi_lock); return (EAGAIN); } lck_rw_done(pcbinfo->ipi_lock); sflt_notify(so, sock_evt_bound, NULL); return (0); } /* * Transform old in_pcbconnect() into an inner subroutine for new * in_pcbconnect(); do some validity-checking on the remote address * (in "nam") and then determine local host address (i.e., which * interface) to use to access that remote host. * * This routine may alter the caller-supplied remote address "nam". * * The caller may override the bound-to-interface setting of the socket * by specifying the ifscope parameter (e.g. from IP_PKTINFO.) * * This routine might return an ifp with a reference held if the caller * provides a non-NULL outif, even in the error case. The caller is * responsible for releasing its reference. * * Returns: 0 Success * EINVAL Invalid argument * EAFNOSUPPORT Address family not supported * EADDRNOTAVAIL Address not available */ int in_pcbladdr(struct inpcb *inp, struct sockaddr *nam, struct in_addr *laddr, unsigned int ifscope, struct ifnet **outif) { boolean_t nocell = (inp->inp_flags & INP_NO_IFT_CELLULAR); struct route *ro = &inp->inp_route; struct in_ifaddr *ia = NULL; struct sockaddr_in sin; int error = 0; if (outif != NULL) *outif = NULL; if (nam->sa_len != sizeof (struct sockaddr_in)) return (EINVAL); if (SIN(nam)->sin_family != AF_INET) return (EAFNOSUPPORT); if (SIN(nam)->sin_port == 0) return (EADDRNOTAVAIL); /* * If the destination address is INADDR_ANY, * use the primary local address. * If the supplied address is INADDR_BROADCAST, * and the primary interface supports broadcast, * choose the broadcast address for that interface. */ if (SIN(nam)->sin_addr.s_addr == INADDR_ANY || SIN(nam)->sin_addr.s_addr == (u_int32_t)INADDR_BROADCAST) { lck_rw_lock_shared(in_ifaddr_rwlock); if (!TAILQ_EMPTY(&in_ifaddrhead)) { ia = TAILQ_FIRST(&in_ifaddrhead); IFA_LOCK_SPIN(&ia->ia_ifa); if (SIN(nam)->sin_addr.s_addr == INADDR_ANY) { SIN(nam)->sin_addr = IA_SIN(ia)->sin_addr; } else if (ia->ia_ifp->if_flags & IFF_BROADCAST) { SIN(nam)->sin_addr = SIN(&ia->ia_broadaddr)->sin_addr; } IFA_UNLOCK(&ia->ia_ifa); ia = NULL; } lck_rw_done(in_ifaddr_rwlock); } /* * Otherwise, if the socket has already bound the source, just use it. */ if (inp->inp_laddr.s_addr != INADDR_ANY) { VERIFY(ia == NULL); *laddr = inp->inp_laddr; return (0); } /* * If the ifscope is specified by the caller (e.g. IP_PKTINFO) * then it overrides the sticky ifscope set for the socket. */ if (ifscope == IFSCOPE_NONE && (inp->inp_flags & INP_BOUND_IF)) ifscope = inp->inp_boundifp->if_index; /* * If route is known or can be allocated now, * our src addr is taken from the i/f, else punt. * Note that we should check the address family of the cached * destination, in case of sharing the cache with IPv6. */ if (ro->ro_rt != NULL) RT_LOCK_SPIN(ro->ro_rt); if (ROUTE_UNUSABLE(ro) || ro->ro_dst.sa_family != AF_INET || SIN(&ro->ro_dst)->sin_addr.s_addr != SIN(nam)->sin_addr.s_addr || (inp->inp_socket->so_options & SO_DONTROUTE)) { if (ro->ro_rt != NULL) RT_UNLOCK(ro->ro_rt); ROUTE_RELEASE(ro); } if (!(inp->inp_socket->so_options & SO_DONTROUTE) && (ro->ro_rt == NULL || ro->ro_rt->rt_ifp == NULL)) { if (ro->ro_rt != NULL) RT_UNLOCK(ro->ro_rt); ROUTE_RELEASE(ro); /* No route yet, so try to acquire one */ bzero(&ro->ro_dst, sizeof (struct sockaddr_in)); ro->ro_dst.sa_family = AF_INET; ro->ro_dst.sa_len = sizeof (struct sockaddr_in); SIN(&ro->ro_dst)->sin_addr = SIN(nam)->sin_addr; rtalloc_scoped(ro, ifscope); if (ro->ro_rt != NULL) RT_LOCK_SPIN(ro->ro_rt); } /* Sanitized local copy for interface address searches */ bzero(&sin, sizeof (sin)); sin.sin_family = AF_INET; sin.sin_len = sizeof (struct sockaddr_in); sin.sin_addr.s_addr = SIN(nam)->sin_addr.s_addr; /* * If we did not find (or use) a route, assume dest is reachable * on a directly connected network and try to find a corresponding * interface to take the source address from. */ if (ro->ro_rt == NULL) { VERIFY(ia == NULL); ia = ifatoia(ifa_ifwithdstaddr(SA(&sin))); if (ia == NULL) ia = ifatoia(ifa_ifwithnet_scoped(SA(&sin), ifscope)); error = ((ia == NULL) ? ENETUNREACH : 0); goto done; } RT_LOCK_ASSERT_HELD(ro->ro_rt); /* * If the outgoing interface on the route found is not * a loopback interface, use the address from that interface. */ if (!(ro->ro_rt->rt_ifp->if_flags & IFF_LOOPBACK)) { VERIFY(ia == NULL); /* * If the route points to a cellular interface and the * caller forbids our using interfaces of such type, * pretend that there is no route. */ if (nocell && IFNET_IS_CELLULAR(ro->ro_rt->rt_ifp)) { RT_UNLOCK(ro->ro_rt); ROUTE_RELEASE(ro); error = EHOSTUNREACH; } else { /* Become a regular mutex */ RT_CONVERT_LOCK(ro->ro_rt); ia = ifatoia(ro->ro_rt->rt_ifa); IFA_ADDREF(&ia->ia_ifa); RT_UNLOCK(ro->ro_rt); error = 0; } goto done; } VERIFY(ro->ro_rt->rt_ifp->if_flags & IFF_LOOPBACK); RT_UNLOCK(ro->ro_rt); /* * The outgoing interface is marked with 'loopback net', so a route * to ourselves is here. * Try to find the interface of the destination address and then * take the address from there. That interface is not necessarily * a loopback interface. */ VERIFY(ia == NULL); ia = ifatoia(ifa_ifwithdstaddr(SA(&sin))); if (ia == NULL) ia = ifatoia(ifa_ifwithaddr_scoped(SA(&sin), ifscope)); if (ia == NULL) ia = ifatoia(ifa_ifwithnet_scoped(SA(&sin), ifscope)); if (ia == NULL) { RT_LOCK(ro->ro_rt); ia = ifatoia(ro->ro_rt->rt_ifa); if (ia != NULL) IFA_ADDREF(&ia->ia_ifa); RT_UNLOCK(ro->ro_rt); } error = ((ia == NULL) ? ENETUNREACH : 0); done: /* * If the destination address is multicast and an outgoing * interface has been set as a multicast option, use the * address of that interface as our source address. */ if (IN_MULTICAST(ntohl(SIN(nam)->sin_addr.s_addr)) && inp->inp_moptions != NULL) { struct ip_moptions *imo; struct ifnet *ifp; imo = inp->inp_moptions; IMO_LOCK(imo); if (imo->imo_multicast_ifp != NULL && (ia == NULL || ia->ia_ifp != imo->imo_multicast_ifp)) { ifp = imo->imo_multicast_ifp; if (ia != NULL) IFA_REMREF(&ia->ia_ifa); lck_rw_lock_shared(in_ifaddr_rwlock); TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) { if (ia->ia_ifp == ifp) break; } if (ia != NULL) IFA_ADDREF(&ia->ia_ifa); lck_rw_done(in_ifaddr_rwlock); if (ia == NULL) error = EADDRNOTAVAIL; else error = 0; } IMO_UNLOCK(imo); } /* * Don't do pcblookup call here; return interface in laddr * and exit to caller, that will do the lookup. */ if (ia != NULL) { /* * If the source address belongs to a cellular interface * and the socket forbids our using interfaces of such * type, pretend that there is no source address. */ IFA_LOCK_SPIN(&ia->ia_ifa); if (nocell && IFNET_IS_CELLULAR(ia->ia_ifa.ifa_ifp)) { IFA_UNLOCK(&ia->ia_ifa); error = EHOSTUNREACH; } else if (error == 0) { *laddr = ia->ia_addr.sin_addr; if (outif != NULL) { struct ifnet *ifp; if (ro->ro_rt != NULL) ifp = ro->ro_rt->rt_ifp; else ifp = ia->ia_ifp; VERIFY(ifp != NULL); IFA_CONVERT_LOCK(&ia->ia_ifa); ifnet_reference(ifp); /* for caller */ if (*outif != NULL) ifnet_release(*outif); *outif = ifp; } IFA_UNLOCK(&ia->ia_ifa); } else { IFA_UNLOCK(&ia->ia_ifa); } IFA_REMREF(&ia->ia_ifa); ia = NULL; } if (nocell && error == EHOSTUNREACH) { soevent(inp->inp_socket, (SO_FILT_HINT_LOCKED | SO_FILT_HINT_IFDENIED)); } return (error); } /* * Outer subroutine: * Connect from a socket to a specified address. * Both address and port must be specified in argument sin. * If don't have a local address for this socket yet, * then pick one. * * The caller may override the bound-to-interface setting of the socket * by specifying the ifscope parameter (e.g. from IP_PKTINFO.) */ int in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct proc *p, unsigned int ifscope, struct ifnet **outif) { struct in_addr laddr; struct sockaddr_in *sin = (struct sockaddr_in *)(void *)nam; struct inpcb *pcb; int error; /* * Call inner routine, to assign local interface address. */ if ((error = in_pcbladdr(inp, nam, &laddr, ifscope, outif)) != 0) return (error); socket_unlock(inp->inp_socket, 0); pcb = in_pcblookup_hash(inp->inp_pcbinfo, sin->sin_addr, sin->sin_port, inp->inp_laddr.s_addr ? inp->inp_laddr : laddr, inp->inp_lport, 0, NULL); socket_lock(inp->inp_socket, 0); /* * Check if the socket is still in a valid state. When we unlock this * embryonic socket, it can get aborted if another thread is closing * the listener (radar 7947600). */ if ((inp->inp_socket->so_flags & SOF_ABORTED) != 0) return (ECONNREFUSED); if (pcb != NULL) { in_pcb_checkstate(pcb, WNT_RELEASE, pcb == inp ? 1 : 0); return (EADDRINUSE); } if (inp->inp_laddr.s_addr == INADDR_ANY) { if (inp->inp_lport == 0) { error = in_pcbbind(inp, NULL, p); if (error) return (error); } if (!lck_rw_try_lock_exclusive(inp->inp_pcbinfo->ipi_lock)) { /* * Lock inversion issue, mostly with udp * multicast packets. */ socket_unlock(inp->inp_socket, 0); lck_rw_lock_exclusive(inp->inp_pcbinfo->ipi_lock); socket_lock(inp->inp_socket, 0); } inp->inp_laddr = laddr; /* no reference needed */ inp->inp_last_outifp = (outif != NULL) ? *outif : NULL; inp->inp_flags |= INP_INADDR_ANY; } else { if (!lck_rw_try_lock_exclusive(inp->inp_pcbinfo->ipi_lock)) { /* * Lock inversion issue, mostly with udp * multicast packets. */ socket_unlock(inp->inp_socket, 0); lck_rw_lock_exclusive(inp->inp_pcbinfo->ipi_lock); socket_lock(inp->inp_socket, 0); } } inp->inp_faddr = sin->sin_addr; inp->inp_fport = sin->sin_port; in_pcbrehash(inp); lck_rw_done(inp->inp_pcbinfo->ipi_lock); return (0); } void in_pcbdisconnect(struct inpcb *inp) { struct socket *so = inp->inp_socket; inp->inp_faddr.s_addr = INADDR_ANY; inp->inp_fport = 0; if (!lck_rw_try_lock_exclusive(inp->inp_pcbinfo->ipi_lock)) { /* lock inversion issue, mostly with udp multicast packets */ socket_unlock(so, 0); lck_rw_lock_exclusive(inp->inp_pcbinfo->ipi_lock); socket_lock(so, 0); } in_pcbrehash(inp); lck_rw_done(inp->inp_pcbinfo->ipi_lock); /* * A multipath subflow socket would have its SS_NOFDREF set by default, * so check for SOF_MP_SUBFLOW socket flag before detaching the PCB; * when the socket is closed for real, SOF_MP_SUBFLOW would be cleared. */ if (!(so->so_flags & SOF_MP_SUBFLOW) && (so->so_state & SS_NOFDREF)) in_pcbdetach(inp); } void in_pcbdetach(struct inpcb *inp) { struct socket *so = inp->inp_socket; if (so->so_pcb == NULL) { /* PCB has been disposed */ panic("%s: inp=%p so=%p proto=%d so_pcb is null!\n", __func__, inp, so, SOCK_PROTO(so)); /* NOTREACHED */ } #if IPSEC if (inp->inp_sp != NULL) { (void) ipsec4_delete_pcbpolicy(inp); } #endif /* IPSEC */ /* mark socket state as dead */ if (in_pcb_checkstate(inp, WNT_STOPUSING, 1) != WNT_STOPUSING) { panic("%s: so=%p proto=%d couldn't set to STOPUSING\n", __func__, so, SOCK_PROTO(so)); /* NOTREACHED */ } if (!(so->so_flags & SOF_PCBCLEARING)) { struct ip_moptions *imo; inp->inp_vflag = 0; if (inp->inp_options != NULL) { (void) m_free(inp->inp_options); inp->inp_options = NULL; } ROUTE_RELEASE(&inp->inp_route); imo = inp->inp_moptions; inp->inp_moptions = NULL; if (imo != NULL) IMO_REMREF(imo); sofreelastref(so, 0); inp->inp_state = INPCB_STATE_DEAD; /* makes sure we're not called twice from so_close */ so->so_flags |= SOF_PCBCLEARING; inpcb_gc_sched(inp->inp_pcbinfo, INPCB_TIMER_FAST); } } void in_pcbdispose(struct inpcb *inp) { struct socket *so = inp->inp_socket; struct inpcbinfo *ipi = inp->inp_pcbinfo; if (so != NULL && so->so_usecount != 0) { panic("%s: so %p [%d,%d] usecount %d lockhistory %s\n", __func__, so, SOCK_DOM(so), SOCK_TYPE(so), so->so_usecount, solockhistory_nr(so)); /* NOTREACHED */ } else if (inp->inp_wantcnt != WNT_STOPUSING) { if (so != NULL) { panic_plain("%s: inp %p invalid wantcnt %d, so %p " "[%d,%d] usecount %d retaincnt %d state 0x%x " "flags 0x%x lockhistory %s\n", __func__, inp, inp->inp_wantcnt, so, SOCK_DOM(so), SOCK_TYPE(so), so->so_usecount, so->so_retaincnt, so->so_state, so->so_flags, solockhistory_nr(so)); /* NOTREACHED */ } else { panic("%s: inp %p invalid wantcnt %d no socket\n", __func__, inp, inp->inp_wantcnt); /* NOTREACHED */ } } lck_rw_assert(ipi->ipi_lock, LCK_RW_ASSERT_EXCLUSIVE); inp->inp_gencnt = ++ipi->ipi_gencnt; /* access ipi in in_pcbremlists */ in_pcbremlists(inp); if (so != NULL) { if (so->so_proto->pr_flags & PR_PCBLOCK) { sofreelastref(so, 0); if (so->so_rcv.sb_cc > 0 || so->so_snd.sb_cc > 0) { /* * selthreadclear() already called * during sofreelastref() above. */ sbrelease(&so->so_rcv); sbrelease(&so->so_snd); } if (so->so_head != NULL) { panic("%s: so=%p head still exist\n", __func__, so); /* NOTREACHED */ } lck_mtx_unlock(&inp->inpcb_mtx); lck_mtx_destroy(&inp->inpcb_mtx, ipi->ipi_lock_grp); } /* makes sure we're not called twice from so_close */ so->so_flags |= SOF_PCBCLEARING; so->so_saved_pcb = (caddr_t)inp; so->so_pcb = NULL; inp->inp_socket = NULL; #if CONFIG_MACF_NET mac_inpcb_label_destroy(inp); #endif /* CONFIG_MACF_NET */ /* * In case there a route cached after a detach (possible * in the tcp case), make sure that it is freed before * we deallocate the structure. */ ROUTE_RELEASE(&inp->inp_route); if (!so->cached_in_sock_layer) { zfree(ipi->ipi_zone, inp); } sodealloc(so); } } /* * The calling convention of in_getsockaddr() and in_getpeeraddr() was * modified to match the pru_sockaddr() and pru_peeraddr() entry points * in struct pr_usrreqs, so that protocols can just reference then directly * without the need for a wrapper function. */ int in_getsockaddr(struct socket *so, struct sockaddr **nam) { struct inpcb *inp; struct sockaddr_in *sin; /* * Do the malloc first in case it blocks. */ MALLOC(sin, struct sockaddr_in *, sizeof (*sin), M_SONAME, M_WAITOK); if (sin == NULL) return (ENOBUFS); bzero(sin, sizeof (*sin)); sin->sin_family = AF_INET; sin->sin_len = sizeof (*sin); if ((inp = sotoinpcb(so)) == NULL) { FREE(sin, M_SONAME); return (EINVAL); } sin->sin_port = inp->inp_lport; sin->sin_addr = inp->inp_laddr; *nam = (struct sockaddr *)sin; return (0); } int in_getsockaddr_s(struct socket *so, struct sockaddr_storage *ss) { struct sockaddr_in *sin = SIN(ss); struct inpcb *inp; VERIFY(ss != NULL); bzero(ss, sizeof (*ss)); sin->sin_family = AF_INET; sin->sin_len = sizeof (*sin); if ((inp = sotoinpcb(so)) == NULL || (inp->inp_flags2 & INP2_WANT_FLOW_DIVERT)) return (inp == NULL ? EINVAL : EPROTOTYPE); sin->sin_port = inp->inp_lport; sin->sin_addr = inp->inp_laddr; return (0); } int in_getpeeraddr(struct socket *so, struct sockaddr **nam) { struct inpcb *inp; struct sockaddr_in *sin; /* * Do the malloc first in case it blocks. */ MALLOC(sin, struct sockaddr_in *, sizeof (*sin), M_SONAME, M_WAITOK); if (sin == NULL) return (ENOBUFS); bzero((caddr_t)sin, sizeof (*sin)); sin->sin_family = AF_INET; sin->sin_len = sizeof (*sin); if ((inp = sotoinpcb(so)) == NULL) { FREE(sin, M_SONAME); return (EINVAL); } sin->sin_port = inp->inp_fport; sin->sin_addr = inp->inp_faddr; *nam = (struct sockaddr *)sin; return (0); } int in_getpeeraddr_s(struct socket *so, struct sockaddr_storage *ss) { struct sockaddr_in *sin = SIN(ss); struct inpcb *inp; VERIFY(ss != NULL); bzero(ss, sizeof (*ss)); sin->sin_family = AF_INET; sin->sin_len = sizeof (*sin); if ((inp = sotoinpcb(so)) == NULL || (inp->inp_flags2 & INP2_WANT_FLOW_DIVERT)) { return (inp == NULL ? EINVAL : EPROTOTYPE); } sin->sin_port = inp->inp_fport; sin->sin_addr = inp->inp_faddr; return (0); } void in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, void (*notify)(struct inpcb *, int)) { struct inpcb *inp; lck_rw_lock_shared(pcbinfo->ipi_lock); LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { #if INET6 if (!(inp->inp_vflag & INP_IPV4)) continue; #endif /* INET6 */ if (inp->inp_faddr.s_addr != faddr.s_addr || inp->inp_socket == NULL) continue; if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) == WNT_STOPUSING) continue; socket_lock(inp->inp_socket, 1); (*notify)(inp, errno); (void) in_pcb_checkstate(inp, WNT_RELEASE, 1); socket_unlock(inp->inp_socket, 1); } lck_rw_done(pcbinfo->ipi_lock); } /* * Check for alternatives when higher level complains * about service problems. For now, invalidate cached * routing information. If the route was created dynamically * (by a redirect), time to try a default gateway again. */ void in_losing(struct inpcb *inp) { boolean_t release = FALSE; struct rtentry *rt; struct rt_addrinfo info; if ((rt = inp->inp_route.ro_rt) != NULL) { struct in_ifaddr *ia = NULL; bzero((caddr_t)&info, sizeof (info)); RT_LOCK(rt); info.rti_info[RTAX_DST] = (struct sockaddr *)&inp->inp_route.ro_dst; info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; info.rti_info[RTAX_NETMASK] = rt_mask(rt); rt_missmsg(RTM_LOSING, &info, rt->rt_flags, 0); if (rt->rt_flags & RTF_DYNAMIC) { /* * Prevent another thread from modifying rt_key, * rt_gateway via rt_setgate() after rt_lock is * dropped by marking the route as defunct. */ rt->rt_flags |= RTF_CONDEMNED; RT_UNLOCK(rt); (void) rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway, rt_mask(rt), rt->rt_flags, NULL); } else { RT_UNLOCK(rt); } /* if the address is gone keep the old route in the pcb */ if (inp->inp_laddr.s_addr != INADDR_ANY && (ia = ifa_foraddr(inp->inp_laddr.s_addr)) != NULL) { /* * Address is around; ditch the route. A new route * can be allocated the next time output is attempted. */ release = TRUE; } if (ia != NULL) IFA_REMREF(&ia->ia_ifa); } if (rt == NULL || release) ROUTE_RELEASE(&inp->inp_route); } /* * After a routing change, flush old routing * and allocate a (hopefully) better one. */ void in_rtchange(struct inpcb *inp, int errno) { #pragma unused(errno) boolean_t release = FALSE; struct rtentry *rt; if ((rt = inp->inp_route.ro_rt) != NULL) { struct in_ifaddr *ia = NULL; /* if address is gone, keep the old route */ if (inp->inp_laddr.s_addr != INADDR_ANY && (ia = ifa_foraddr(inp->inp_laddr.s_addr)) != NULL) { /* * Address is around; ditch the route. A new route * can be allocated the next time output is attempted. */ release = TRUE; } if (ia != NULL) IFA_REMREF(&ia->ia_ifa); } if (rt == NULL || release) ROUTE_RELEASE(&inp->inp_route); } /* * Lookup a PCB based on the local address and port. */ struct inpcb * in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, unsigned int lport_arg, int wild_okay) { struct inpcb *inp; int matchwild = 3, wildcard; u_short lport = lport_arg; KERNEL_DEBUG(DBG_FNC_PCB_LOOKUP | DBG_FUNC_START, 0, 0, 0, 0, 0); if (!wild_okay) { struct inpcbhead *head; /* * Look for an unconnected (wildcard foreign addr) PCB that * matches the local address and port we're looking for. */ head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->ipi_hashmask)]; LIST_FOREACH(inp, head, inp_hash) { #if INET6 if (!(inp->inp_vflag & INP_IPV4)) continue; #endif /* INET6 */ if (inp->inp_faddr.s_addr == INADDR_ANY && inp->inp_laddr.s_addr == laddr.s_addr && inp->inp_lport == lport) { /* * Found. */ return (inp); } } /* * Not found. */ KERNEL_DEBUG(DBG_FNC_PCB_LOOKUP | DBG_FUNC_END, 0, 0, 0, 0, 0); return (NULL); } else { struct inpcbporthead *porthash; struct inpcbport *phd; struct inpcb *match = NULL; /* * Best fit PCB lookup. * * First see if this local port is in use by looking on the * port hash list. */ porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, pcbinfo->ipi_porthashmask)]; LIST_FOREACH(phd, porthash, phd_hash) { if (phd->phd_port == lport) break; } if (phd != NULL) { /* * Port is in use by one or more PCBs. Look for best * fit. */ LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { wildcard = 0; #if INET6 if (!(inp->inp_vflag & INP_IPV4)) continue; #endif /* INET6 */ if (inp->inp_faddr.s_addr != INADDR_ANY) wildcard++; if (inp->inp_laddr.s_addr != INADDR_ANY) { if (laddr.s_addr == INADDR_ANY) wildcard++; else if (inp->inp_laddr.s_addr != laddr.s_addr) continue; } else { if (laddr.s_addr != INADDR_ANY) wildcard++; } if (wildcard < matchwild) { match = inp; matchwild = wildcard; if (matchwild == 0) { break; } } } } KERNEL_DEBUG(DBG_FNC_PCB_LOOKUP | DBG_FUNC_END, match, 0, 0, 0, 0); return (match); } } /* * Check if PCB exists in hash list. */ int in_pcblookup_hash_exists(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard, uid_t *uid, gid_t *gid, struct ifnet *ifp) { struct inpcbhead *head; struct inpcb *inp; u_short fport = fport_arg, lport = lport_arg; int found = 0; struct inpcb *local_wild = NULL; #if INET6 struct inpcb *local_wild_mapped = NULL; #endif /* INET6 */ *uid = UID_MAX; *gid = GID_MAX; /* * We may have found the pcb in the last lookup - check this first. */ lck_rw_lock_shared(pcbinfo->ipi_lock); /* * First look for an exact match. */ head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, pcbinfo->ipi_hashmask)]; LIST_FOREACH(inp, head, inp_hash) { #if INET6 if (!(inp->inp_vflag & INP_IPV4)) continue; #endif /* INET6 */ if (inp_restricted(inp, ifp)) continue; if (ifp != NULL && IFNET_IS_CELLULAR(ifp) && (inp->inp_flags & INP_NO_IFT_CELLULAR)) continue; if (inp->inp_faddr.s_addr == faddr.s_addr && inp->inp_laddr.s_addr == laddr.s_addr && inp->inp_fport == fport && inp->inp_lport == lport) { if ((found = (inp->inp_socket != NULL))) { /* * Found. */ *uid = kauth_cred_getuid( inp->inp_socket->so_cred); *gid = kauth_cred_getgid( inp->inp_socket->so_cred); } lck_rw_done(pcbinfo->ipi_lock); return (found); } } if (!wildcard) { /* * Not found. */ lck_rw_done(pcbinfo->ipi_lock); return (0); } head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->ipi_hashmask)]; LIST_FOREACH(inp, head, inp_hash) { #if INET6 if (!(inp->inp_vflag & INP_IPV4)) continue; #endif /* INET6 */ if (inp_restricted(inp, ifp)) continue; if (ifp != NULL && IFNET_IS_CELLULAR(ifp) && (inp->inp_flags & INP_NO_IFT_CELLULAR)) continue; if (inp->inp_faddr.s_addr == INADDR_ANY && inp->inp_lport == lport) { if (inp->inp_laddr.s_addr == laddr.s_addr) { if ((found = (inp->inp_socket != NULL))) { *uid = kauth_cred_getuid( inp->inp_socket->so_cred); *gid = kauth_cred_getgid( inp->inp_socket->so_cred); } lck_rw_done(pcbinfo->ipi_lock); return (found); } else if (inp->inp_laddr.s_addr == INADDR_ANY) { #if INET6 if (inp->inp_socket && SOCK_CHECK_DOM(inp->inp_socket, PF_INET6)) local_wild_mapped = inp; else #endif /* INET6 */ local_wild = inp; } } } if (local_wild == NULL) { #if INET6 if (local_wild_mapped != NULL) { if ((found = (local_wild_mapped->inp_socket != NULL))) { *uid = kauth_cred_getuid( local_wild_mapped->inp_socket->so_cred); *gid = kauth_cred_getgid( local_wild_mapped->inp_socket->so_cred); } lck_rw_done(pcbinfo->ipi_lock); return (found); } #endif /* INET6 */ lck_rw_done(pcbinfo->ipi_lock); return (0); } if ((found = (local_wild->inp_socket != NULL))) { *uid = kauth_cred_getuid( local_wild->inp_socket->so_cred); *gid = kauth_cred_getgid( local_wild->inp_socket->so_cred); } lck_rw_done(pcbinfo->ipi_lock); return (found); } /* * Lookup PCB in hash list. */ struct inpcb * in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard, struct ifnet *ifp) { struct inpcbhead *head; struct inpcb *inp; u_short fport = fport_arg, lport = lport_arg; struct inpcb *local_wild = NULL; #if INET6 struct inpcb *local_wild_mapped = NULL; #endif /* INET6 */ /* * We may have found the pcb in the last lookup - check this first. */ lck_rw_lock_shared(pcbinfo->ipi_lock); /* * First look for an exact match. */ head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, pcbinfo->ipi_hashmask)]; LIST_FOREACH(inp, head, inp_hash) { #if INET6 if (!(inp->inp_vflag & INP_IPV4)) continue; #endif /* INET6 */ if (inp_restricted(inp, ifp)) continue; if (ifp != NULL && IFNET_IS_CELLULAR(ifp) && (inp->inp_flags & INP_NO_IFT_CELLULAR)) continue; if (inp->inp_faddr.s_addr == faddr.s_addr && inp->inp_laddr.s_addr == laddr.s_addr && inp->inp_fport == fport && inp->inp_lport == lport) { /* * Found. */ if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) != WNT_STOPUSING) { lck_rw_done(pcbinfo->ipi_lock); return (inp); } else { /* it's there but dead, say it isn't found */ lck_rw_done(pcbinfo->ipi_lock); return (NULL); } } } if (!wildcard) { /* * Not found. */ lck_rw_done(pcbinfo->ipi_lock); return (NULL); } head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->ipi_hashmask)]; LIST_FOREACH(inp, head, inp_hash) { #if INET6 if (!(inp->inp_vflag & INP_IPV4)) continue; #endif /* INET6 */ if (inp_restricted(inp, ifp)) continue; if (ifp != NULL && IFNET_IS_CELLULAR(ifp) && (inp->inp_flags & INP_NO_IFT_CELLULAR)) continue; if (inp->inp_faddr.s_addr == INADDR_ANY && inp->inp_lport == lport) { if (inp->inp_laddr.s_addr == laddr.s_addr) { if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) != WNT_STOPUSING) { lck_rw_done(pcbinfo->ipi_lock); return (inp); } else { /* it's dead; say it isn't found */ lck_rw_done(pcbinfo->ipi_lock); return (NULL); } } else if (inp->inp_laddr.s_addr == INADDR_ANY) { #if INET6 if (SOCK_CHECK_DOM(inp->inp_socket, PF_INET6)) local_wild_mapped = inp; else #endif /* INET6 */ local_wild = inp; } } } if (local_wild == NULL) { #if INET6 if (local_wild_mapped != NULL) { if (in_pcb_checkstate(local_wild_mapped, WNT_ACQUIRE, 0) != WNT_STOPUSING) { lck_rw_done(pcbinfo->ipi_lock); return (local_wild_mapped); } else { /* it's dead; say it isn't found */ lck_rw_done(pcbinfo->ipi_lock); return (NULL); } } #endif /* INET6 */ lck_rw_done(pcbinfo->ipi_lock); return (NULL); } if (in_pcb_checkstate(local_wild, WNT_ACQUIRE, 0) != WNT_STOPUSING) { lck_rw_done(pcbinfo->ipi_lock); return (local_wild); } /* * It's either not found or is already dead. */ lck_rw_done(pcbinfo->ipi_lock); return (NULL); } /* * Insert PCB onto various hash lists. */ int in_pcbinshash(struct inpcb *inp, int locked) { struct inpcbhead *pcbhash; struct inpcbporthead *pcbporthash; struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct inpcbport *phd; u_int32_t hashkey_faddr; if (!locked) { if (!lck_rw_try_lock_exclusive(pcbinfo->ipi_lock)) { /* * Lock inversion issue, mostly with udp * multicast packets */ socket_unlock(inp->inp_socket, 0); lck_rw_lock_exclusive(pcbinfo->ipi_lock); socket_lock(inp->inp_socket, 0); if (inp->inp_state == INPCB_STATE_DEAD) { /* * The socket got dropped when * it was unlocked */ lck_rw_done(pcbinfo->ipi_lock); return (ECONNABORTED); } } } #if INET6 if (inp->inp_vflag & INP_IPV6) hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; else #endif /* INET6 */ hashkey_faddr = inp->inp_faddr.s_addr; inp->inp_hash_element = INP_PCBHASH(hashkey_faddr, inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask); pcbhash = &pcbinfo->ipi_hashbase[inp->inp_hash_element]; pcbporthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; /* * Go through port list and look for a head for this lport. */ LIST_FOREACH(phd, pcbporthash, phd_hash) { if (phd->phd_port == inp->inp_lport) break; } VERIFY(inp->inp_state != INPCB_STATE_DEAD); /* * If none exists, malloc one and tack it on. */ if (phd == NULL) { MALLOC(phd, struct inpcbport *, sizeof (struct inpcbport), M_PCB, M_WAITOK); if (phd == NULL) { if (!locked) lck_rw_done(pcbinfo->ipi_lock); return (ENOBUFS); /* XXX */ } phd->phd_port = inp->inp_lport; LIST_INIT(&phd->phd_pcblist); LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); } inp->inp_phd = phd; LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); LIST_INSERT_HEAD(pcbhash, inp, inp_hash); if (!locked) lck_rw_done(pcbinfo->ipi_lock); return (0); } /* * Move PCB to the proper hash bucket when { faddr, fport } have been * changed. NOTE: This does not handle the case of the lport changing (the * hashed port list would have to be updated as well), so the lport must * not change after in_pcbinshash() has been called. */ void in_pcbrehash(struct inpcb *inp) { struct inpcbhead *head; u_int32_t hashkey_faddr; #if INET6 if (inp->inp_vflag & INP_IPV6) hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; else #endif /* INET6 */ hashkey_faddr = inp->inp_faddr.s_addr; inp->inp_hash_element = INP_PCBHASH(hashkey_faddr, inp->inp_lport, inp->inp_fport, inp->inp_pcbinfo->ipi_hashmask); head = &inp->inp_pcbinfo->ipi_hashbase[inp->inp_hash_element]; LIST_REMOVE(inp, inp_hash); LIST_INSERT_HEAD(head, inp, inp_hash); } /* * Remove PCB from various lists. * Must be called pcbinfo lock is held in exclusive mode. */ void in_pcbremlists(struct inpcb *inp) { inp->inp_gencnt = ++inp->inp_pcbinfo->ipi_gencnt; if (inp->inp_lport) { struct inpcbport *phd = inp->inp_phd; LIST_REMOVE(inp, inp_hash); LIST_REMOVE(inp, inp_portlist); if (phd != NULL && (LIST_FIRST(&phd->phd_pcblist) == NULL)) { LIST_REMOVE(phd, phd_hash); FREE(phd, M_PCB); } } if (inp->inp_flags2 & INP2_TIMEWAIT) { /* Remove from time-wait queue */ tcp_remove_from_time_wait(inp); inp->inp_flags2 &= ~INP2_TIMEWAIT; VERIFY(inp->inp_pcbinfo->ipi_twcount != 0); inp->inp_pcbinfo->ipi_twcount--; } else { /* Remove from global inp list if it is not time-wait */ LIST_REMOVE(inp, inp_list); } if (inp->inp_flags2 & INP2_IN_FCTREE) { inp_fc_getinp(inp->inp_flowhash, (INPFC_SOLOCKED|INPFC_REMOVE)); VERIFY(!(inp->inp_flags2 & INP2_IN_FCTREE)); } inp->inp_pcbinfo->ipi_count--; } /* * Mechanism used to defer the memory release of PCBs * The pcb list will contain the pcb until the reaper can clean it up if * the following conditions are met: * 1) state "DEAD", * 2) wantcnt is STOPUSING * 3) usecount is 0 * This function will be called to either mark the pcb as */ int in_pcb_checkstate(struct inpcb *pcb, int mode, int locked) { volatile UInt32 *wantcnt = (volatile UInt32 *)&pcb->inp_wantcnt; UInt32 origwant; UInt32 newwant; switch (mode) { case WNT_STOPUSING: /* * Try to mark the pcb as ready for recycling. CAS with * STOPUSING, if success we're good, if it's in use, will * be marked later */ if (locked == 0) socket_lock(pcb->inp_socket, 1); pcb->inp_state = INPCB_STATE_DEAD; stopusing: if (pcb->inp_socket->so_usecount < 0) { panic("%s: pcb=%p so=%p usecount is negative\n", __func__, pcb, pcb->inp_socket); /* NOTREACHED */ } if (locked == 0) socket_unlock(pcb->inp_socket, 1); inpcb_gc_sched(pcb->inp_pcbinfo, INPCB_TIMER_FAST); origwant = *wantcnt; if ((UInt16) origwant == 0xffff) /* should stop using */ return (WNT_STOPUSING); newwant = 0xffff; if ((UInt16) origwant == 0) { /* try to mark it as unsuable now */ OSCompareAndSwap(origwant, newwant, wantcnt); } return (WNT_STOPUSING); break; case WNT_ACQUIRE: /* * Try to increase reference to pcb. If WNT_STOPUSING * should bail out. If socket state DEAD, try to set count * to STOPUSING, return failed otherwise increase cnt. */ do { origwant = *wantcnt; if ((UInt16) origwant == 0xffff) { /* should stop using */ return (WNT_STOPUSING); } newwant = origwant + 1; } while (!OSCompareAndSwap(origwant, newwant, wantcnt)); return (WNT_ACQUIRE); break; case WNT_RELEASE: /* * Release reference. If result is null and pcb state * is DEAD, set wanted bit to STOPUSING */ if (locked == 0) socket_lock(pcb->inp_socket, 1); do { origwant = *wantcnt; if ((UInt16) origwant == 0x0) { panic("%s: pcb=%p release with zero count", __func__, pcb); /* NOTREACHED */ } if ((UInt16) origwant == 0xffff) { /* should stop using */ if (locked == 0) socket_unlock(pcb->inp_socket, 1); return (WNT_STOPUSING); } newwant = origwant - 1; } while (!OSCompareAndSwap(origwant, newwant, wantcnt)); if (pcb->inp_state == INPCB_STATE_DEAD) goto stopusing; if (pcb->inp_socket->so_usecount < 0) { panic("%s: RELEASE pcb=%p so=%p usecount is negative\n", __func__, pcb, pcb->inp_socket); /* NOTREACHED */ } if (locked == 0) socket_unlock(pcb->inp_socket, 1); return (WNT_RELEASE); break; default: panic("%s: so=%p not a valid state =%x\n", __func__, pcb->inp_socket, mode); /* NOTREACHED */ } /* NOTREACHED */ return (mode); } /* * inpcb_to_compat copies specific bits of an inpcb to a inpcb_compat. * The inpcb_compat data structure is passed to user space and must * not change. We intentionally avoid copying pointers. */ void inpcb_to_compat(struct inpcb *inp, struct inpcb_compat *inp_compat) { bzero(inp_compat, sizeof (*inp_compat)); inp_compat->inp_fport = inp->inp_fport; inp_compat->inp_lport = inp->inp_lport; inp_compat->nat_owner = 0; inp_compat->nat_cookie = 0; inp_compat->inp_gencnt = inp->inp_gencnt; inp_compat->inp_flags = inp->inp_flags; inp_compat->inp_flow = inp->inp_flow; inp_compat->inp_vflag = inp->inp_vflag; inp_compat->inp_ip_ttl = inp->inp_ip_ttl; inp_compat->inp_ip_p = inp->inp_ip_p; inp_compat->inp_dependfaddr.inp6_foreign = inp->inp_dependfaddr.inp6_foreign; inp_compat->inp_dependladdr.inp6_local = inp->inp_dependladdr.inp6_local; inp_compat->inp_depend4.inp4_ip_tos = inp->inp_depend4.inp4_ip_tos; inp_compat->inp_depend6.inp6_hlim = 0; inp_compat->inp_depend6.inp6_cksum = inp->inp_depend6.inp6_cksum; inp_compat->inp_depend6.inp6_ifindex = 0; inp_compat->inp_depend6.inp6_hops = inp->inp_depend6.inp6_hops; } void inpcb_to_xinpcb64(struct inpcb *inp, struct xinpcb64 *xinp) { xinp->inp_fport = inp->inp_fport; xinp->inp_lport = inp->inp_lport; xinp->inp_gencnt = inp->inp_gencnt; xinp->inp_flags = inp->inp_flags; xinp->inp_flow = inp->inp_flow; xinp->inp_vflag = inp->inp_vflag; xinp->inp_ip_ttl = inp->inp_ip_ttl; xinp->inp_ip_p = inp->inp_ip_p; xinp->inp_dependfaddr.inp6_foreign = inp->inp_dependfaddr.inp6_foreign; xinp->inp_dependladdr.inp6_local = inp->inp_dependladdr.inp6_local; xinp->inp_depend4.inp4_ip_tos = inp->inp_depend4.inp4_ip_tos; xinp->inp_depend6.inp6_hlim = 0; xinp->inp_depend6.inp6_cksum = inp->inp_depend6.inp6_cksum; xinp->inp_depend6.inp6_ifindex = 0; xinp->inp_depend6.inp6_hops = inp->inp_depend6.inp6_hops; } /* * The following routines implement this scheme: * * Callers of ip_output() that intend to cache the route in the inpcb pass * a local copy of the struct route to ip_output(). Using a local copy of * the cached route significantly simplifies things as IP no longer has to * worry about having exclusive access to the passed in struct route, since * it's defined in the caller's stack; in essence, this allows for a lock- * less operation when updating the struct route at the IP level and below, * whenever necessary. The scheme works as follows: * * Prior to dropping the socket's lock and calling ip_output(), the caller * copies the struct route from the inpcb into its stack, and adds a reference * to the cached route entry, if there was any. The socket's lock is then * dropped and ip_output() is called with a pointer to the copy of struct * route defined on the stack (not to the one in the inpcb.) * * Upon returning from ip_output(), the caller then acquires the socket's * lock and synchronizes the cache; if there is no route cached in the inpcb, * it copies the local copy of struct route (which may or may not contain any * route) back into the cache; otherwise, if the inpcb has a route cached in * it, the one in the local copy will be freed, if there's any. Trashing the * cached route in the inpcb can be avoided because ip_output() is single- * threaded per-PCB (i.e. multiple transmits on a PCB are always serialized * by the socket/transport layer.) */ void inp_route_copyout(struct inpcb *inp, struct route *dst) { struct route *src = &inp->inp_route; lck_mtx_assert(&inp->inpcb_mtx, LCK_MTX_ASSERT_OWNED); /* * If the route in the PCB is stale or not for IPv4, blow it away; * this is possible in the case of IPv4-mapped address case. */ if (ROUTE_UNUSABLE(src) || rt_key(src->ro_rt)->sa_family != AF_INET) ROUTE_RELEASE(src); route_copyout(dst, src, sizeof (*dst)); } void inp_route_copyin(struct inpcb *inp, struct route *src) { struct route *dst = &inp->inp_route; lck_mtx_assert(&inp->inpcb_mtx, LCK_MTX_ASSERT_OWNED); /* Minor sanity check */ if (src->ro_rt != NULL && rt_key(src->ro_rt)->sa_family != AF_INET) panic("%s: wrong or corrupted route: %p", __func__, src); route_copyin(src, dst, sizeof (*src)); } /* * Handler for setting IP_FORCE_OUT_IFP/IP_BOUND_IF/IPV6_BOUND_IF socket option. */ int inp_bindif(struct inpcb *inp, unsigned int ifscope, struct ifnet **pifp) { struct ifnet *ifp = NULL; ifnet_head_lock_shared(); if ((ifscope > (unsigned)if_index) || (ifscope != IFSCOPE_NONE && (ifp = ifindex2ifnet[ifscope]) == NULL)) { ifnet_head_done(); return (ENXIO); } ifnet_head_done(); VERIFY(ifp != NULL || ifscope == IFSCOPE_NONE); /* * A zero interface scope value indicates an "unbind". * Otherwise, take in whatever value the app desires; * the app may already know the scope (or force itself * to such a scope) ahead of time before the interface * gets attached. It doesn't matter either way; any * route lookup from this point on will require an * exact match for the embedded interface scope. */ inp->inp_boundifp = ifp; if (inp->inp_boundifp == NULL) inp->inp_flags &= ~INP_BOUND_IF; else inp->inp_flags |= INP_BOUND_IF; /* Blow away any cached route in the PCB */ ROUTE_RELEASE(&inp->inp_route); if (pifp != NULL) *pifp = ifp; return (0); } /* * Handler for setting IP_NO_IFT_CELLULAR/IPV6_NO_IFT_CELLULAR socket option, * as well as for setting PROC_UUID_NO_CELLULAR policy. */ void inp_set_nocellular(struct inpcb *inp) { inp->inp_flags |= INP_NO_IFT_CELLULAR; /* Blow away any cached route in the PCB */ ROUTE_RELEASE(&inp->inp_route); } /* * Handler for clearing IP_NO_IFT_CELLULAR/IPV6_NO_IFT_CELLULAR socket option, * as well as for clearing PROC_UUID_NO_CELLULAR policy. */ void inp_clear_nocellular(struct inpcb *inp) { struct socket *so = inp->inp_socket; /* * SO_RESTRICT_DENY_CELLULAR socket restriction issued on the socket * has a higher precendence than INP_NO_IFT_CELLULAR. Clear the flag * if and only if the socket is unrestricted. */ if (so != NULL && !(so->so_restrictions & SO_RESTRICT_DENY_CELLULAR)) { inp->inp_flags &= ~INP_NO_IFT_CELLULAR; /* Blow away any cached route in the PCB */ ROUTE_RELEASE(&inp->inp_route); } } #if FLOW_DIVERT /* * Called when PROC_UUID_FLOW_DIVERT is set. */ void inp_set_flow_divert(struct inpcb *inp) { inp->inp_flags2 |= INP2_WANT_FLOW_DIVERT; } /* * Called when PROC_UUID_FLOW_DIVERT is cleared. */ void inp_clear_flow_divert(struct inpcb *inp) { inp->inp_flags2 &= ~INP2_WANT_FLOW_DIVERT; } #endif /* FLOW_DIVERT */ /* * Calculate flow hash for an inp, used by an interface to identify a * flow. When an interface provides flow control advisory, this flow * hash is used as an identifier. */ u_int32_t inp_calc_flowhash(struct inpcb *inp) { struct inp_flowhash_key fh __attribute__((aligned(8))); u_int32_t flowhash = 0; struct inpcb *tmp_inp = NULL; if (inp_hash_seed == 0) inp_hash_seed = RandomULong(); bzero(&fh, sizeof (fh)); bcopy(&inp->inp_dependladdr, &fh.infh_laddr, sizeof (fh.infh_laddr)); bcopy(&inp->inp_dependfaddr, &fh.infh_faddr, sizeof (fh.infh_faddr)); fh.infh_lport = inp->inp_lport; fh.infh_fport = inp->inp_fport; fh.infh_af = (inp->inp_vflag & INP_IPV6) ? AF_INET6 : AF_INET; fh.infh_proto = inp->inp_ip_p; fh.infh_rand1 = RandomULong(); fh.infh_rand2 = RandomULong(); try_again: flowhash = net_flowhash(&fh, sizeof (fh), inp_hash_seed); if (flowhash == 0) { /* try to get a non-zero flowhash */ inp_hash_seed = RandomULong(); goto try_again; } inp->inp_flowhash = flowhash; /* Insert the inp into inp_fc_tree */ lck_mtx_lock_spin(&inp_fc_lck); tmp_inp = RB_FIND(inp_fc_tree, &inp_fc_tree, inp); if (tmp_inp != NULL) { /* * There is a different inp with the same flowhash. * There can be a collision on flow hash but the * probability is low. Let's recompute the * flowhash. */ lck_mtx_unlock(&inp_fc_lck); /* recompute hash seed */ inp_hash_seed = RandomULong(); goto try_again; } RB_INSERT(inp_fc_tree, &inp_fc_tree, inp); inp->inp_flags2 |= INP2_IN_FCTREE; lck_mtx_unlock(&inp_fc_lck); return (flowhash); } void inp_flowadv(uint32_t flowhash) { struct inpcb *inp; inp = inp_fc_getinp(flowhash, 0); if (inp == NULL) return; inp_fc_feedback(inp); } /* * Function to compare inp_fc_entries in inp flow control tree */ static inline int infc_cmp(const struct inpcb *inp1, const struct inpcb *inp2) { return (memcmp(&(inp1->inp_flowhash), &(inp2->inp_flowhash), sizeof(inp1->inp_flowhash))); } static struct inpcb * inp_fc_getinp(u_int32_t flowhash, u_int32_t flags) { struct inpcb *inp = NULL; int locked = (flags & INPFC_SOLOCKED) ? 1 : 0; lck_mtx_lock_spin(&inp_fc_lck); key_inp.inp_flowhash = flowhash; inp = RB_FIND(inp_fc_tree, &inp_fc_tree, &key_inp); if (inp == NULL) { /* inp is not present, return */ lck_mtx_unlock(&inp_fc_lck); return (NULL); } if (flags & INPFC_REMOVE) { RB_REMOVE(inp_fc_tree, &inp_fc_tree, inp); lck_mtx_unlock(&inp_fc_lck); bzero(&(inp->infc_link), sizeof (inp->infc_link)); inp->inp_flags2 &= ~INP2_IN_FCTREE; return (NULL); } if (in_pcb_checkstate(inp, WNT_ACQUIRE, locked) == WNT_STOPUSING) inp = NULL; lck_mtx_unlock(&inp_fc_lck); return (inp); } static void inp_fc_feedback(struct inpcb *inp) { struct socket *so = inp->inp_socket; /* we already hold a want_cnt on this inp, socket can't be null */ VERIFY(so != NULL); socket_lock(so, 1); if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) { socket_unlock(so, 1); return; } /* * Return if the connection is not in flow-controlled state. * This can happen if the connection experienced * loss while it was in flow controlled state */ if (!INP_WAIT_FOR_IF_FEEDBACK(inp)) { socket_unlock(so, 1); return; } inp_reset_fc_state(inp); if (SOCK_TYPE(so) == SOCK_STREAM) inp_fc_unthrottle_tcp(inp); socket_unlock(so, 1); } void inp_reset_fc_state(struct inpcb *inp) { struct socket *so = inp->inp_socket; int suspended = (INP_IS_FLOW_SUSPENDED(inp)) ? 1 : 0; int needwakeup = (INP_WAIT_FOR_IF_FEEDBACK(inp)) ? 1 : 0; inp->inp_flags &= ~(INP_FLOW_CONTROLLED | INP_FLOW_SUSPENDED); if (suspended) { so->so_flags &= ~(SOF_SUSPENDED); soevent(so, (SO_FILT_HINT_LOCKED | SO_FILT_HINT_RESUME)); } if (inp->inp_sndinprog_cnt > 0) inp->inp_flags |= INP_FC_FEEDBACK; /* Give a write wakeup to unblock the socket */ if (needwakeup) sowwakeup(so); } int inp_set_fc_state(struct inpcb *inp, int advcode) { struct inpcb *tmp_inp = NULL; /* * If there was a feedback from the interface when * send operation was in progress, we should ignore * this flow advisory to avoid a race between setting * flow controlled state and receiving feedback from * the interface */ if (inp->inp_flags & INP_FC_FEEDBACK) return (0); inp->inp_flags &= ~(INP_FLOW_CONTROLLED | INP_FLOW_SUSPENDED); if ((tmp_inp = inp_fc_getinp(inp->inp_flowhash, INPFC_SOLOCKED)) != NULL) { if (in_pcb_checkstate(tmp_inp, WNT_RELEASE, 1) == WNT_STOPUSING) return (0); VERIFY(tmp_inp == inp); switch (advcode) { case FADV_FLOW_CONTROLLED: inp->inp_flags |= INP_FLOW_CONTROLLED; break; case FADV_SUSPENDED: inp->inp_flags |= INP_FLOW_SUSPENDED; soevent(inp->inp_socket, (SO_FILT_HINT_LOCKED | SO_FILT_HINT_SUSPEND)); /* Record the fact that suspend event was sent */ inp->inp_socket->so_flags |= SOF_SUSPENDED; break; } return (1); } return (0); } /* * Handler for SO_FLUSH socket option. */ int inp_flush(struct inpcb *inp, int optval) { u_int32_t flowhash = inp->inp_flowhash; struct ifnet *rtifp, *oifp; /* Either all classes or one of the valid ones */ if (optval != SO_TC_ALL && !SO_VALID_TC(optval)) return (EINVAL); /* We need a flow hash for identification */ if (flowhash == 0) return (0); /* Grab the interfaces from the route and pcb */ rtifp = ((inp->inp_route.ro_rt != NULL) ? inp->inp_route.ro_rt->rt_ifp : NULL); oifp = inp->inp_last_outifp; if (rtifp != NULL) if_qflush_sc(rtifp, so_tc2msc(optval), flowhash, NULL, NULL, 0); if (oifp != NULL && oifp != rtifp) if_qflush_sc(oifp, so_tc2msc(optval), flowhash, NULL, NULL, 0); return (0); } /* * Clear the INP_INADDR_ANY flag (special case for PPP only) */ void inp_clear_INP_INADDR_ANY(struct socket *so) { struct inpcb *inp = NULL; socket_lock(so, 1); inp = sotoinpcb(so); if (inp) { inp->inp_flags &= ~INP_INADDR_ANY; } socket_unlock(so, 1); } void inp_get_soprocinfo(struct inpcb *inp, struct so_procinfo *soprocinfo) { struct socket *so = inp->inp_socket; soprocinfo->spi_pid = so->last_pid; /* * When not delegated, the effective pid is the same as the real pid */ if (so->so_flags & SOF_DELEGATED) soprocinfo->spi_epid = so->e_pid; else soprocinfo->spi_epid = so->last_pid; } int inp_findinpcb_procinfo(struct inpcbinfo *pcbinfo, uint32_t flowhash, struct so_procinfo *soprocinfo) { struct inpcb *inp = NULL; int found = 0; bzero(soprocinfo, sizeof (struct so_procinfo)); if (!flowhash) return (-1); lck_rw_lock_shared(pcbinfo->ipi_lock); LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { if (inp->inp_state != INPCB_STATE_DEAD && inp->inp_socket != NULL && inp->inp_flowhash == flowhash) { found = 1; inp_get_soprocinfo(inp, soprocinfo); break; } } lck_rw_done(pcbinfo->ipi_lock); return (found); } #if CONFIG_PROC_UUID_POLICY static void inp_update_cellular_policy(struct inpcb *inp, boolean_t set) { struct socket *so = inp->inp_socket; int before, after; VERIFY(so != NULL); VERIFY(inp->inp_state != INPCB_STATE_DEAD); before = (inp->inp_flags & INP_NO_IFT_CELLULAR); if (set) { inp_set_nocellular(inp); } else { inp_clear_nocellular(inp); } after = (inp->inp_flags & INP_NO_IFT_CELLULAR); if (net_io_policy_log && (before != after)) { static const char *ok = "OK"; static const char *nok = "NOACCESS"; uuid_string_t euuid_buf; pid_t epid; if (so->so_flags & SOF_DELEGATED) { uuid_unparse(so->e_uuid, euuid_buf); epid = so->e_pid; } else { uuid_unparse(so->last_uuid, euuid_buf); epid = so->last_pid; } /* allow this socket to generate another notification event */ so->so_ifdenied_notifies = 0; log(LOG_DEBUG, "%s: so 0x%llx [%d,%d] epid %d " "euuid %s%s %s->%s\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(so), SOCK_DOM(so), SOCK_TYPE(so), epid, euuid_buf, (so->so_flags & SOF_DELEGATED) ? " [delegated]" : "", ((before < after) ? ok : nok), ((before < after) ? nok : ok)); } } #if FLOW_DIVERT static void inp_update_flow_divert_policy(struct inpcb *inp, boolean_t set) { struct socket *so = inp->inp_socket; int before, after; VERIFY(so != NULL); VERIFY(inp->inp_state != INPCB_STATE_DEAD); if (set && !(inp->inp_flags2 & INP2_WANT_FLOW_DIVERT)) { set = !flow_divert_is_dns_service(so); } before = (inp->inp_flags2 & INP2_WANT_FLOW_DIVERT); if (set) { inp_set_flow_divert(inp); } else { inp_clear_flow_divert(inp); } after = (inp->inp_flags2 & INP2_WANT_FLOW_DIVERT); if (net_io_policy_log && (before != after)) { static const char *wanted = "WANTED"; static const char *unwanted = "UNWANTED"; uuid_string_t euuid_buf; pid_t epid; if (so->so_flags & SOF_DELEGATED) { uuid_unparse(so->e_uuid, euuid_buf); epid = so->e_pid; } else { uuid_unparse(so->last_uuid, euuid_buf); epid = so->last_pid; } log(LOG_DEBUG, "%s: so 0x%llx [%d,%d] epid %d " "euuid %s%s %s->%s\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(so), SOCK_DOM(so), SOCK_TYPE(so), epid, euuid_buf, (so->so_flags & SOF_DELEGATED) ? " [delegated]" : "", ((before < after) ? unwanted : wanted), ((before < after) ? wanted : unwanted)); } } #endif /* FLOW_DIVERT */ #endif /* !CONFIG_PROC_UUID_POLICY */ int inp_update_policy(struct inpcb *inp) { #if CONFIG_PROC_UUID_POLICY struct socket *so = inp->inp_socket; uint32_t pflags = 0; int32_t ogencnt; int err = 0; if (!net_io_policy_uuid || so == NULL || inp->inp_state == INPCB_STATE_DEAD) return (0); /* * Kernel-created sockets that aren't delegating other sockets * are currently exempted from UUID policy checks. */ if (so->last_pid == 0 && !(so->so_flags & SOF_DELEGATED)) return (0); ogencnt = so->so_policy_gencnt; err = proc_uuid_policy_lookup(((so->so_flags & SOF_DELEGATED) ? so->e_uuid : so->last_uuid), &pflags, &so->so_policy_gencnt); /* * Discard cached generation count if the entry is gone (ENOENT), * so that we go thru the checks below. */ if (err == ENOENT && ogencnt != 0) so->so_policy_gencnt = 0; /* * If the generation count has changed, inspect the policy flags * and act accordingly. If a policy flag was previously set and * the UUID is no longer present in the table (ENOENT), treat it * as if the flag has been cleared. */ if ((err == 0 || err == ENOENT) && ogencnt != so->so_policy_gencnt) { /* update cellular policy for this socket */ if (err == 0 && (pflags & PROC_UUID_NO_CELLULAR)) { inp_update_cellular_policy(inp, TRUE); } else if (!(pflags & PROC_UUID_NO_CELLULAR)) { inp_update_cellular_policy(inp, FALSE); } #if FLOW_DIVERT /* update flow divert policy for this socket */ if (err == 0 && (pflags & PROC_UUID_FLOW_DIVERT)) { inp_update_flow_divert_policy(inp, TRUE); } else if (!(pflags & PROC_UUID_FLOW_DIVERT)) { inp_update_flow_divert_policy(inp, FALSE); } #endif /* FLOW_DIVERT */ } return ((err == ENOENT) ? 0 : err); #else /* !CONFIG_PROC_UUID_POLICY */ #pragma unused(inp) return (0); #endif /* !CONFIG_PROC_UUID_POLICY */ } boolean_t inp_restricted(struct inpcb *inp, struct ifnet *ifp) { VERIFY(inp != NULL); if (!sorestrictrecv) return (FALSE); if (ifp == NULL || !(ifp->if_eflags & IFEF_RESTRICTED_RECV)) return (FALSE); if (inp->inp_flags & INP_RECV_ANYIF) return (FALSE); if ((inp->inp_flags & INP_BOUND_IF) && inp->inp_boundifp == ifp) return (FALSE); return (TRUE); }