(* * Copyright 2020, Data61, CSIRO (ABN 41 687 119 230) * * SPDX-License-Identifier: BSD-2-Clause *) section "Additional Word Operations" theory Word_Lib imports Word_Syntax begin definition ptr_add :: "'a :: len word \ nat \ 'a word" where "ptr_add ptr n \ ptr + of_nat n" definition complement :: "'a :: len word \ 'a word" where "complement x \ ~~ x" definition alignUp :: "'a::len word \ nat \ 'a word" where "alignUp x n \ x + 2 ^ n - 1 && complement (2 ^ n - 1)" (* standard notation for blocks of 2^n-1 words, usually aligned; abbreviation so it simplifies directly *) abbreviation mask_range :: "'a::len word \ nat \ 'a word set" where "mask_range p n \ {p .. p + mask n}" (* Haskellish names/syntax *) notation (input) test_bit ("testBit") definition w2byte :: "'a :: len word \ 8 word" where "w2byte \ ucast" (* * Signed division: when the result of a division is negative, * we will round towards zero instead of towards minus infinity. *) class signed_div = fixes sdiv :: "'a \ 'a \ 'a" (infixl "sdiv" 70) fixes smod :: "'a \ 'a \ 'a" (infixl "smod" 70) instantiation int :: signed_div begin definition "(a :: int) sdiv b \ sgn (a * b) * (abs a div abs b)" definition "(a :: int) smod b \ a - (a sdiv b) * b" instance .. end instantiation word :: (len) signed_div begin definition "(a :: ('a::len) word) sdiv b = word_of_int (sint a sdiv sint b)" definition "(a :: ('a::len) word) smod b = word_of_int (sint a smod sint b)" instance .. end (* Tests *) lemma "( 4 :: word32) sdiv 4 = 1" "(-4 :: word32) sdiv 4 = -1" "(-3 :: word32) sdiv 4 = 0" "( 3 :: word32) sdiv -4 = 0" "(-3 :: word32) sdiv -4 = 0" "(-5 :: word32) sdiv -4 = 1" "( 5 :: word32) sdiv -4 = -1" by (simp_all add: sdiv_word_def sdiv_int_def) lemma "( 4 :: word32) smod 4 = 0" "( 3 :: word32) smod 4 = 3" "(-3 :: word32) smod 4 = -3" "( 3 :: word32) smod -4 = 3" "(-3 :: word32) smod -4 = -3" "(-5 :: word32) smod -4 = -1" "( 5 :: word32) smod -4 = 1" by (simp_all add: smod_word_def smod_int_def sdiv_int_def) (* Count leading zeros *) definition word_clz :: "'a::len word \ nat" where "word_clz w \ length (takeWhile Not (to_bl w))" (* Count trailing zeros *) definition word_ctz :: "'a::len word \ nat" where "word_ctz w \ length (takeWhile Not (rev (to_bl w)))" definition word_log2 :: "'a::len word \ nat" where "word_log2 (w::'a::len word) \ size w - 1 - word_clz w" (* Bit population count. Equivalent of __builtin_popcount. *) definition pop_count :: "('a::len) word \ nat" where "pop_count w \ length (filter id (to_bl w))" (* Sign extension from bit n *) definition sign_extend :: "nat \ 'a::len word \ 'a word" where "sign_extend n w \ if w !! n then w || ~~ (mask n) else w && mask n" definition sign_extended :: "nat \ 'a::len word \ bool" where "sign_extended n w \ \i. n < i \ i < size w \ w !! i = w !! n" lemma ptr_add_0 [simp]: "ptr_add ref 0 = ref " unfolding ptr_add_def by simp lemma shiftl_power: "(shiftl1 ^^ x) (y::'a::len word) = 2 ^ x * y" apply (induct x) apply simp apply (simp add: shiftl1_2t) done lemmas of_bl_reasoning = to_bl_use_of_bl of_bl_append lemma uint_of_bl_is_bl_to_bin_drop: "length (dropWhile Not l) \ LENGTH('a) \ uint (of_bl l :: 'a::len word) = bl_to_bin l" apply (simp add: of_bl_def) apply (rule word_uint.Abs_inverse) apply (simp add: uints_num bl_to_bin_ge0) apply (rule order_less_le_trans) apply (rule bl_to_bin_lt2p_drop) apply (simp) done corollary uint_of_bl_is_bl_to_bin: "length l\LENGTH('a) \ uint ((of_bl::bool list\ ('a :: len) word) l) = bl_to_bin l" apply(rule uint_of_bl_is_bl_to_bin_drop) using le_trans length_dropWhile_le by blast lemma bin_to_bl_or: "bin_to_bl n (a OR b) = map2 (\) (bin_to_bl n a) (bin_to_bl n b)" using bl_or_aux_bin[where n=n and v=a and w=b and bs="[]" and cs="[]"] by simp lemma word_ops_nth [simp]: shows word_or_nth: "(x || y) !! n = (x !! n \ y !! n)" and word_and_nth: "(x && y) !! n = (x !! n \ y !! n)" and word_xor_nth: "(x xor y) !! n = (x !! n \ y !! n)" by ((cases "n < size x", auto dest: test_bit_size simp: word_ops_nth_size word_size)[1])+ (* simp del to avoid warning on the simp add in iff *) declare test_bit_1 [simp del, iff] (* test: *) lemma "1 < (1024::32 word) \ 1 \ (1024::32 word)" by simp lemma and_not_mask: "w AND NOT (mask n) = (w >> n) << n" apply (rule word_eqI) apply (simp add : word_ops_nth_size word_size) apply (simp add : nth_shiftr nth_shiftl) by auto lemma and_mask: "w AND mask n = (w << (size w - n)) >> (size w - n)" apply (rule word_eqI) apply (simp add : word_ops_nth_size word_size) apply (simp add : nth_shiftr nth_shiftl) by auto lemma AND_twice [simp]: "(w && m) && m = w && m" by (simp add: word_eqI) lemma word_combine_masks: "w && m = z \ w && m' = z' \ w && (m || m') = (z || z')" by (auto simp: word_eq_iff) lemma nth_w2p_same: "(2^n :: 'a :: len word) !! n = (n < LENGTH('a))" by (simp add : nth_w2p) lemma p2_gt_0: "(0 < (2 ^ n :: 'a :: len word)) = (n < LENGTH('a))" apply (simp add : word_gt_0) apply safe apply (erule swap) apply (rule word_eqI) apply (simp add : nth_w2p) apply (drule word_eqD) apply simp apply (erule notE) apply (erule nth_w2p_same [THEN iffD2]) done lemmas uint_2p_alt = uint_2p [unfolded p2_gt_0] lemma shiftr_div_2n_w: "n < size w \ w >> n = w div (2^n :: 'a :: len word)" apply (unfold word_div_def) apply (simp add : uint_2p_alt word_size) apply (rule word_uint.Rep_inverse' [THEN sym]) apply (rule shiftr_div_2n) done lemmas less_def = less_eq [symmetric] lemmas le_def = not_less [symmetric, where ?'a = nat] lemmas p2_eq_0 [simp] = trans [OF eq_commute iffD2 [OF Not_eq_iff p2_gt_0, folded le_def, unfolded word_gt_0 not_not]] lemma neg_mask_is_div': "n < size w \ w AND NOT (mask n) = ((w div (2 ^ n)) * (2 ^ n))" by (simp add : and_not_mask shiftr_div_2n_w shiftl_t2n word_size) lemma neg_mask_is_div: "w AND NOT (mask n) = (w div 2^n) * 2^n" apply (cases "n < size w") apply (erule neg_mask_is_div') apply (simp add: word_size) apply (frule p2_gt_0 [THEN Not_eq_iff [THEN iffD2], THEN iffD2]) apply (simp add: word_gt_0 del: p2_eq_0) apply (rule word_eqI) apply (simp add: word_ops_nth_size word_size) done lemma and_mask_arith': "0 < n \ w AND mask n = (w * 2^(size w - n)) div 2^(size w - n)" by (simp add: and_mask shiftr_div_2n_w shiftl_t2n word_size mult.commute) lemmas p2len = iffD2 [OF p2_eq_0 order_refl] lemma and_mask_arith: "w AND mask n = (w * 2^(size w - n)) div 2^(size w - n)" apply (cases "0 < n") apply (erule and_mask_arith') apply (simp add: word_size) apply (simp add: word_of_int_hom_syms word_div_def) done lemma mask_2pm1: "mask n = 2 ^ n - 1" by (simp add : mask_def) lemma add_mask_fold: "x + 2 ^ n - 1 = x + mask n" by (simp add: mask_def) lemma word_and_mask_le_2pm1: "w && mask n \ 2 ^ n - 1" by (simp add: mask_2pm1[symmetric] word_and_le1) lemma is_aligned_AND_less_0: "u && mask n = 0 \ v < 2^n \ u && v = 0" apply (drule less_mask_eq) apply (simp add: mask_2pm1) apply (rule word_eqI) apply (clarsimp simp add: word_size) apply (drule_tac x=na in word_eqD) apply (drule_tac x=na in word_eqD) apply simp done lemma le_shiftr1: "u <= v \ shiftr1 u <= shiftr1 v" apply (unfold word_le_def shiftr1_def word_ubin.eq_norm) apply (unfold bin_rest_trunc_i trans [OF bintrunc_bintrunc_l word_ubin.norm_Rep, unfolded word_ubin.norm_Rep, OF order_refl [THEN le_SucI]]) apply (case_tac "uint u" rule: bin_exhaust) apply (rename_tac bs bit) apply (case_tac "uint v" rule: bin_exhaust) apply (rename_tac bs' bit') apply (case_tac "bit") apply (case_tac "bit'", auto simp: less_eq_int_code le_Bits)[1] apply (case_tac bit') apply (simp add: le_Bits less_eq_int_code) apply (auto simp: le_Bits less_eq_int_code) done lemma le_shiftr: "u \ v \ u >> (n :: nat) \ (v :: 'a :: len0 word) >> n" apply (unfold shiftr_def) apply (induct_tac "n") apply auto apply (erule le_shiftr1) done lemma shiftr_mask_le: "n <= m \ mask n >> m = 0" apply (rule word_eqI) apply (simp add: word_size nth_shiftr) done lemmas shiftr_mask = order_refl [THEN shiftr_mask_le, simp] lemma word_leI: "(\n. \n < size (u::'a::len0 word); u !! n \ \ (v::'a::len0 word) !! n) \ u <= v" apply (rule xtr4) apply (rule word_and_le2) apply (rule word_eqI) apply (simp add: word_ao_nth) apply safe apply assumption apply (erule_tac [2] asm_rl) apply (unfold word_size) by auto lemma le_mask_iff: "(w \ mask n) = (w >> n = 0)" apply safe apply (rule word_le_0_iff [THEN iffD1]) apply (rule xtr3) apply (erule_tac [2] le_shiftr) apply simp apply (rule word_leI) apply (rename_tac n') apply (drule_tac x = "n' - n" in word_eqD) apply (simp add : nth_shiftr word_size) apply (case_tac "n <= n'") by auto lemma and_mask_eq_iff_shiftr_0: "(w AND mask n = w) = (w >> n = 0)" apply (unfold test_bit_eq_iff [THEN sym]) apply (rule iffI) apply (rule ext) apply (rule_tac [2] ext) apply (auto simp add : word_ao_nth nth_shiftr) apply (drule arg_cong) apply (drule iffD2) apply assumption apply (simp add : word_ao_nth) prefer 2 apply (simp add : word_size test_bit_bin) apply (drule_tac f = "%u. u !! (x - n)" in arg_cong) apply (simp add : nth_shiftr) apply (case_tac "n <= x") apply auto done lemmas and_mask_eq_iff_le_mask = trans [OF and_mask_eq_iff_shiftr_0 le_mask_iff [THEN sym]] lemma mask_shiftl_decompose: "mask m << n = mask (m + n) && ~~ (mask n)" by (auto intro!: word_eqI simp: and_not_mask nth_shiftl nth_shiftr word_size) lemma one_bit_shiftl: "set_bit 0 n True = (1 :: 'a :: len word) << n" apply (rule word_eqI) apply (auto simp add: test_bit_set_gen nth_shiftl word_size simp del: word_set_bit_0 shiftl_1) done lemmas one_bit_pow = trans [OF one_bit_shiftl shiftl_1] lemmas bin_sc_minus_simps = bin_sc_simps (2,3,4) [THEN [2] trans, OF bin_sc_minus [THEN sym]] lemma NOT_eq: "NOT (x :: 'a :: len word) = - x - 1" apply (cut_tac x = "x" in word_add_not) apply (drule add.commute [THEN trans]) apply (drule eq_diff_eq [THEN iffD2]) by simp lemma NOT_mask: "NOT (mask n) = -(2 ^ n)" by (simp add : NOT_eq mask_2pm1) lemma le_m1_iff_lt: "(x > (0 :: 'a :: len word)) = ((y \ x - 1) = (y < x))" by uint_arith lemmas gt0_iff_gem1 = iffD1 [OF iffD1 [OF iff_left_commute le_m1_iff_lt] order_refl] lemmas power_2_ge_iff = trans [OF gt0_iff_gem1 [THEN sym] p2_gt_0] lemma le_mask_iff_lt_2n: "n < len_of TYPE ('a) = (((w :: 'a :: len word) \ mask n) = (w < 2 ^ n))" unfolding mask_2pm1 by (rule trans [OF p2_gt_0 [THEN sym] le_m1_iff_lt]) lemmas mask_lt_2pn = le_mask_iff_lt_2n [THEN iffD1, THEN iffD1, OF _ order_refl] lemma bang_eq: fixes x :: "'a::len0 word" shows "(x = y) = (\n. x !! n = y !! n)" by (subst test_bit_eq_iff[symmetric]) fastforce lemma word_unat_power: "(2 :: 'a :: len word) ^ n = of_nat (2 ^ n)" by simp lemma of_nat_mono_maybe: assumes xlt: "x < 2 ^ len_of TYPE ('a)" shows "y < x \ of_nat y < (of_nat x :: 'a :: len word)" apply (subst word_less_nat_alt) apply (subst unat_of_nat)+ apply (subst mod_less) apply (erule order_less_trans [OF _ xlt]) apply (subst mod_less [OF xlt]) apply assumption done lemma shiftl_over_and_dist: fixes a::"'a::len word" shows "(a AND b) << c = (a << c) AND (b << c)" apply(rule word_eqI) apply(simp add: word_ao_nth nth_shiftl, safe) done lemma shiftr_over_and_dist: fixes a::"'a::len word" shows "a AND b >> c = (a >> c) AND (b >> c)" apply(rule word_eqI) apply(simp add:nth_shiftr word_ao_nth) done lemma sshiftr_over_and_dist: fixes a::"'a::len word" shows "a AND b >>> c = (a >>> c) AND (b >>> c)" apply(rule word_eqI) apply(simp add:nth_sshiftr word_ao_nth word_size) done lemma shiftl_over_or_dist: fixes a::"'a::len word" shows "a OR b << c = (a << c) OR (b << c)" apply(rule word_eqI) apply(simp add:nth_shiftl word_ao_nth, safe) done lemma shiftr_over_or_dist: fixes a::"'a::len word" shows "a OR b >> c = (a >> c) OR (b >> c)" apply(rule word_eqI) apply(simp add:nth_shiftr word_ao_nth) done lemma sshiftr_over_or_dist: fixes a::"'a::len word" shows "a OR b >>> c = (a >>> c) OR (b >>> c)" apply(rule word_eqI) apply(simp add:nth_sshiftr word_ao_nth word_size) done lemmas shift_over_ao_dists = shiftl_over_or_dist shiftr_over_or_dist sshiftr_over_or_dist shiftl_over_and_dist shiftr_over_and_dist sshiftr_over_and_dist lemma shiftl_shiftl: fixes a::"'a::len word" shows "a << b << c = a << (b + c)" apply(rule word_eqI) apply(auto simp:word_size nth_shiftl add.commute add.left_commute) done lemma shiftr_shiftr: fixes a::"'a::len word" shows "a >> b >> c = a >> (b + c)" apply(rule word_eqI) apply(simp add:word_size nth_shiftr add.left_commute add.commute) done lemma shiftl_shiftr1: fixes a::"'a::len word" shows "c \ b \ a << b >> c = a AND (mask (size a - b)) << (b - c)" apply(rule word_eqI) apply(auto simp:nth_shiftr nth_shiftl word_size word_ao_nth) done lemma shiftl_shiftr2: fixes a::"'a::len word" shows "b < c \ a << b >> c = (a >> (c - b)) AND (mask (size a - c))" apply(rule word_eqI) apply(auto simp:nth_shiftr nth_shiftl word_size word_ao_nth) done lemma shiftr_shiftl1: fixes a::"'a::len word" shows "c \ b \ a >> b << c = (a >> (b - c)) AND (NOT (mask c))" apply(rule word_eqI) apply(auto simp:nth_shiftr nth_shiftl word_size word_ops_nth_size) done lemma shiftr_shiftl2: fixes a::"'a::len word" shows "b < c \ a >> b << c = (a << (c - b)) AND (NOT (mask c))" apply(rule word_eqI) apply(auto simp:nth_shiftr nth_shiftl word_size word_ops_nth_size) done lemmas multi_shift_simps = shiftl_shiftl shiftr_shiftr shiftl_shiftr1 shiftl_shiftr2 shiftr_shiftl1 shiftr_shiftl2 lemma word_and_max_word: fixes a::"'a::len word" shows "x = max_word \ a AND x = a" by simp (* Simplifying with word_and_max_word and max_word_def works for arbitrary word sizes, but the conditional rewrite can be slow when combined with other common rewrites on word expressions. If we are willing to limit our attention to common word sizes, the following will usually be much faster. *) lemmas word_and_max_simps[simplified max_word_def, simplified] = word_and_max[where 'a=8] word_and_max[where 'a=16] word_and_max[where 'a=32] word_and_max[where 'a=64] lemma word_and_1_bl: fixes x::"'a::len word" shows "(x AND 1) = of_bl [x !! 0]" by (simp add: word_and_1) lemma word_1_and_bl: fixes x::"'a::len word" shows "(1 AND x) = of_bl [x !! 0]" by (subst word_bw_comms) (simp add: word_and_1) lemma scast_scast_id [simp]: "scast (scast x :: ('a::len) signed word) = (x :: 'a word)" "scast (scast y :: ('a::len) word) = (y :: 'a signed word)" by (auto simp: is_up scast_up_scast_id) lemma scast_ucast_id [simp]: "scast (ucast (x :: 'a::len word) :: 'a signed word) = x" by (metis down_cast_same is_down len_signed order_refl scast_scast_id(1)) lemma ucast_scast_id [simp]: "ucast (scast (x :: 'a::len signed word) :: 'a word) = x" by (metis scast_scast_id(2) scast_ucast_id) lemma scast_of_nat [simp]: "scast (of_nat x :: 'a::len signed word) = (of_nat x :: 'a word)" by (metis (hide_lams, no_types) len_signed scast_def uint_sint word_of_nat word_ubin.Abs_norm word_ubin.eq_norm) lemma ucast_of_nat: "is_down (ucast :: 'a :: len word \ 'b :: len word) \ ucast (of_nat n :: 'a word) = (of_nat n :: 'b word)" apply (rule sym) apply (subst word_unat.inverse_norm) apply (simp add: ucast_def word_of_int[symmetric] of_nat_nat[symmetric] unat_def[symmetric]) apply (simp add: unat_of_nat) apply (rule nat_int.Rep_eqD) apply (simp only: zmod_int) apply (rule mod_mod_cancel) by (simp add: is_down le_imp_power_dvd) (* shortcut for some specific lengths *) lemma word_fixed_sint_1[simp]: "sint (1::8 word) = 1" "sint (1::16 word) = 1" "sint (1::32 word) = 1" "sint (1::64 word) = 1" by (auto simp: sint_word_ariths) lemma word_sint_1 [simp]: "sint (1::'a::len word) = (if LENGTH('a) = 1 then -1 else 1)" apply (case_tac "LENGTH('a) \ 1") apply (metis diff_is_0_eq sbintrunc_0_numeral(1) sint_n1 word_1_wi word_m1_wi word_msb_1 word_msb_n1 word_sbin.Abs_norm) apply (metis bin_nth_1 diff_is_0_eq neq0_conv sbintrunc_minus_simps(4) sint_word_ariths(8) uint_1 word_msb_1 word_msb_nth) done lemma scast_1': "(scast (1::'a::len word) :: 'b::len word) = (word_of_int (sbintrunc (LENGTH('a::len) - Suc 0) (1::int)))" by (metis One_nat_def scast_def sint_word_ariths(8)) lemma scast_1 [simp]: "(scast (1::'a::len word) :: 'b::len word) = (if LENGTH('a) = 1 then -1 else 1)" by (clarsimp simp: scast_1') (metis Suc_pred len_gt_0 nat.exhaust sbintrunc_Suc_numeral(1) uint_1 word_uint.Rep_inverse') lemma scast_eq_scast_id [simp]: "((scast (a :: 'a::len signed word) :: 'a word) = scast b) = (a = b)" by (metis ucast_scast_id) lemma ucast_eq_ucast_id [simp]: "((ucast (a :: 'a::len word) :: 'a signed word) = ucast b) = (a = b)" by (metis scast_ucast_id) lemma scast_ucast_norm [simp]: "(ucast (a :: 'a::len word) = (b :: 'a signed word)) = (a = scast b)" "((b :: 'a signed word) = ucast (a :: 'a::len word)) = (a = scast b)" by (metis scast_ucast_id ucast_scast_id)+ lemma of_bl_drop: "of_bl (drop n xs) = (of_bl xs && mask (length xs - n))" apply (clarsimp simp: bang_eq test_bit_of_bl rev_nth cong: rev_conj_cong) apply (safe; simp add: word_size to_bl_nth) done lemma of_int_uint [simp]: "of_int (uint x) = x" by (metis word_of_int word_uint.Rep_inverse') lemma shiftr_mask2: "n \ LENGTH('a) \ (mask n >> m :: ('a :: len) word) = mask (n - m)" apply (rule word_eqI) apply (simp add: nth_shiftr word_size) apply arith done corollary word_plus_and_or_coroll: "x && y = 0 \ x + y = x || y" using word_plus_and_or[where x=x and y=y] by simp corollary word_plus_and_or_coroll2: "(x && w) + (x && ~~ w) = x" apply (subst word_plus_and_or_coroll) apply (rule word_eqI, simp add: word_size word_ops_nth_size) apply (rule word_eqI, simp add: word_size word_ops_nth_size) apply blast done lemma less_le_mult_nat': "w * c < b * c ==> 0 \ c ==> Suc w * c \ b * (c::nat)" apply (rule mult_right_mono) apply (rule Suc_leI) apply (erule (1) mult_right_less_imp_less) apply assumption done lemmas less_le_mult_nat = less_le_mult_nat'[simplified distrib_right, simplified] (* FIXME: these should eventually be moved to HOL/Word. *) lemmas extra_sle_sless_unfolds [simp] = word_sle_def[where a=0 and b=1] word_sle_def[where a=0 and b="numeral n"] word_sle_def[where a=1 and b=0] word_sle_def[where a=1 and b="numeral n"] word_sle_def[where a="numeral n" and b=0] word_sle_def[where a="numeral n" and b=1] word_sless_alt[where a=0 and b=1] word_sless_alt[where a=0 and b="numeral n"] word_sless_alt[where a=1 and b=0] word_sless_alt[where a=1 and b="numeral n"] word_sless_alt[where a="numeral n" and b=0] word_sless_alt[where a="numeral n" and b=1] for n lemma to_bl_1: "to_bl (1::'a::len word) = replicate (LENGTH('a) - 1) False @ [True]" proof - have "to_bl (1 :: 'a::len word) = to_bl (mask 1 :: 'a::len word)" by (simp add: mask_def) also have "\ = replicate (LENGTH('a) - 1) False @ [True]" by (cases "LENGTH('a)"; clarsimp simp: to_bl_mask) finally show ?thesis . qed lemma list_of_false: "True \ set xs \ xs = replicate (length xs) False" by (induct xs, simp_all) lemma eq_zero_set_bl: "(w = 0) = (True \ set (to_bl w))" using list_of_false word_bl.Rep_inject by fastforce lemma diff_diff_less: "(i < m - (m - (n :: nat))) = (i < m \ i < n)" by auto lemma pop_count_0[simp]: "pop_count 0 = 0" by (clarsimp simp:pop_count_def) lemma pop_count_1[simp]: "pop_count 1 = 1" by (clarsimp simp:pop_count_def to_bl_1) lemma pop_count_0_imp_0: "(pop_count w = 0) = (w = 0)" apply (rule iffI) apply (clarsimp simp:pop_count_def) apply (subst (asm) filter_empty_conv) apply (clarsimp simp:eq_zero_set_bl) apply fast apply simp done end