(* * Copyright 2020, Data61, CSIRO (ABN 41 687 119 230) * * SPDX-License-Identifier: BSD-2-Clause *) section "Lemmas for Word Length 64" theory Word_Lemmas_64 imports Word_Lemmas_Prefix Word_Setup_64 begin lemma ucast_8_64_inj: "inj (ucast :: 8 word \ 64 word)" by (rule down_ucast_inj) (clarsimp simp: is_down_def target_size source_size) lemma upto_2_helper: "{0..<2 :: 64 word} = {0, 1}" by (safe; simp) unat_arith lemmas upper_bits_unset_is_l2p_64 = upper_bits_unset_is_l2p [where 'a=64, folded word_bits_def] lemmas le_2p_upper_bits_64 = le_2p_upper_bits [where 'a=64, folded word_bits_def] lemmas le2p_bits_unset_64 = le2p_bits_unset[where 'a=64, folded word_bits_def] lemma word_bits_len_of: "len_of TYPE (64) = word_bits" by (simp add: word_bits_conv) lemmas unat_power_lower64' = unat_power_lower[where 'a=64] lemmas unat_power_lower64 [simp] = unat_power_lower64'[unfolded word_bits_len_of] lemmas word64_less_sub_le' = word_less_sub_le[where 'a = 64] lemmas word64_less_sub_le[simp] = word64_less_sub_le' [folded word_bits_def] lemma word_bits_size: "size (w::word64) = word_bits" by (simp add: word_bits_def word_size) lemmas word64_power_less_1' = word_power_less_1[where 'a = 64] lemmas word64_power_less_1[simp] = word64_power_less_1'[folded word_bits_def] lemma of_nat64_0: "\of_nat n = (0::word64); n < 2 ^ word_bits\ \ n = 0" by (erule of_nat_0, simp add: word_bits_def) lemma unat_mask_2_less_4: "unat (p && mask 2 :: word64) < 4" apply (rule unat_less_helper) apply (rule order_le_less_trans, rule word_and_le1) apply (simp add: mask_def) done lemmas unat_of_nat64' = unat_of_nat_eq[where 'a=64] lemmas unat_of_nat64 = unat_of_nat64'[unfolded word_bits_len_of] lemmas word_power_nonzero_64 = word_power_nonzero [where 'a=64, folded word_bits_def] lemmas unat_mult_simple = iffD1 [OF unat_mult_lem [where 'a = 64, unfolded word_bits_len_of]] lemmas div_power_helper_64 = div_power_helper [where 'a=64, folded word_bits_def] lemma n_less_word_bits: "(n < word_bits) = (n < 64)" by (simp add: word_bits_def) lemmas of_nat_less_pow_64 = of_nat_power [where 'a=64, folded word_bits_def] lemma lt_word_bits_lt_pow: "sz < word_bits \ sz < 2 ^ word_bits" by (simp add: word_bits_conv) lemma unat_less_word_bits: fixes y :: word64 shows "x < unat y \ x < 2 ^ word_bits" unfolding word_bits_def by (rule order_less_trans [OF _ unat_lt2p]) lemmas unat_mask_word64' = unat_mask[where 'a=64] lemmas unat_mask_word64 = unat_mask_word64'[folded word_bits_def] lemma unat_less_2p_word_bits: "unat (x :: 64 word) < 2 ^ word_bits" apply (simp only: word_bits_def) apply (rule unat_lt2p) done lemma Suc_unat_mask_div: "Suc (unat (mask sz div word_size::word64)) = 2 ^ (min sz word_bits - 3)" apply (case_tac "sz < word_bits") apply (case_tac "3\sz") apply (clarsimp simp: word_size_def word_bits_def min_def mask_def) apply (drule (2) Suc_div_unat_helper [where 'a=64 and sz=sz and us=3, simplified, symmetric]) apply (simp add: not_le word_size_def word_bits_def) apply (case_tac sz, simp add: unat_word_ariths) apply (case_tac nat, simp add: unat_word_ariths unat_mask_word64 min_def word_bits_def) apply (case_tac nata, simp add: unat_word_ariths unat_mask_word64 word_bits_def) apply simp apply (simp add: unat_word_ariths unat_mask_word64 min_def word_bits_def word_size_def) done lemmas word64_minus_one_le' = word_minus_one_le[where 'a=64] lemmas word64_minus_one_le = word64_minus_one_le'[simplified] lemma ucast_not_helper: fixes a::word8 assumes a: "a \ 0xFF" shows "ucast a \ (0xFF::word64)" proof assume "ucast a = (0xFF::word64)" also have "(0xFF::word64) = ucast (0xFF::word8)" by simp finally show False using a apply - apply (drule up_ucast_inj, simp) apply simp done qed lemma less_4_cases: "(x::word64) < 4 \ x=0 \ x=1 \ x=2 \ x=3" apply clarsimp apply (drule word_less_cases, erule disjE, simp, simp)+ done lemma if_then_1_else_0: "((if P then 1 else 0) = (0 :: word64)) = (\ P)" by simp lemma if_then_0_else_1: "((if P then 0 else 1) = (0 :: word64)) = (P)" by simp lemmas if_then_simps = if_then_0_else_1 if_then_1_else_0 lemma ucast_le_ucast_8_64: "(ucast x \ (ucast y :: word64)) = (x \ (y :: word8))" by (simp add: ucast_le_ucast) lemma in_16_range: "0 \ S \ r \ (\x. r + x * (16 :: word64)) ` S" "n - 1 \ S \ (r + (16 * n - 16)) \ (\x :: word64. r + x * 16) ` S" by (clarsimp simp: image_def elim!: bexI[rotated])+ lemma eq_2_64_0: "(2 ^ 64 :: word64) = 0" by simp lemma x_less_2_0_1: fixes x :: word64 shows "x < 2 \ x = 0 \ x = 1" by (rule x_less_2_0_1') auto lemmas mask_64_max_word = max_word_mask [symmetric, where 'a=64, simplified] lemma of_nat64_n_less_equal_power_2: "n < 64 \ ((of_nat n)::64 word) < 2 ^ n" by (rule of_nat_n_less_equal_power_2, clarsimp simp: word_size) lemma word_rsplit_0: "word_rsplit (0 :: word64) = [0, 0, 0, 0, 0, 0, 0, 0 :: word8]" apply (simp add: word_rsplit_def bin_rsplit_def Let_def) done lemma unat_ucast_10_64 : fixes x :: "10 word" shows "unat (ucast x :: word64) = unat x" unfolding ucast_def unat_def apply (subst int_word_uint) apply (subst mod_pos_pos_trivial) apply simp apply (rule lt2p_lem) apply simp apply simp done lemma bool_mask [simp]: fixes x :: word64 shows "(0 < x && 1) = (x && 1 = 1)" by (rule bool_mask') auto lemma word64_bounds: "- (2 ^ (size (x :: word64) - 1)) = (-9223372036854775808 :: int)" "((2 ^ (size (x :: word64) - 1)) - 1) = (9223372036854775807 :: int)" "- (2 ^ (size (y :: 64 signed word) - 1)) = (-9223372036854775808 :: int)" "((2 ^ (size (y :: 64 signed word) - 1)) - 1) = (9223372036854775807 :: int)" by (simp_all add: word_size) lemma word_ge_min:"sint (x::64 word) \ -9223372036854775808" by (metis sint_ge word64_bounds(1) word_size) lemmas signed_arith_ineq_checks_to_eq_word64' = signed_arith_ineq_checks_to_eq[where 'a=64] signed_arith_ineq_checks_to_eq[where 'a="64 signed"] lemmas signed_arith_ineq_checks_to_eq_word64 = signed_arith_ineq_checks_to_eq_word64' [unfolded word64_bounds] lemmas signed_mult_eq_checks64_to_64' = signed_mult_eq_checks_double_size[where 'a=64 and 'b=64] signed_mult_eq_checks_double_size[where 'a="64 signed" and 'b=64] lemmas signed_mult_eq_checks64_to_64 = signed_mult_eq_checks64_to_64'[simplified] lemmas sdiv_word64_max' = sdiv_word_max [where 'a=64] sdiv_word_max [where 'a="64 signed"] lemmas sdiv_word64_max = sdiv_word64_max'[simplified word_size, simplified] lemmas sdiv_word64_min' = sdiv_word_min [where 'a=64] sdiv_word_min [where 'a="64 signed"] lemmas sdiv_word64_min = sdiv_word64_min' [simplified word_size, simplified] lemmas sint64_of_int_eq' = sint_of_int_eq [where 'a=64] lemmas sint64_of_int_eq = sint64_of_int_eq' [simplified] lemma ucast_of_nats [simp]: "(ucast (of_nat x :: word64) :: sword64) = (of_nat x)" "(ucast (of_nat x :: word64) :: sword16) = (of_nat x)" "(ucast (of_nat x :: word64) :: sword8) = (of_nat x)" "(ucast (of_nat x :: word16) :: sword16) = (of_nat x)" "(ucast (of_nat x :: word16) :: sword8) = (of_nat x)" "(ucast (of_nat x :: word8) :: sword8) = (of_nat x)" by (auto simp: ucast_of_nat is_down) lemmas signed_shift_guard_simpler_64' = power_strict_increasing_iff[where b="2 :: nat" and y=31] lemmas signed_shift_guard_simpler_64 = signed_shift_guard_simpler_64'[simplified] lemma word64_31_less: "31 < len_of TYPE (64 signed)" "31 > (0 :: nat)" "31 < len_of TYPE (64)" "31 > (0 :: nat)" by auto lemmas signed_shift_guard_to_word_64 = signed_shift_guard_to_word[OF word64_31_less(1-2)] signed_shift_guard_to_word[OF word64_31_less(3-4)] lemma le_step_down_word_3: fixes x :: "64 word" shows "\x \ y; x \ y; y < 2 ^ 64 - 1\ \ x \ y - 1" by (rule le_step_down_word_2, assumption+) lemma shiftr_1: "(x::word64) >> 1 = 0 \ x < 2" by word_bitwise clarsimp lemma mask_step_down_64: "(b::64word) && 0x1 = (1::64word) \ (\x. x < 64 \ mask x = b >> 1) \ (\x. mask x = b)" apply clarsimp apply (rule_tac x="x + 1" in exI) apply (subgoal_tac "x \ 63") apply (erule le_step_down_nat, clarsimp simp:mask_def, word_bitwise, clarsimp+)+ apply (clarsimp simp:mask_def, word_bitwise, clarsimp) apply clarsimp done lemma unat_of_int_64: "\i \ 0; i \ 2 ^ 63\ \ (unat ((of_int i)::sword64)) = nat i" unfolding unat_def apply (subst eq_nat_nat_iff, clarsimp+) apply (simp add: word_of_int uint_word_of_int) done lemmas word_ctz_not_minus_1_64 = word_ctz_not_minus_1[where 'a=64, simplified] (* Helper for packing then unpacking a 64-bit variable. *) lemma cast_chunk_assemble_id_64[simp]: "(((ucast ((ucast (x::64 word))::32 word))::64 word) || (((ucast ((ucast (x >> 32))::32 word))::64 word) << 32)) = x" by (simp add:cast_chunk_assemble_id) (* Another variant of packing and unpacking a 64-bit variable. *) lemma cast_chunk_assemble_id_64'[simp]: "(((ucast ((scast (x::64 word))::32 word))::64 word) || (((ucast ((scast (x >> 32))::32 word))::64 word) << 32)) = x" by (simp add:cast_chunk_scast_assemble_id) (* Specialisations of down_cast_same for adding to local simpsets. *) lemma cast_down_u64: "(scast::64 word \ 32 word) = (ucast::64 word \ 32 word)" apply (subst down_cast_same[symmetric]) apply (simp add:is_down)+ done lemma cast_down_s64: "(scast::64 sword \ 32 word) = (ucast::64 sword \ 32 word)" apply (subst down_cast_same[symmetric]) apply (simp add:is_down)+ done end