(* * Copyright 2020, Data61, CSIRO (ABN 41 687 119 230) * * SPDX-License-Identifier: BSD-2-Clause *) section "Normalising Word Numerals" theory Norm_Words imports "Signed_Words" begin text \ Normalise word numerals, including negative ones apart from @{term "-1"}, to the interval \[0..2^len_of 'a)\. Only for concrete word lengths. \ lemma neg_num_bintr: "(- numeral x :: 'a::len word) = word_of_int (bintrunc (LENGTH('a)) (-numeral x))" by (simp only: word_ubin.Abs_norm word_neg_numeral_alt) ML \ fun is_refl (Const (@{const_name Pure.eq}, _) $ x $ y) = (x = y) | is_refl _ = false; fun signed_dest_wordT (Type (@{type_name word}, [Type (@{type_name signed}, [T])])) = Word_Lib.dest_binT T | signed_dest_wordT T = Word_Lib.dest_wordT T fun typ_size_of t = signed_dest_wordT (type_of (Thm.term_of t)); fun num_len (Const (@{const_name Num.Bit0}, _) $ n) = num_len n + 1 | num_len (Const (@{const_name Num.Bit1}, _) $ n) = num_len n + 1 | num_len (Const (@{const_name Num.One}, _)) = 1 | num_len (Const (@{const_name numeral}, _) $ t) = num_len t | num_len (Const (@{const_name uminus}, _) $ t) = num_len t | num_len t = raise TERM ("num_len", [t]) fun unsigned_norm is_neg _ ctxt ct = (if is_neg orelse num_len (Thm.term_of ct) > typ_size_of ct then let val btr = if is_neg then @{thm neg_num_bintr} else @{thm num_abs_bintr} val th = [Thm.reflexive ct, mk_eq btr] MRS transitive_thm (* will work in context of theory Word as well *) val ss = simpset_of (@{context} addsimps @{thms bintrunc_numeral}) val cnv = simplify (put_simpset ss ctxt) th in if is_refl (Thm.prop_of cnv) then NONE else SOME cnv end else NONE) handle TERM ("num_len", _) => NONE | TYPE ("dest_binT", _, _) => NONE \ simproc_setup unsigned_norm ("numeral n::'a::len word") = \unsigned_norm false\ simproc_setup unsigned_norm_neg0 ("-numeral (num.Bit0 num)::'a::len word") = \unsigned_norm true\ simproc_setup unsigned_norm_neg1 ("-numeral (num.Bit1 num)::'a::len word") = \unsigned_norm true\ declare word_pow_0 [simp] lemma minus_one_norm: "(-1 :: 'a :: len word) = of_nat (2 ^ LENGTH('a) - 1)" by (simp add:of_nat_diff) lemmas minus_one_norm_num = minus_one_norm [where 'a="'b::len bit0"] minus_one_norm [where 'a="'b::len0 bit1"] lemma "f (7 :: 2 word) = f 3" by simp lemma "f 7 = f (3 :: 2 word)" by simp lemma "f (-2) = f (21 + 1 :: 3 word)" by simp lemma "f (-2) = f (13 + 1 :: 'a::len word)" apply simp (* does not touch generic word length *) oops lemma "f (-2) = f (0xFFFFFFFE :: 32 word)" by simp lemma "(-1 :: 2 word) = 3" by simp lemma "f (-2) = f (0xFFFFFFFE :: 32 signed word)" by simp text \ We leave @{term "-1"} untouched by default, because it is often useful and its normal form can be large. To include it in the normalisation, add @{thm [source] minus_one_norm_num}. The additional normalisation is restricted to concrete numeral word lengths, like the rest. \ context notes minus_one_norm_num [simp] begin lemma "f (-1) = f (15 :: 4 word)" by simp lemma "f (-1) = f (7 :: 3 word)" by simp lemma "f (-1) = f (0xFFFF :: 16 word)" by simp lemma "f (-1) = f (0xFFFF + 1 :: 'a::len word)" apply simp (* does not touch generic -1 *) oops end end