// SPDX-License-Identifier: (GPL-2.0+ OR MIT) /* * Amlogic Meson Nand Flash Controller Driver * * Copyright (c) 2018 Amlogic, inc. * Author: Liang Yang * * Copyright (c) 2023 SaluteDevices, Inc. * Author: Arseniy Krasnov */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define NFC_CMD_IDLE (0xc << 14) #define NFC_CMD_CLE (0x5 << 14) #define NFC_CMD_ALE (0x6 << 14) #define NFC_CMD_DWR (0x4 << 14) #define NFC_CMD_DRD (0x8 << 14) #define NFC_CMD_ADL ((0 << 16) | (3 << 20)) #define NFC_CMD_ADH ((1 << 16) | (3 << 20)) #define NFC_CMD_AIL ((2 << 16) | (3 << 20)) #define NFC_CMD_AIH ((3 << 16) | (3 << 20)) #define NFC_CMD_SEED ((8 << 16) | (3 << 20)) #define NFC_CMD_M2N ((0 << 17) | (2 << 20)) #define NFC_CMD_N2M ((1 << 17) | (2 << 20)) #define NFC_CMD_RB BIT(20) #define NFC_CMD_SCRAMBLER_ENABLE BIT(19) #define NFC_CMD_SCRAMBLER_DISABLE 0 #define NFC_CMD_SHORTMODE_DISABLE 0 #define NFC_CMD_RB_INT BIT(14) #define NFC_CMD_RB_INT_NO_PIN ((0xb << 10) | BIT(18) | BIT(16)) #define NFC_CMD_GET_SIZE(x) (((x) >> 22) & GENMASK(4, 0)) #define NFC_REG_CMD 0x00 #define NFC_REG_CFG 0x04 #define NFC_REG_DADR 0x08 #define NFC_REG_IADR 0x0c #define NFC_REG_BUF 0x10 #define NFC_REG_INFO 0x14 #define NFC_REG_DC 0x18 #define NFC_REG_ADR 0x1c #define NFC_REG_DL 0x20 #define NFC_REG_DH 0x24 #define NFC_REG_CADR 0x28 #define NFC_REG_SADR 0x2c #define NFC_REG_PINS 0x30 #define NFC_REG_VER 0x38 #define CMDRWGEN(cmd_dir, ran, bch, short_mode, page_size, pages) \ ( \ (cmd_dir) | \ (ran) | \ ((bch) << 14) | \ ((short_mode) << 13) | \ (((page_size) & 0x7f) << 6) | \ ((pages) & 0x3f) \ ) #define GENCMDDADDRL(adl, addr) ((adl) | ((addr) & 0xffff)) #define GENCMDDADDRH(adh, addr) ((adh) | (((addr) >> 16) & 0xffff)) #define GENCMDIADDRL(ail, addr) ((ail) | ((addr) & 0xffff)) #define GENCMDIADDRH(aih, addr) ((aih) | (((addr) >> 16) & 0xffff)) #define DMA_DIR(dir) ((dir) ? NFC_CMD_N2M : NFC_CMD_M2N) #define ECC_CHECK_RETURN_FF -1 #define NAND_CE0 (0xe << 10) #define NAND_CE1 (0xd << 10) #define DMA_BUSY_TIMEOUT_US 1000000 #define CMD_DRAIN_TIMEOUT_US 1000 #define ECC_POLL_TIMEOUT_US 15 #define MAX_CE_NUM 2 /* eMMC clock register, misc control */ #define CLK_SELECT_NAND BIT(31) #define CLK_ALWAYS_ON_NAND BIT(24) #define CLK_ENABLE_VALUE 0x245 #define DIRREAD 1 #define DIRWRITE 0 #define ECC_PARITY_BCH8_512B 14 #define ECC_COMPLETE BIT(31) #define ECC_ERR_CNT(x) (((x) >> 24) & GENMASK(5, 0)) #define ECC_ZERO_CNT(x) (((x) >> 16) & GENMASK(5, 0)) #define ECC_UNCORRECTABLE 0x3f #define PER_INFO_BYTE 8 #define NFC_SEND_CMD(host, cmd) \ (writel((cmd), (host)->reg_base + NFC_REG_CMD)) #define NFC_GET_CMD(host) \ (readl((host)->reg_base + NFC_REG_CMD)) #define NFC_CMDFIFO_SIZE(host) ((NFC_GET_CMD((host)) >> 22) & GENMASK(4, 0)) #define NFC_CMD_MAKE_IDLE(ce, delay) ((ce) | NFC_CMD_IDLE | ((delay) & 0x3ff)) #define NFC_CMD_MAKE_DRD(ce, size) ((ce) | NFC_CMD_DRD | (size)) #define NFC_CMD_MAKE_DWR(ce, data) ((ce) | NFC_CMD_DWR | ((data) & 0xff)) #define NFC_CMD_MAKE_CLE(ce, cmd_val) ((ce) | NFC_CMD_CLE | ((cmd_val) & 0xff)) #define NFC_CMD_MAKE_ALE(ce, addr) ((ce) | NFC_CMD_ALE | ((addr) & 0xff)) #define NAND_TWB_TIME_CYCLE 10 #define NFC_DEV_READY_TICK_MAX 5000 /* Both values are recommended by vendor, as the most * tested with almost all SLC NAND flash. Second value * could be calculated dynamically from timing parameters, * but we need both values for initial start of the NAND * controller (e.g. before NAND subsystem processes timings), * so use hardcoded constants. */ #define NFC_DEFAULT_BUS_CYCLE 6 #define NFC_DEFAULT_BUS_TIMING 7 #define NFC_SEED_OFFSET 0xc2 #define NFC_SEED_MASK 0x7fff #define DMA_ADDR_ALIGN 8 struct meson_nfc_nand_chip { struct list_head node; struct nand_chip nand; u32 bch_mode; u8 *data_buf; __le64 *info_buf; u32 nsels; u8 sels[]; }; struct meson_nfc_param { u32 chip_select; u32 rb_select; }; struct meson_nfc { void __iomem *reg_base; void __iomem *reg_clk; struct list_head chips; struct meson_nfc_param param; struct udevice *dev; dma_addr_t daddr; dma_addr_t iaddr; u32 data_bytes; u32 info_bytes; u64 assigned_cs; }; struct meson_nand_ecc { u32 bch; u32 strength; u32 size; }; enum { NFC_ECC_BCH8_512 = 1, NFC_ECC_BCH8_1K, NFC_ECC_BCH24_1K, NFC_ECC_BCH30_1K, NFC_ECC_BCH40_1K, NFC_ECC_BCH50_1K, NFC_ECC_BCH60_1K, }; #define MESON_ECC_DATA(b, s, sz) { .bch = (b), .strength = (s), .size = (sz) } static struct meson_nand_ecc meson_ecc[] = { MESON_ECC_DATA(NFC_ECC_BCH8_512, 8, 512), MESON_ECC_DATA(NFC_ECC_BCH8_1K, 8, 1024), }; static int meson_nand_calc_ecc_bytes(int step_size, int strength) { int ecc_bytes; if (step_size == 512 && strength == 8) return ECC_PARITY_BCH8_512B; ecc_bytes = DIV_ROUND_UP(strength * fls(step_size * 8), 8); ecc_bytes = ALIGN(ecc_bytes, 2); return ecc_bytes; } static struct meson_nfc_nand_chip *to_meson_nand(struct nand_chip *nand) { return container_of(nand, struct meson_nfc_nand_chip, nand); } static void meson_nfc_nand_select_chip(struct mtd_info *mtd, int chip) { struct nand_chip *nand = mtd_to_nand(mtd); struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); struct meson_nfc *nfc = nand_get_controller_data(nand); nfc->param.chip_select = meson_chip->sels[chip] ? NAND_CE1 : NAND_CE0; } static void meson_nfc_cmd_idle(struct meson_nfc *nfc, u32 time) { writel(NFC_CMD_MAKE_IDLE(nfc->param.chip_select, time), nfc->reg_base + NFC_REG_CMD); } static void meson_nfc_cmd_seed(const struct meson_nfc *nfc, u32 seed) { writel(NFC_CMD_SEED | (NFC_SEED_OFFSET + (seed & NFC_SEED_MASK)), nfc->reg_base + NFC_REG_CMD); } static void meson_nfc_cmd_access(struct nand_chip *nand, bool raw, bool dir, int scrambler) { struct mtd_info *mtd = nand_to_mtd(nand); const struct meson_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd)); const struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); u32 bch = meson_chip->bch_mode, cmd; int len = mtd->writesize, pagesize, pages; pagesize = nand->ecc.size; if (raw) { len = mtd->writesize + mtd->oobsize; cmd = len | scrambler | DMA_DIR(dir); writel(cmd, nfc->reg_base + NFC_REG_CMD); return; } pages = len / nand->ecc.size; cmd = CMDRWGEN(DMA_DIR(dir), scrambler, bch, NFC_CMD_SHORTMODE_DISABLE, pagesize, pages); writel(cmd, nfc->reg_base + NFC_REG_CMD); } static void meson_nfc_drain_cmd(struct meson_nfc *nfc) { /* * Insert two commands to make sure all valid commands are finished. * * The Nand flash controller is designed as two stages pipleline - * a) fetch and b) execute. * There might be cases when the driver see command queue is empty, * but the Nand flash controller still has two commands buffered, * one is fetched into NFC request queue (ready to run), and another * is actively executing. So pushing 2 "IDLE" commands guarantees that * the pipeline is emptied. */ meson_nfc_cmd_idle(nfc, 0); meson_nfc_cmd_idle(nfc, 0); } static int meson_nfc_wait_cmd_finish(const struct meson_nfc *nfc, unsigned int timeout_us) { u32 cmd_size = 0; /* wait cmd fifo is empty */ return readl_relaxed_poll_timeout(nfc->reg_base + NFC_REG_CMD, cmd_size, !NFC_CMD_GET_SIZE(cmd_size), timeout_us); } static int meson_nfc_wait_dma_finish(struct meson_nfc *nfc) { meson_nfc_drain_cmd(nfc); return meson_nfc_wait_cmd_finish(nfc, DMA_BUSY_TIMEOUT_US); } static u8 *meson_nfc_oob_ptr(struct nand_chip *nand, int i) { const struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); int len; len = nand->ecc.size * (i + 1) + (nand->ecc.bytes + 2) * i; return meson_chip->data_buf + len; } static u8 *meson_nfc_data_ptr(struct nand_chip *nand, int i) { const struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); int len, temp; temp = nand->ecc.size + nand->ecc.bytes; len = (temp + 2) * i; return meson_chip->data_buf + len; } static void meson_nfc_get_data_oob(struct nand_chip *nand, u8 *buf, u8 *oobbuf) { u8 *dsrc, *osrc; int i, oob_len; oob_len = nand->ecc.bytes + 2; for (i = 0; i < nand->ecc.steps; i++) { if (buf) { dsrc = meson_nfc_data_ptr(nand, i); memcpy(buf, dsrc, nand->ecc.size); buf += nand->ecc.size; } if (oobbuf) { osrc = meson_nfc_oob_ptr(nand, i); memcpy(oobbuf, osrc, oob_len); oobbuf += oob_len; } } } static void meson_nfc_set_data_oob(struct nand_chip *nand, const u8 *buf, u8 *oobbuf) { int i, oob_len; oob_len = nand->ecc.bytes + 2; for (i = 0; i < nand->ecc.steps; i++) { u8 *osrc; if (buf) { u8 *dsrc; dsrc = meson_nfc_data_ptr(nand, i); memcpy(dsrc, buf, nand->ecc.size); buf += nand->ecc.size; } osrc = meson_nfc_oob_ptr(nand, i); memcpy(osrc, oobbuf, oob_len); oobbuf += oob_len; } } static void meson_nfc_set_user_byte(struct nand_chip *nand, const u8 *oob_buf) { struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); int i, count; for (i = 0, count = 0; i < nand->ecc.steps; i++, count += (2 + nand->ecc.bytes)) { __le64 *info = &meson_chip->info_buf[i]; *info |= oob_buf[count]; *info |= oob_buf[count + 1] << 8; } } static void meson_nfc_get_user_byte(struct nand_chip *nand, u8 *oob_buf) { struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); int i, count; for (i = 0, count = 0; i < nand->ecc.steps; i++, count += (2 + nand->ecc.bytes)) { const __le64 *info = &meson_chip->info_buf[i]; oob_buf[count] = *info; oob_buf[count + 1] = *info >> 8; } } static int meson_nfc_ecc_correct(struct nand_chip *nand, u32 *bitflips, u64 *correct_bitmap) { struct mtd_info *mtd = nand_to_mtd(nand); int ret = 0, i; for (i = 0; i < nand->ecc.steps; i++) { struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); const __le64 *info = &meson_chip->info_buf[i]; if (ECC_ERR_CNT(*info) != ECC_UNCORRECTABLE) { mtd->ecc_stats.corrected += ECC_ERR_CNT(*info); *bitflips = max_t(u32, *bitflips, ECC_ERR_CNT(*info)); *correct_bitmap |= BIT_ULL(i); continue; } if ((nand->options & NAND_NEED_SCRAMBLING) && ECC_ZERO_CNT(*info) < nand->ecc.strength) { mtd->ecc_stats.corrected += ECC_ZERO_CNT(*info); *bitflips = max_t(u32, *bitflips, ECC_ZERO_CNT(*info)); ret = ECC_CHECK_RETURN_FF; } else { ret = -EBADMSG; } } return ret; } static int meson_nfc_dma_buffer_setup(struct nand_chip *nand, void *databuf, int datalen, void *infobuf, int infolen, enum dma_data_direction dir) { struct meson_nfc *nfc = nand_get_controller_data(nand); int ret; u32 cmd; nfc->daddr = dma_map_single(databuf, datalen, DMA_BIDIRECTIONAL); ret = dma_mapping_error(nfc->dev, nfc->daddr); if (ret) return ret; cmd = GENCMDDADDRL(NFC_CMD_ADL, nfc->daddr); writel(cmd, nfc->reg_base + NFC_REG_CMD); cmd = GENCMDDADDRH(NFC_CMD_ADH, nfc->daddr); writel(cmd, nfc->reg_base + NFC_REG_CMD); if (infobuf) { nfc->iaddr = dma_map_single(infobuf, infolen, DMA_BIDIRECTIONAL); ret = dma_mapping_error(nfc->dev, nfc->iaddr); if (ret) { dma_unmap_single(nfc->daddr, datalen, dir); return ret; } nfc->info_bytes = infolen; cmd = GENCMDIADDRL(NFC_CMD_AIL, nfc->iaddr); writel(cmd, nfc->reg_base + NFC_REG_CMD); cmd = GENCMDIADDRH(NFC_CMD_AIH, nfc->iaddr); writel(cmd, nfc->reg_base + NFC_REG_CMD); } return 0; } static void meson_nfc_dma_buffer_release(struct nand_chip *nand, int datalen, int infolen, enum dma_data_direction dir) { struct meson_nfc *nfc = nand_get_controller_data(nand); dma_unmap_single(nfc->daddr, datalen, dir); if (infolen) { dma_unmap_single(nfc->iaddr, infolen, dir); nfc->info_bytes = 0; } } static void meson_nfc_read_buf(struct mtd_info *mtd, u8 *buf, int size) { struct nand_chip *nand = mtd_to_nand(mtd); struct meson_nfc *nfc = nand_get_controller_data(nand); struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); u8 *dma_buf; int ret; u32 cmd; if ((uintptr_t)buf % DMA_ADDR_ALIGN) { unsigned long tmp_addr; dma_buf = dma_alloc_coherent(size, &tmp_addr); if (!dma_buf) return; } else { dma_buf = buf; } ret = meson_nfc_dma_buffer_setup(nand, dma_buf, size, meson_chip->info_buf, PER_INFO_BYTE, DMA_FROM_DEVICE); if (ret) { pr_err("Failed to setup DMA buffer %p/%p\n", dma_buf, meson_chip->info_buf); return; } cmd = NFC_CMD_N2M | size; writel(cmd, nfc->reg_base + NFC_REG_CMD); meson_nfc_drain_cmd(nfc); meson_nfc_wait_cmd_finish(nfc, CMD_DRAIN_TIMEOUT_US); meson_nfc_dma_buffer_release(nand, size, PER_INFO_BYTE, DMA_FROM_DEVICE); if (buf != dma_buf) { memcpy(buf, dma_buf, size); dma_free_coherent(dma_buf); } } static void meson_nfc_write_buf(struct mtd_info *mtd, const u8 *buf, int size) { struct nand_chip *nand = mtd_to_nand(mtd); struct meson_nfc *nfc = nand_get_controller_data(nand); u8 *dma_buf; int ret; u32 cmd; if ((uintptr_t)buf % DMA_ADDR_ALIGN) { unsigned long tmp_addr; dma_buf = dma_alloc_coherent(size, &tmp_addr); if (!dma_buf) return; memcpy(dma_buf, buf, size); } else { dma_buf = (u8 *)buf; } ret = meson_nfc_dma_buffer_setup(nand, (void *)dma_buf, size, NULL, 0, DMA_TO_DEVICE); if (ret) { pr_err("Failed to setup DMA buffer %p\n", dma_buf); return; } cmd = NFC_CMD_M2N | size; writel(cmd, nfc->reg_base + NFC_REG_CMD); meson_nfc_drain_cmd(nfc); meson_nfc_wait_cmd_finish(nfc, CMD_DRAIN_TIMEOUT_US); meson_nfc_dma_buffer_release(nand, size, 0, DMA_TO_DEVICE); if (buf != dma_buf) dma_free_coherent(dma_buf); } static int meson_nfc_write_page_sub(struct nand_chip *nand, int page, bool raw) { const struct mtd_info *mtd = nand_to_mtd(nand); struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); struct meson_nfc *nfc = nand_get_controller_data(nand); int data_len, info_len; int ret; u32 cmd; data_len = mtd->writesize + mtd->oobsize; info_len = nand->ecc.steps * PER_INFO_BYTE; ret = meson_nfc_dma_buffer_setup(nand, meson_chip->data_buf, data_len, meson_chip->info_buf, info_len, DMA_TO_DEVICE); if (ret) { pr_err("Failed to setup DMA buffer %p/%p\n", meson_chip->data_buf, meson_chip->info_buf); return ret; } if (nand->options & NAND_NEED_SCRAMBLING) { meson_nfc_cmd_seed(nfc, page); meson_nfc_cmd_access(nand, raw, DIRWRITE, NFC_CMD_SCRAMBLER_ENABLE); } else { meson_nfc_cmd_access(nand, raw, DIRWRITE, NFC_CMD_SCRAMBLER_DISABLE); } cmd = nfc->param.chip_select | NFC_CMD_CLE | NAND_CMD_PAGEPROG; writel(cmd, nfc->reg_base + NFC_REG_CMD); meson_nfc_dma_buffer_release(nand, data_len, info_len, DMA_TO_DEVICE); return 0; } static int meson_nfc_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, const u8 *buf, int oob_required, int page) { meson_nfc_set_data_oob(chip, buf, oob_required ? chip->oob_poi : NULL); return meson_nfc_write_page_sub(chip, page, true); } static int meson_nfc_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, const u8 *buf, int oob_required, int page) { struct meson_nfc_nand_chip *meson_chip = to_meson_nand(chip); if (buf) memcpy(meson_chip->data_buf, buf, mtd->writesize); memset(meson_chip->info_buf, 0, chip->ecc.steps * PER_INFO_BYTE); if (oob_required) meson_nfc_set_user_byte(chip, chip->oob_poi); return meson_nfc_write_page_sub(chip, page, false); } static void meson_nfc_check_ecc_pages_valid(struct meson_nfc *nfc, struct nand_chip *nand, bool raw) { struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); __le64 *info; u32 neccpages; int ret; neccpages = raw ? 1 : nand->ecc.steps; info = &meson_chip->info_buf[neccpages - 1]; do { udelay(ECC_POLL_TIMEOUT_US); /* info is updated by nfc dma engine*/ rmb(); invalidate_dcache_range(nfc->iaddr, nfc->iaddr + nfc->info_bytes); ret = *info & ECC_COMPLETE; } while (!ret); } static int meson_nfc_read_page_sub(struct nand_chip *nand, int page, bool raw) { struct mtd_info *mtd = nand_to_mtd(nand); struct meson_nfc *nfc = nand_get_controller_data(nand); struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); u32 data_len, info_len; int ret; data_len = mtd->writesize + mtd->oobsize; info_len = nand->ecc.steps * PER_INFO_BYTE; ret = meson_nfc_dma_buffer_setup(nand, meson_chip->data_buf, data_len, meson_chip->info_buf, info_len, DMA_FROM_DEVICE); if (ret) return ret; if (nand->options & NAND_NEED_SCRAMBLING) { meson_nfc_cmd_seed(nfc, page); meson_nfc_cmd_access(nand, raw, DIRREAD, NFC_CMD_SCRAMBLER_ENABLE); } else { meson_nfc_cmd_access(nand, raw, DIRREAD, NFC_CMD_SCRAMBLER_DISABLE); } meson_nfc_wait_dma_finish(nfc); meson_nfc_check_ecc_pages_valid(nfc, nand, raw); meson_nfc_dma_buffer_release(nand, data_len, info_len, DMA_FROM_DEVICE); return 0; } static int meson_nfc_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, u8 *buf, int oob_required, int page) { int ret; ret = meson_nfc_read_page_sub(chip, page, true); if (ret) return ret; meson_nfc_get_data_oob(chip, buf, oob_required ? chip->oob_poi : NULL); return 0; } static int meson_nfc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, u8 *buf, int oob_required, int page) { const struct meson_nfc_nand_chip *meson_chip = to_meson_nand(chip); u64 correct_bitmap = 0; u32 bitflips = 0; int ret; ret = meson_nfc_read_page_sub(chip, page, false); if (ret) return ret; if (oob_required) meson_nfc_get_user_byte(chip, chip->oob_poi); ret = meson_nfc_ecc_correct(chip, &bitflips, &correct_bitmap); if (ret == ECC_CHECK_RETURN_FF) { if (buf) memset(buf, 0xff, mtd->writesize); if (oob_required) memset(chip->oob_poi, 0xff, mtd->oobsize); } else if (ret < 0) { struct nand_ecc_ctrl *ecc; int i; if ((chip->options & NAND_NEED_SCRAMBLING) || !buf) { mtd->ecc_stats.failed++; return bitflips; } chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); ret = meson_nfc_read_page_raw(mtd, chip, buf, 1, page); if (ret) return ret; ecc = &chip->ecc; for (i = 0; i < chip->ecc.steps ; i++) { u8 *data = buf + i * ecc->size; u8 *oob = chip->oob_poi + i * (ecc->bytes + 2); if (correct_bitmap & BIT_ULL(i)) continue; ret = nand_check_erased_ecc_chunk(data, ecc->size, oob, ecc->bytes + 2, NULL, 0, ecc->strength); if (ret < 0) { mtd->ecc_stats.failed++; } else { mtd->ecc_stats.corrected += ret; bitflips = max_t(u32, bitflips, ret); } } } else if (buf && buf != meson_chip->data_buf) { memcpy(buf, meson_chip->data_buf, mtd->writesize); } return bitflips; } static int meson_nfc_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip, int page) { int ret; ret = nand_read_page_op(chip, page, 0, NULL, 0); if (ret) return ret; return meson_nfc_read_page_raw(mtd, chip, NULL, 1, page); } static int meson_nfc_read_oob(struct mtd_info *mtd, struct nand_chip *chip, int page) { int ret; ret = nand_read_page_op(chip, page, 0, NULL, 0); if (ret) return ret; return meson_nfc_read_page_hwecc(mtd, chip, NULL, 1, page); } static int meson_nfc_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip, int page) { int ret; ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); if (ret) return ret; ret = meson_nfc_write_page_raw(mtd, chip, NULL, 1, page); if (ret) return ret; return nand_prog_page_end_op(chip); } static int meson_nfc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page) { int ret; ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); if (ret) return ret; ret = meson_nfc_write_page_hwecc(mtd, chip, NULL, 1, page); if (ret) return ret; return nand_prog_page_end_op(chip); } static void meson_nfc_nand_cmd_function(struct mtd_info *mtd, unsigned int command, int column, int page_addr) { struct nand_chip *chip = mtd_to_nand(mtd); chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); if (column != -1 || page_addr != -1) { int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE; /* Serially input address */ if (column != -1) { /* Adjust columns for 16 bit buswidth */ if (chip->options & NAND_BUSWIDTH_16 && !nand_opcode_8bits(command)) column >>= 1; chip->cmd_ctrl(mtd, column, ctrl); ctrl &= ~NAND_CTRL_CHANGE; /* Only output a single addr cycle for 8bits * opcodes. */ if (!nand_opcode_8bits(command)) chip->cmd_ctrl(mtd, column >> 8, ctrl); } if (page_addr != -1) { chip->cmd_ctrl(mtd, page_addr, ctrl); chip->cmd_ctrl(mtd, page_addr >> 8, NAND_NCE | NAND_ALE); /* One more address cycle for devices > 128MiB */ if (chip->chipsize > SZ_128M) chip->cmd_ctrl(mtd, page_addr >> 16, NAND_NCE | NAND_ALE); } switch (command) { case NAND_CMD_READ0: chip->cmd_ctrl(mtd, NAND_CMD_READSTART, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); fallthrough; case NAND_CMD_PARAM: nand_wait_ready(mtd); nand_exit_status_op(chip); } } } static void meson_nfc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) { struct nand_chip *nand = mtd_to_nand(mtd); struct meson_nfc *nfc = nand_get_controller_data(nand); if (cmd == NAND_CMD_NONE) return; if (ctrl & NAND_CLE) cmd = NFC_CMD_MAKE_CLE(nfc->param.chip_select, cmd); else cmd = NFC_CMD_MAKE_ALE(nfc->param.chip_select, cmd); writel(cmd, nfc->reg_base + NFC_REG_CMD); } static void meson_nfc_wait_cmd_fifo(struct meson_nfc *nfc) { while ((NFC_GET_CMD(nfc) >> 22) & GENMASK(4, 0)) ; } static u8 meson_nfc_nand_read_byte(struct mtd_info *mtd) { struct nand_chip *nand = mtd_to_nand(mtd); struct meson_nfc *nfc = nand_get_controller_data(nand); writel(NFC_CMD_MAKE_DRD(nfc->param.chip_select, 0), nfc->reg_base + NFC_REG_CMD); meson_nfc_cmd_idle(nfc, NAND_TWB_TIME_CYCLE); meson_nfc_cmd_idle(nfc, 0); meson_nfc_cmd_idle(nfc, 0); meson_nfc_wait_cmd_fifo(nfc); return readl(nfc->reg_base + NFC_REG_BUF); } static void meson_nfc_nand_write_byte(struct mtd_info *mtd, u8 val) { struct nand_chip *nand = mtd_to_nand(mtd); struct meson_nfc *nfc = nand_get_controller_data(nand); meson_nfc_cmd_idle(nfc, NAND_TWB_TIME_CYCLE); writel(NFC_CMD_MAKE_DWR(nfc->param.chip_select, val), nfc->reg_base + NFC_REG_CMD); meson_nfc_cmd_idle(nfc, NAND_TWB_TIME_CYCLE); meson_nfc_cmd_idle(nfc, 0); meson_nfc_cmd_idle(nfc, 0); meson_nfc_wait_cmd_fifo(nfc); } static int meson_nfc_dev_ready(struct mtd_info *mtd) { struct nand_chip *chip = mtd_to_nand(mtd); unsigned int time_out_cnt = 0; chip->select_chip(mtd, 0); chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); do { int status; status = (int)chip->read_byte(mtd); if (status & NAND_STATUS_READY) break; } while (time_out_cnt++ < NFC_DEV_READY_TICK_MAX); return time_out_cnt != NFC_DEV_READY_TICK_MAX; } static int meson_chip_buffer_init(struct nand_chip *nand) { const struct mtd_info *mtd = nand_to_mtd(nand); struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); u32 page_bytes, info_bytes, nsectors; unsigned long tmp_addr; nsectors = mtd->writesize / nand->ecc.size; page_bytes = mtd->writesize + mtd->oobsize; info_bytes = nsectors * PER_INFO_BYTE; meson_chip->data_buf = dma_alloc_coherent(page_bytes, &tmp_addr); if (!meson_chip->data_buf) return -ENOMEM; meson_chip->info_buf = dma_alloc_coherent(info_bytes, &tmp_addr); if (!meson_chip->info_buf) { dma_free_coherent(meson_chip->data_buf); return -ENOMEM; } return 0; } static const int axg_stepinfo_strengths[] = { 8 }; static const struct nand_ecc_step_info axg_stepinfo_1024 = { .stepsize = 1024, .strengths = axg_stepinfo_strengths, .nstrengths = ARRAY_SIZE(axg_stepinfo_strengths) }; static const struct nand_ecc_step_info axg_stepinfo_512 = { .stepsize = 512, .strengths = axg_stepinfo_strengths, .nstrengths = ARRAY_SIZE(axg_stepinfo_strengths) }; static const struct nand_ecc_step_info axg_stepinfo[] = { axg_stepinfo_1024, axg_stepinfo_512 }; static const struct nand_ecc_caps meson_axg_ecc_caps = { .stepinfos = axg_stepinfo, .nstepinfos = ARRAY_SIZE(axg_stepinfo), .calc_ecc_bytes = meson_nand_calc_ecc_bytes, }; /* * OOB layout: * * For ECC with 512 bytes step size: * 0x00: AA AA BB BB BB BB BB BB BB BB BB BB BB BB BB BB * 0x10: AA AA CC CC CC CC CC CC CC CC CC CC CC CC CC CC * 0x20: * 0x30: * * For ECC with 1024 bytes step size: * 0x00: AA AA BB BB BB BB BB BB BB BB BB BB BB BB BB BB * 0x10: AA AA CC CC CC CC CC CC CC CC CC CC CC CC CC CC * 0x20: AA AA DD DD DD DD DD DD DD DD DD DD DD DD DD DD * 0x30: AA AA EE EE EE EE EE EE EE EE EE EE EE EE EE EE * * AA - user bytes. * BB, CC, DD, EE - ECC code bytes for each step. */ static struct nand_ecclayout nand_oob; static void meson_nfc_init_nand_oob(struct nand_chip *nand) { int section_size = 2 + nand->ecc.bytes; int i; int k; nand_oob.eccbytes = nand->ecc.steps * nand->ecc.bytes; k = 0; for (i = 0; i < nand->ecc.steps; i++) { int j; for (j = 0; j < nand->ecc.bytes; j++) nand_oob.eccpos[k++] = (i * section_size) + 2 + j; nand_oob.oobfree[i].offset = (i * section_size); nand_oob.oobfree[i].length = 2; } nand_oob.oobavail = 2 * nand->ecc.steps; nand->ecc.layout = &nand_oob; } static int meson_nfc_init_ecc(struct nand_chip *nand, ofnode node) { const struct mtd_info *mtd = nand_to_mtd(nand); int ret; int i; ret = nand_check_ecc_caps(nand, &meson_axg_ecc_caps, mtd->oobsize - 2); if (ret) return ret; for (i = 0; i < ARRAY_SIZE(meson_ecc); i++) { if (meson_ecc[i].strength == nand->ecc.strength && meson_ecc[i].size == nand->ecc.size) { struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); nand->ecc.steps = mtd->writesize / nand->ecc.size; meson_chip->bch_mode = meson_ecc[i].bch; meson_nfc_init_nand_oob(nand); return 0; } } return -EINVAL; } static int meson_nfc_nand_chip_init(struct udevice *dev, struct meson_nfc *nfc, ofnode node) { struct meson_nfc_nand_chip *meson_chip; struct nand_chip *nand; struct mtd_info *mtd; u32 cs[MAX_CE_NUM]; u32 nsels; int ret; int i; if (!ofnode_get_property(node, "reg", &nsels)) { dev_err(dev, "\"reg\" property is not found\n"); return -ENODEV; } nsels /= sizeof(u32); if (nsels >= MAX_CE_NUM) { dev_err(dev, "invalid size of CS array, max is %d\n", MAX_CE_NUM); return -EINVAL; } ret = ofnode_read_u32_array(node, "reg", cs, nsels); if (ret < 0) { dev_err(dev, "failed to read \"reg\" property\n"); return ret; } for (i = 0; i < nsels; i++) { if (test_and_set_bit(cs[i], &nfc->assigned_cs)) { dev_err(dev, "CS %d already assigned\n", cs[i]); return -EINVAL; } } meson_chip = malloc(sizeof(*meson_chip) + nsels * sizeof(meson_chip->sels[0])); if (!meson_chip) { dev_err(dev, "failed to allocate memory for chip\n"); return -ENOMEM; } meson_chip->nsels = nsels; nand = &meson_chip->nand; nand->flash_node = node; nand_set_controller_data(nand, nfc); /* Set the driver entry points for MTD */ nand->cmdfunc = meson_nfc_nand_cmd_function; nand->cmd_ctrl = meson_nfc_cmd_ctrl; nand->select_chip = meson_nfc_nand_select_chip; nand->read_byte = meson_nfc_nand_read_byte; nand->write_byte = meson_nfc_nand_write_byte; nand->dev_ready = meson_nfc_dev_ready; /* Buffer read/write routines */ nand->read_buf = meson_nfc_read_buf; nand->write_buf = meson_nfc_write_buf; nand->options |= NAND_NO_SUBPAGE_WRITE; nand->ecc.mode = NAND_ECC_HW; nand->ecc.hwctl = NULL; nand->ecc.read_page = meson_nfc_read_page_hwecc; nand->ecc.write_page = meson_nfc_write_page_hwecc; nand->ecc.read_page_raw = meson_nfc_read_page_raw; nand->ecc.write_page_raw = meson_nfc_write_page_raw; nand->ecc.read_oob = meson_nfc_read_oob; nand->ecc.write_oob = meson_nfc_write_oob; nand->ecc.read_oob_raw = meson_nfc_read_oob_raw; nand->ecc.write_oob_raw = meson_nfc_write_oob_raw; nand->ecc.algo = NAND_ECC_BCH; mtd = nand_to_mtd(nand); ret = nand_scan_ident(mtd, 1, NULL); if (ret) { dev_err(dev, "'nand_scan_ident()' failed: %d\n", ret); goto err_chip_free; } ret = meson_nfc_init_ecc(nand, node); if (ret) { dev_err(dev, "failed to init ECC settings: %d\n", ret); goto err_chip_free; } ret = meson_chip_buffer_init(nand); if (ret) { dev_err(dev, "failed to init DMA buffers: %d\n", ret); goto err_chip_free; } /* 'nand_scan_tail()' needs ECC parameters to be already * set and correct. */ ret = nand_scan_tail(mtd); if (ret) { dev_err(dev, "'nand_scan_tail()' failed: %d\n", ret); goto err_chip_buf_free; } ret = nand_register(0, mtd); if (ret) { dev_err(dev, "'nand_register()' failed: %d\n", ret); goto err_chip_buf_free; } list_add_tail(&meson_chip->node, &nfc->chips); return 0; err_chip_buf_free: dma_free_coherent(meson_chip->info_buf); dma_free_coherent(meson_chip->data_buf); err_chip_free: free(meson_chip); return ret; } static int meson_nfc_nand_chips_init(struct udevice *dev, struct meson_nfc *nfc) { ofnode parent = dev_ofnode(dev); ofnode node; ofnode_for_each_subnode(node, parent) { int ret = meson_nfc_nand_chip_init(dev, nfc, node); if (ret) return ret; } return 0; } static void meson_nfc_clk_init(struct meson_nfc *nfc) { u32 bus_cycle = NFC_DEFAULT_BUS_CYCLE; u32 bus_timing = NFC_DEFAULT_BUS_TIMING; u32 bus_cfg_val; writel(CLK_ALWAYS_ON_NAND | CLK_SELECT_NAND | CLK_ENABLE_VALUE, nfc->reg_clk); writel(0, nfc->reg_base + NFC_REG_CFG); bus_cfg_val = (((bus_cycle - 1) & 31) | ((bus_timing & 31) << 5)); writel(bus_cfg_val, nfc->reg_base + NFC_REG_CFG); writel(BIT(31), nfc->reg_base + NFC_REG_CMD); } static int meson_probe(struct udevice *dev) { struct meson_nfc *nfc = dev_get_priv(dev); void *addr; int ret; addr = dev_read_addr_ptr(dev); if (!addr) { dev_err(dev, "base register address not found\n"); return -EINVAL; } nfc->reg_base = addr; addr = dev_read_addr_index_ptr(dev, 1); if (!addr) { dev_err(dev, "clk register address not found\n"); return -EINVAL; } nfc->reg_clk = addr; nfc->dev = dev; meson_nfc_clk_init(nfc); ret = meson_nfc_nand_chips_init(dev, nfc); if (ret) { dev_err(nfc->dev, "failed to init chips\n"); return ret; } return 0; } static const struct udevice_id meson_nand_dt_ids[] = { {.compatible = "amlogic,meson-axg-nfc",}, { /* sentinel */ } }; U_BOOT_DRIVER(meson_nand) = { .name = "meson_nand", .id = UCLASS_MTD, .of_match = meson_nand_dt_ids, .probe = meson_probe, .priv_auto = sizeof(struct meson_nfc), }; void board_nand_init(void) { struct udevice *dev; int ret; ret = uclass_get_device_by_driver(UCLASS_MTD, DM_DRIVER_GET(meson_nand), &dev); if (ret && ret != -ENODEV) pr_err("Failed to initialize: %d\n", ret); }