// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (c) 2011 The Chromium OS Authors. * (C) Copyright 2002 * Daniel Engström, Omicron Ceti AB, */ /* * Linux x86 zImage and bzImage loading * * based on the procdure described in * linux/Documentation/i386/boot.txt */ #define LOG_CATEGORY LOGC_BOOT #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_SYS_COREBOOT #include #endif #include #include #include DECLARE_GLOBAL_DATA_PTR; /* * Memory lay-out: * * relative to setup_base (which is 0x90000 currently) * * 0x0000-0x7FFF Real mode kernel * 0x8000-0x8FFF Stack and heap * 0x9000-0x90FF Kernel command line */ #define DEFAULT_SETUP_BASE 0x90000 #define COMMAND_LINE_OFFSET 0x9000 #define HEAP_END_OFFSET 0x8e00 #define COMMAND_LINE_SIZE 2048 /* Current state of the boot */ struct zboot_state state; static void build_command_line(char *command_line, int auto_boot) { char *env_command_line; command_line[0] = '\0'; env_command_line = env_get("bootargs"); /* set console= argument if we use a serial console */ if (!strstr(env_command_line, "console=")) { if (!strcmp(env_get("stdout"), "serial")) { /* We seem to use serial console */ sprintf(command_line, "console=ttyS0,%s ", env_get("baudrate")); } } if (auto_boot) strcat(command_line, "auto "); if (env_command_line) strcat(command_line, env_command_line); #ifdef DEBUG printf("Kernel command line:"); puts(command_line); printf("\n"); #endif } static int kernel_magic_ok(struct setup_header *hdr) { if (KERNEL_MAGIC != hdr->boot_flag) { printf("Error: Invalid Boot Flag " "(found 0x%04x, expected 0x%04x)\n", hdr->boot_flag, KERNEL_MAGIC); return 0; } else { printf("Valid Boot Flag\n"); return 1; } } static int get_boot_protocol(struct setup_header *hdr, bool verbose) { if (hdr->header == KERNEL_V2_MAGIC) { if (verbose) printf("Magic signature found\n"); return hdr->version; } else { /* Very old kernel */ if (verbose) printf("Magic signature not found\n"); return 0x0100; } } static int setup_device_tree(struct setup_header *hdr, const void *fdt_blob) { int bootproto = get_boot_protocol(hdr, false); struct setup_data *sd; int size; if (bootproto < 0x0209) return -ENOTSUPP; if (!fdt_blob) return 0; size = fdt_totalsize(fdt_blob); if (size < 0) return -EINVAL; size += sizeof(struct setup_data); sd = (struct setup_data *)malloc(size); if (!sd) { printf("Not enough memory for DTB setup data\n"); return -ENOMEM; } sd->next = hdr->setup_data; sd->type = SETUP_DTB; sd->len = fdt_totalsize(fdt_blob); memcpy(sd->data, fdt_blob, sd->len); hdr->setup_data = (unsigned long)sd; return 0; } const char *zimage_get_kernel_version(struct boot_params *params, void *kernel_base) { struct setup_header *hdr = ¶ms->hdr; int bootproto; const char *s, *end; bootproto = get_boot_protocol(hdr, false); log_debug("bootproto %x, hdr->setup_sects %x\n", bootproto, hdr->setup_sects); if (bootproto < 0x0200 || hdr->setup_sects < 15) return NULL; /* sanity-check the kernel version in case it is missing */ log_debug("hdr->kernel_version %x, str at %p\n", hdr->kernel_version, kernel_base + hdr->kernel_version + 0x200); for (s = kernel_base + hdr->kernel_version + 0x200, end = s + 0x100; *s; s++) { if (!isprint(*s)) return NULL; } return kernel_base + hdr->kernel_version + 0x200; } struct boot_params *load_zimage(char *image, unsigned long kernel_size, ulong *load_addressp) { struct boot_params *setup_base; const char *version; int setup_size; int bootproto; int big_image; struct boot_params *params = (struct boot_params *)image; struct setup_header *hdr = ¶ms->hdr; /* base address for real-mode segment */ setup_base = (struct boot_params *)DEFAULT_SETUP_BASE; if (!kernel_magic_ok(hdr)) return 0; /* determine size of setup */ if (0 == hdr->setup_sects) { log_warning("Setup Sectors = 0 (defaulting to 4)\n"); setup_size = 5 * 512; } else { setup_size = (hdr->setup_sects + 1) * 512; } log_debug("Setup Size = 0x%8.8lx\n", (ulong)setup_size); if (setup_size > SETUP_MAX_SIZE) printf("Error: Setup is too large (%d bytes)\n", setup_size); /* determine boot protocol version */ bootproto = get_boot_protocol(hdr, true); log_debug("Using boot protocol version %x.%02x\n", (bootproto & 0xff00) >> 8, bootproto & 0xff); version = zimage_get_kernel_version(params, image); if (version) printf("Linux kernel version %s\n", version); else printf("Setup Sectors < 15 - Cannot print kernel version\n"); /* Determine image type */ big_image = (bootproto >= 0x0200) && (hdr->loadflags & BIG_KERNEL_FLAG); /* Determine load address */ if (big_image) *load_addressp = BZIMAGE_LOAD_ADDR; else *load_addressp = ZIMAGE_LOAD_ADDR; printf("Building boot_params at 0x%8.8lx\n", (ulong)setup_base); memset(setup_base, 0, sizeof(*setup_base)); setup_base->hdr = params->hdr; if (bootproto >= 0x0204) kernel_size = hdr->syssize * 16; else kernel_size -= setup_size; if (bootproto == 0x0100) { /* * A very old kernel MUST have its real-mode code * loaded at 0x90000 */ if ((ulong)setup_base != 0x90000) { /* Copy the real-mode kernel */ memmove((void *)0x90000, setup_base, setup_size); /* Copy the command line */ memmove((void *)0x99000, (u8 *)setup_base + COMMAND_LINE_OFFSET, COMMAND_LINE_SIZE); /* Relocated */ setup_base = (struct boot_params *)0x90000; } /* It is recommended to clear memory up to the 32K mark */ memset((u8 *)0x90000 + setup_size, 0, SETUP_MAX_SIZE - setup_size); } if (big_image) { if (kernel_size > BZIMAGE_MAX_SIZE) { printf("Error: bzImage kernel too big! " "(size: %ld, max: %d)\n", kernel_size, BZIMAGE_MAX_SIZE); return 0; } } else if ((kernel_size) > ZIMAGE_MAX_SIZE) { printf("Error: zImage kernel too big! (size: %ld, max: %d)\n", kernel_size, ZIMAGE_MAX_SIZE); return 0; } printf("Loading %s at address %lx (%ld bytes)\n", big_image ? "bzImage" : "zImage", *load_addressp, kernel_size); memmove((void *)*load_addressp, image + setup_size, kernel_size); return setup_base; } int setup_zimage(struct boot_params *setup_base, char *cmd_line, int auto_boot, ulong initrd_addr, ulong initrd_size, ulong cmdline_force) { struct setup_header *hdr = &setup_base->hdr; int bootproto = get_boot_protocol(hdr, false); log_debug("Setup E820 entries\n"); if (IS_ENABLED(CONFIG_COREBOOT_SYSINFO)) { setup_base->e820_entries = cb_install_e820_map( ARRAY_SIZE(setup_base->e820_map), setup_base->e820_map); } else { setup_base->e820_entries = install_e820_map( ARRAY_SIZE(setup_base->e820_map), setup_base->e820_map); } if (bootproto == 0x0100) { setup_base->screen_info.cl_magic = COMMAND_LINE_MAGIC; setup_base->screen_info.cl_offset = COMMAND_LINE_OFFSET; } if (bootproto >= 0x0200) { hdr->type_of_loader = 0x80; /* U-Boot version 0 */ if (initrd_addr) { printf("Initial RAM disk at linear address " "0x%08lx, size %ld bytes\n", initrd_addr, initrd_size); hdr->ramdisk_image = initrd_addr; hdr->ramdisk_size = initrd_size; } } if (bootproto >= 0x0201) { hdr->heap_end_ptr = HEAP_END_OFFSET; hdr->loadflags |= HEAP_FLAG; } if (cmd_line) { int max_size = 0xff; int ret; log_debug("Setup cmdline\n"); if (bootproto >= 0x0206) max_size = hdr->cmdline_size; if (bootproto >= 0x0202) { hdr->cmd_line_ptr = (uintptr_t)cmd_line; } else if (bootproto >= 0x0200) { setup_base->screen_info.cl_magic = COMMAND_LINE_MAGIC; setup_base->screen_info.cl_offset = (uintptr_t)cmd_line - (uintptr_t)setup_base; hdr->setup_move_size = 0x9100; } /* build command line at COMMAND_LINE_OFFSET */ if (cmdline_force) strcpy(cmd_line, (char *)cmdline_force); else build_command_line(cmd_line, auto_boot); if (IS_ENABLED(CONFIG_CMD_BOOTM)) { ret = bootm_process_cmdline(cmd_line, max_size, BOOTM_CL_ALL); if (ret) { printf("Cmdline setup failed (max_size=%x, bootproto=%x, err=%d)\n", max_size, bootproto, ret); return ret; } } printf("Kernel command line: \""); puts(cmd_line); printf("\"\n"); } if (IS_ENABLED(CONFIG_INTEL_MID) && bootproto >= 0x0207) hdr->hardware_subarch = X86_SUBARCH_INTEL_MID; if (IS_ENABLED(CONFIG_GENERATE_ACPI_TABLE)) setup_base->acpi_rsdp_addr = acpi_get_rsdp_addr(); log_debug("Setup devicetree\n"); setup_device_tree(hdr, (const void *)env_get_hex("fdtaddr", 0)); setup_video(&setup_base->screen_info); if (IS_ENABLED(CONFIG_EFI_STUB)) setup_efi_info(&setup_base->efi_info); return 0; } int zboot_load(void) { struct boot_params *base_ptr; int ret; if (state.base_ptr) { struct boot_params *from = (struct boot_params *)state.base_ptr; base_ptr = (struct boot_params *)DEFAULT_SETUP_BASE; log_debug("Building boot_params at 0x%8.8lx\n", (ulong)base_ptr); memset(base_ptr, '\0', sizeof(*base_ptr)); base_ptr->hdr = from->hdr; } else { base_ptr = load_zimage((void *)state.bzimage_addr, state.bzimage_size, &state.load_address); if (!base_ptr) { puts("## Kernel loading failed ...\n"); return -EINVAL; } } state.base_ptr = base_ptr; ret = env_set_hex("zbootbase", map_to_sysmem(state.base_ptr)); if (!ret) ret = env_set_hex("zbootaddr", state.load_address); if (ret) return ret; return 0; } int zboot_setup(void) { struct boot_params *base_ptr = state.base_ptr; int ret; ret = setup_zimage(base_ptr, (char *)base_ptr + COMMAND_LINE_OFFSET, 0, state.initrd_addr, state.initrd_size, (ulong)state.cmdline); if (ret) return -EINVAL; return 0; } int zboot_go(void) { struct boot_params *params = state.base_ptr; struct setup_header *hdr = ¶ms->hdr; bool image_64bit; ulong entry; int ret; disable_interrupts(); entry = state.load_address; image_64bit = false; if (IS_ENABLED(CONFIG_X86_RUN_64BIT) && (hdr->xloadflags & XLF_KERNEL_64)) { entry += 0x200; image_64bit = true; } /* we assume that the kernel is in place */ ret = boot_linux_kernel((ulong)state.base_ptr, entry, image_64bit); return ret; } int zboot_run(ulong addr, ulong size, ulong initrd, ulong initrd_size, ulong base, char *cmdline) { int ret; zboot_start(addr, size, initrd, initrd_size, base, cmdline); ret = zboot_load(); if (ret) return log_msg_ret("ld", ret); ret = zboot_setup(); if (ret) return log_msg_ret("set", ret); ret = zboot_go(); if (ret) return log_msg_ret("go", ret); return -EFAULT; } static void print_num(const char *name, ulong value) { printf("%-20s: %lx\n", name, value); } static void print_num64(const char *name, u64 value) { printf("%-20s: %llx\n", name, value); } static const char *const e820_type_name[E820_COUNT] = { [E820_RAM] = "RAM", [E820_RESERVED] = "Reserved", [E820_ACPI] = "ACPI", [E820_NVS] = "ACPI NVS", [E820_UNUSABLE] = "Unusable", }; static const char *const bootloader_id[] = { "LILO", "Loadlin", "bootsect-loader", "Syslinux", "Etherboot/gPXE/iPXE", "ELILO", "undefined", "GRUB", "U-Boot", "Xen", "Gujin", "Qemu", "Arcturus Networks uCbootloader", "kexec-tools", "Extended", "Special", "Reserved", "Minimal Linux Bootloader", "OVMF UEFI virtualization stack", }; struct flag_info { uint bit; const char *name; }; static struct flag_info load_flags[] = { { LOADED_HIGH, "loaded-high" }, { QUIET_FLAG, "quiet" }, { KEEP_SEGMENTS, "keep-segments" }, { CAN_USE_HEAP, "can-use-heap" }, }; static struct flag_info xload_flags[] = { { XLF_KERNEL_64, "64-bit-entry" }, { XLF_CAN_BE_LOADED_ABOVE_4G, "can-load-above-4gb" }, { XLF_EFI_HANDOVER_32, "32-efi-handoff" }, { XLF_EFI_HANDOVER_64, "64-efi-handoff" }, { XLF_EFI_KEXEC, "kexec-efi-runtime" }, }; static void print_flags(struct flag_info *flags, int count, uint value) { int i; printf("%-20s:", ""); for (i = 0; i < count; i++) { uint mask = flags[i].bit; if (value & mask) printf(" %s", flags[i].name); } printf("\n"); } static void show_loader(struct setup_header *hdr) { bool version_valid = false; int type, version; const char *name; type = hdr->type_of_loader >> 4; version = hdr->type_of_loader & 0xf; if (type == 0xe) type = 0x10 + hdr->ext_loader_type; version |= hdr->ext_loader_ver << 4; if (!hdr->type_of_loader) { name = "pre-2.00 bootloader"; } else if (hdr->type_of_loader == 0xff) { name = "unknown"; } else if (type < ARRAY_SIZE(bootloader_id)) { name = bootloader_id[type]; version_valid = true; } else { name = "undefined"; } printf("%20s %s", "", name); if (version_valid) printf(", version %x", version); printf("\n"); } void zimage_dump(struct boot_params *base_ptr, bool show_cmdline) { struct setup_header *hdr; const char *version; int i; printf("Setup located at %p:\n\n", base_ptr); print_num64("ACPI RSDP addr", base_ptr->acpi_rsdp_addr); printf("E820: %d entries\n", base_ptr->e820_entries); if (base_ptr->e820_entries) { printf("%12s %10s %s\n", "Addr", "Size", "Type"); for (i = 0; i < base_ptr->e820_entries; i++) { struct e820_entry *entry = &base_ptr->e820_map[i]; printf("%12llx %10llx %s\n", entry->addr, entry->size, entry->type < E820_COUNT ? e820_type_name[entry->type] : simple_itoa(entry->type)); } } hdr = &base_ptr->hdr; print_num("Setup sectors", hdr->setup_sects); print_num("Root flags", hdr->root_flags); print_num("Sys size", hdr->syssize); print_num("RAM size", hdr->ram_size); print_num("Video mode", hdr->vid_mode); print_num("Root dev", hdr->root_dev); print_num("Boot flag", hdr->boot_flag); print_num("Jump", hdr->jump); print_num("Header", hdr->header); if (hdr->header == KERNEL_V2_MAGIC) printf("%-20s %s\n", "", "Kernel V2"); else printf("%-20s %s\n", "", "Ancient kernel, using version 100"); print_num("Version", hdr->version); print_num("Real mode switch", hdr->realmode_swtch); print_num("Start sys seg", hdr->start_sys_seg); print_num("Kernel version", hdr->kernel_version); version = zimage_get_kernel_version(base_ptr, (void *)state.bzimage_addr); if (version) printf(" @%p: %s\n", version, version); print_num("Type of loader", hdr->type_of_loader); show_loader(hdr); print_num("Load flags", hdr->loadflags); print_flags(load_flags, ARRAY_SIZE(load_flags), hdr->loadflags); print_num("Setup move size", hdr->setup_move_size); print_num("Code32 start", hdr->code32_start); print_num("Ramdisk image", hdr->ramdisk_image); print_num("Ramdisk size", hdr->ramdisk_size); print_num("Bootsect kludge", hdr->bootsect_kludge); print_num("Heap end ptr", hdr->heap_end_ptr); print_num("Ext loader ver", hdr->ext_loader_ver); print_num("Ext loader type", hdr->ext_loader_type); print_num("Command line ptr", hdr->cmd_line_ptr); if (show_cmdline && hdr->cmd_line_ptr) { printf(" "); /* Use puts() to avoid limits from CONFIG_SYS_PBSIZE */ puts((char *)(ulong)hdr->cmd_line_ptr); printf("\n"); } print_num("Initrd addr max", hdr->initrd_addr_max); print_num("Kernel alignment", hdr->kernel_alignment); print_num("Relocatable kernel", hdr->relocatable_kernel); print_num("Min alignment", hdr->min_alignment); if (hdr->min_alignment) printf("%-20s: %x\n", "", 1 << hdr->min_alignment); print_num("Xload flags", hdr->xloadflags); print_flags(xload_flags, ARRAY_SIZE(xload_flags), hdr->xloadflags); print_num("Cmdline size", hdr->cmdline_size); print_num("Hardware subarch", hdr->hardware_subarch); print_num64("HW subarch data", hdr->hardware_subarch_data); print_num("Payload offset", hdr->payload_offset); print_num("Payload length", hdr->payload_length); print_num64("Setup data", hdr->setup_data); print_num64("Pref address", hdr->pref_address); print_num("Init size", hdr->init_size); print_num("Handover offset", hdr->handover_offset); if (get_boot_protocol(hdr, false) >= 0x215) print_num("Kernel info offset", hdr->kernel_info_offset); } void zboot_start(ulong bzimage_addr, ulong bzimage_size, ulong initrd_addr, ulong initrd_size, ulong base_addr, const char *cmdline) { memset(&state, '\0', sizeof(state)); state.bzimage_size = bzimage_size; state.initrd_addr = initrd_addr; state.initrd_size = initrd_size; if (base_addr) { state.base_ptr = map_sysmem(base_addr, 0); state.load_address = bzimage_addr; } else { state.bzimage_addr = bzimage_addr; } state.cmdline = cmdline; } void zboot_info(void) { printf("Kernel loaded at %08lx, setup_base=%p\n", state.load_address, state.base_ptr); }