(* * Copyright 2020, Data61, CSIRO (ABN 41 687 119 230) * * SPDX-License-Identifier: BSD-2-Clause *) section "Word Alignment" theory Aligned imports Word_Lib HOL_Lemmas More_Divides begin definition is_aligned :: "'a :: len word \ nat \ bool" where "is_aligned ptr n \ 2^n dvd unat ptr" lemma is_aligned_mask: "(is_aligned w n) = (w && mask n = 0)" unfolding is_aligned_def by (rule and_mask_dvd_nat) lemma is_aligned_to_bl: "is_aligned (w :: 'a :: len word) n = (True \ set (drop (size w - n) (to_bl w)))" apply (simp add: is_aligned_mask eq_zero_set_bl) apply (clarsimp simp: in_set_conv_nth word_size) apply (simp add: to_bl_nth word_size cong: conj_cong) apply (simp add: diff_diff_less) apply safe apply (case_tac "n \ LENGTH('a)") prefer 2 apply (rule_tac x=i in exI) apply clarsimp apply (subgoal_tac "\j < LENGTH('a). j < n \ LENGTH('a) - n + j = i") apply (erule exE) apply (rule_tac x=j in exI) apply clarsimp apply (thin_tac "w !! t" for t) apply (rule_tac x="i + n - LENGTH('a)" in exI) apply clarsimp apply arith apply (rule_tac x="LENGTH('a) - n + i" in exI) apply clarsimp apply arith done lemma unat_power_lower [simp]: assumes nv: "n < LENGTH('a::len)" shows "unat ((2::'a::len word) ^ n) = 2 ^ n" by (simp add: assms nat_power_eq uint_2p_alt unat_def) lemma power_overflow: "n \ LENGTH('a) \ 2 ^ n = (0 :: 'a::len word)" by simp lemma is_alignedI [intro?]: fixes x::"'a::len word" assumes xv: "x = 2 ^ n * k" shows "is_aligned x n" proof cases assume nv: "n < LENGTH('a)" show ?thesis unfolding is_aligned_def proof (rule dvdI [where k = "unat k mod 2 ^ (LENGTH('a) - n)"]) from xv have "unat x = (unat (2::word32) ^ n * unat k) mod 2 ^ LENGTH('a)" using nv by (subst (asm) word_unat.Rep_inject [symmetric], simp, subst unat_word_ariths, simp) also have "\ = 2 ^ n * (unat k mod 2 ^ (LENGTH('a) - n))" using nv by (simp add: mult_mod_right power_add [symmetric] add_diff_inverse) finally show "unat x = 2 ^ n * (unat k mod 2 ^ (LENGTH('a) - n))" . qed next assume "\ n < LENGTH('a)" with xv show ?thesis by (simp add: not_less power_overflow is_aligned_def) qed lemma is_aligned_weaken: "\ is_aligned w x; x \ y \ \ is_aligned w y" unfolding is_aligned_def by (erule dvd_trans [rotated]) (simp add: le_imp_power_dvd) lemma nat_power_less_diff: assumes lt: "(2::nat) ^ n * q < 2 ^ m" shows "q < 2 ^ (m - n)" using lt proof (induct n arbitrary: m) case 0 then show ?case by simp next case (Suc n) have ih: "\m. 2 ^ n * q < 2 ^ m \ q < 2 ^ (m - n)" and prem: "2 ^ Suc n * q < 2 ^ m" by fact+ show ?case proof (cases m) case 0 then show ?thesis using Suc by simp next case (Suc m') then show ?thesis using prem by (simp add: ac_simps ih) qed qed lemma is_alignedE_pre: fixes w::"'a::len word" assumes aligned: "is_aligned w n" shows rl: "\q. w = 2 ^ n * (of_nat q) \ q < 2 ^ (LENGTH('a) - n)" proof - from aligned obtain q where wv: "unat w = 2 ^ n * q" unfolding is_aligned_def .. show ?thesis proof (rule exI, intro conjI) show "q < 2 ^ (LENGTH('a) - n)" proof (rule nat_power_less_diff) have "unat w < 2 ^ size w" unfolding word_size .. then have "unat w < 2 ^ LENGTH('a)" by simp with wv show "2 ^ n * q < 2 ^ LENGTH('a)" by simp qed have r: "of_nat (2 ^ n) = (2::word32) ^ n" by (induct n) simp+ from wv have "of_nat (unat w) = of_nat (2 ^ n * q)" by simp then have "w = of_nat (2 ^ n * q)" by (subst word_unat.Rep_inverse [symmetric]) then show "w = 2 ^ n * (of_nat q)" by (simp add: r) qed qed lemma is_alignedE: "\is_aligned (w::'a::len word) n; \q. \w = 2 ^ n * (of_nat q); q < 2 ^ (LENGTH('a) - n)\ \ R\ \ R" by (auto dest: is_alignedE_pre) lemma is_aligned_replicate: fixes w::"'a::len word" assumes aligned: "is_aligned w n" and nv: "n \ LENGTH('a)" shows "to_bl w = (take (LENGTH('a) - n) (to_bl w)) @ replicate n False" proof - from nv have rl: "\q. q < 2 ^ (LENGTH('a) - n) \ to_bl (2 ^ n * (of_nat q :: 'a word)) = drop n (to_bl (of_nat q :: 'a word)) @ replicate n False" by (metis bl_shiftl le_antisym min_def shiftl_t2n wsst_TYs(3)) show ?thesis using aligned by (auto simp: rl elim: is_alignedE) qed lemma is_aligned_drop: fixes w::"'a::len word" assumes "is_aligned w n" "n \ LENGTH('a)" shows "drop (LENGTH('a) - n) (to_bl w) = replicate n False" proof - have "to_bl w = take (LENGTH('a) - n) (to_bl w) @ replicate n False" by (rule is_aligned_replicate) fact+ then have "drop (LENGTH('a) - n) (to_bl w) = drop (LENGTH('a) - n) \" by simp also have "\ = replicate n False" by simp finally show ?thesis . qed lemma less_is_drop_replicate: fixes x::"'a::len word" assumes lt: "x < 2 ^ n" shows "to_bl x = replicate (LENGTH('a) - n) False @ drop (LENGTH('a) - n) (to_bl x)" by (metis assms bl_and_mask' less_mask_eq) lemma is_aligned_add_conv: fixes off::"'a::len word" assumes aligned: "is_aligned w n" and offv: "off < 2 ^ n" shows "to_bl (w + off) = (take (LENGTH('a) - n) (to_bl w)) @ (drop (LENGTH('a) - n) (to_bl off))" proof cases assume nv: "n \ LENGTH('a)" show ?thesis proof (subst aligned_bl_add_size, simp_all only: word_size) show "drop (LENGTH('a) - n) (to_bl w) = replicate n False" by (subst is_aligned_replicate [OF aligned nv]) (simp add: word_size) from offv show "take (LENGTH('a) - n) (to_bl off) = replicate (LENGTH('a) - n) False" by (subst less_is_drop_replicate, assumption) simp qed fact next assume "\ n \ LENGTH('a)" with offv show ?thesis by (simp add: power_overflow) qed lemma aligned_add_aligned: fixes x::"'a::len word" assumes aligned1: "is_aligned x n" and aligned2: "is_aligned y m" and lt: "m \ n" shows "is_aligned (x + y) m" proof cases assume nlt: "n < LENGTH('a)" show ?thesis unfolding is_aligned_def dvd_def proof - from aligned2 obtain q2 where yv: "y = 2 ^ m * of_nat q2" and q2v: "q2 < 2 ^ (LENGTH('a) - m)" by (auto elim: is_alignedE) from lt obtain k where kv: "m + k = n" by (auto simp: le_iff_add) with aligned1 obtain q1 where xv: "x = 2 ^ (m + k) * of_nat q1" and q1v: "q1 < 2 ^ (LENGTH('a) - (m + k))" by (auto elim: is_alignedE) have l1: "2 ^ (m + k) * q1 < 2 ^ LENGTH('a)" by (rule nat_less_power_trans [OF q1v]) (subst kv, rule order_less_imp_le [OF nlt]) have l2: "2 ^ m * q2 < 2 ^ LENGTH('a)" by (rule nat_less_power_trans [OF q2v], rule order_less_imp_le [OF order_le_less_trans]) fact+ have "x = of_nat (2 ^ (m + k) * q1)" using xv by simp moreover have "y = of_nat (2 ^ m * q2)" using yv by simp ultimately have upls: "unat x + unat y = 2 ^ m * (2 ^ k * q1 + q2)" proof - have f1: "unat x = 2 ^ (m + k) * q1" by (metis (no_types) \x = of_nat (2 ^ (m + k) * q1)\ l1 nat_mod_lem word_unat.inverse_norm zero_less_numeral zero_less_power) have "unat y = 2 ^ m * q2" by (metis (no_types) \y = of_nat (2 ^ m * q2)\ l2 nat_mod_lem word_unat.inverse_norm zero_less_numeral zero_less_power) then show ?thesis using f1 by (simp add: power_add semiring_normalization_rules(34)) qed (* (2 ^ k * q1 + q2) *) show "\d. unat (x + y) = 2 ^ m * d" proof (cases "unat x + unat y < 2 ^ LENGTH('a)") case True have "unat (x + y) = unat x + unat y" by (subst unat_plus_if', rule if_P) fact also have "\ = 2 ^ m * (2 ^ k * q1 + q2)" by (rule upls) finally show ?thesis .. next case False then have "unat (x + y) = (unat x + unat y) mod 2 ^ LENGTH('a)" by (subst unat_word_ariths(1)) simp also have "\ = (2 ^ m * (2 ^ k * q1 + q2)) mod 2 ^ LENGTH('a)" by (subst upls, rule refl) also have "\ = 2 ^ m * ((2 ^ k * q1 + q2) mod 2 ^ (LENGTH('a) - m))" proof - have "m \ len_of (TYPE('a))" by (meson le_trans less_imp_le_nat lt nlt) then show ?thesis by (metis mult_mod_right ordered_cancel_comm_monoid_diff_class.add_diff_inverse power_add) qed finally show ?thesis .. qed qed next assume "\ n < LENGTH('a)" with assms show ?thesis by (simp add: not_less power_overflow is_aligned_mask mask_def) qed corollary aligned_sub_aligned: "\is_aligned (x::'a::len word) n; is_aligned y m; m \ n\ \ is_aligned (x - y) m" apply (simp del: add_uminus_conv_diff add:diff_conv_add_uminus) apply (erule aligned_add_aligned, simp_all) apply (erule is_alignedE) apply (rule_tac k="- of_nat q" in is_alignedI) apply simp done lemma is_aligned_shift: fixes k::"'a::len word" shows "is_aligned (k << m) m" proof cases assume mv: "m < LENGTH('a)" from mv obtain q where mq: "m + q = LENGTH('a)" and "0 < q" by (auto dest: less_imp_add_positive) have "(2::nat) ^ m dvd unat (k << m)" proof have kv: "(unat k div 2 ^ q) * 2 ^ q + unat k mod 2 ^ q = unat k" by (rule div_mult_mod_eq) have "unat (k << m) = unat (2 ^ m * k)" by (simp add: shiftl_t2n) also have "\ = (2 ^ m * unat k) mod (2 ^ LENGTH('a))" using mv by (subst unat_word_ariths(2))+ simp also have "\ = 2 ^ m * (unat k mod 2 ^ q)" by (subst mq [symmetric], subst power_add, subst mod_mult2_eq) simp finally show "unat (k << m) = 2 ^ m * (unat k mod 2 ^ q)" . qed then show ?thesis by (unfold is_aligned_def) next assume "\ m < LENGTH('a)" then show ?thesis by (simp add: not_less power_overflow is_aligned_mask mask_def shiftl_zero_size word_size) qed lemma word_mod_by_0: "k mod (0::'a::len word) = k" by (simp add: word_arith_nat_mod) lemma aligned_mod_eq_0: fixes p::"'a::len word" assumes al: "is_aligned p sz" shows "p mod 2 ^ sz = 0" proof cases assume szv: "sz < LENGTH('a)" with al show ?thesis unfolding is_aligned_def by (simp add: and_mask_dvd_nat p2_gt_0 word_mod_2p_is_mask) next assume "\ sz < LENGTH('a)" with al show ?thesis by (simp add: not_less power_overflow is_aligned_mask mask_def word_mod_by_0) qed lemma is_aligned_triv: "is_aligned (2 ^ n ::'a::len word) n" by (rule is_alignedI [where k = 1], simp) lemma is_aligned_mult_triv1: "is_aligned (2 ^ n * x ::'a::len word) n" by (rule is_alignedI [OF refl]) lemma is_aligned_mult_triv2: "is_aligned (x * 2 ^ n ::'a::len word) n" by (subst mult.commute, simp add: is_aligned_mult_triv1) lemma word_power_less_0_is_0: fixes x :: "'a::len word" shows "x < a ^ 0 \ x = 0" by simp lemma nat_add_offset_less: fixes x :: nat assumes yv: "y < 2 ^ n" and xv: "x < 2 ^ m" and mn: "sz = m + n" shows "x * 2 ^ n + y < 2 ^ sz" proof (subst mn) from yv obtain qy where "y + qy = 2 ^ n" and "0 < qy" by (auto dest: less_imp_add_positive) have "x * 2 ^ n + y < x * 2 ^ n + 2 ^ n" by simp fact+ also have "\ = (x + 1) * 2 ^ n" by simp also have "\ \ 2 ^ (m + n)" using xv by (subst power_add) (rule mult_le_mono1, simp) finally show "x * 2 ^ n + y < 2 ^ (m + n)" . qed lemma is_aligned_no_wrap: fixes off :: "'a::len word" fixes ptr :: "'a::len word" assumes al: "is_aligned ptr sz" and off: "off < 2 ^ sz" shows "unat ptr + unat off < 2 ^ LENGTH('a)" proof - have szv: "sz < LENGTH('a)" using off p2_gt_0 word_neq_0_conv by fastforce from al obtain q where ptrq: "ptr = 2 ^ sz * of_nat q" and qv: "q < 2 ^ (LENGTH('a) - sz)" by (auto elim: is_alignedE) show ?thesis proof (cases "sz = 0") case True then show ?thesis using off ptrq qv by clarsimp next case False then have sne: "0 < sz" .. show ?thesis proof - have uq: "unat (of_nat q ::'a::len word) = q" apply (subst unat_of_nat) apply (rule mod_less) apply (rule order_less_trans [OF qv]) apply (rule power_strict_increasing [OF diff_less [OF sne]]) apply (simp_all) done have uptr: "unat ptr = 2 ^ sz * q" apply (subst ptrq) apply (subst iffD1 [OF unat_mult_lem]) apply (subst unat_power_lower [OF szv]) apply (subst uq) apply (rule nat_less_power_trans [OF qv order_less_imp_le [OF szv]]) apply (subst uq) apply (subst unat_power_lower [OF szv]) apply simp done show "unat ptr + unat off < 2 ^ LENGTH('a)" using szv apply (subst uptr) apply (subst mult.commute, rule nat_add_offset_less [OF _ qv]) apply (rule order_less_le_trans [OF unat_mono [OF off] order_eq_refl]) apply simp_all done qed qed qed lemma is_aligned_no_wrap': fixes ptr :: "'a::len word" assumes al: "is_aligned ptr sz" and off: "off < 2 ^ sz" shows "ptr \ ptr + off" by (subst no_plus_overflow_unat_size, subst word_size, rule is_aligned_no_wrap) fact+ lemma is_aligned_no_overflow': fixes p :: "'a::len word" assumes al: "is_aligned p n" shows "p \ p + (2 ^ n - 1)" proof cases assume "n n ptr \ ptr + 2^sz - 1" by (drule is_aligned_no_overflow') (simp add: field_simps) lemma replicate_not_True: "\n. xs = replicate n False \ True \ set xs" by (induct xs) auto lemma is_aligned_replicateI: "to_bl p = addr @ replicate n False \ is_aligned (p::'a::len word) n" apply (simp add: is_aligned_to_bl word_size) apply (subgoal_tac "length addr = LENGTH('a) - n") apply (simp add: replicate_not_True) apply (drule arg_cong [where f=length]) apply simp done lemma to_bl_2p: "n < LENGTH('a) \ to_bl ((2::'a::len word) ^ n) = replicate (LENGTH('a) - Suc n) False @ True # replicate n False" apply (subst shiftl_1 [symmetric]) apply (subst bl_shiftl) apply (simp add: to_bl_1 min_def word_size) done lemma map_zip_replicate_False_xor: "n = length xs \ map (\(x, y). x = (\ y)) (zip xs (replicate n False)) = xs" by (induct xs arbitrary: n, auto) lemma drop_minus_lem: "\ n \ length xs; 0 < n; n' = length xs \ \ drop (n' - n) xs = rev xs ! (n - 1) # drop (Suc (n' - n)) xs" proof (induct xs arbitrary: n n') case Nil then show ?case by simp next case (Cons y ys) from Cons.prems show ?case apply simp apply (cases "n = Suc (length ys)") apply (simp add: nth_append) apply (simp add: Suc_diff_le Cons.hyps nth_append) apply clarsimp apply arith done qed lemma drop_minus: "\ n < length xs; n' = length xs \ \ drop (n' - Suc n) xs = rev xs ! n # drop (n' - n) xs" apply (subst drop_minus_lem) apply simp apply simp apply simp apply simp apply (cases "length xs", simp) apply (simp add: Suc_diff_le) done lemma xor_2p_to_bl: fixes x::"'a::len word" shows "to_bl (x xor 2^n) = (if n < LENGTH('a) then take (LENGTH('a)-Suc n) (to_bl x) @ (\rev (to_bl x)!n) # drop (LENGTH('a)-n) (to_bl x) else to_bl x)" proof - have x: "to_bl x = take (LENGTH('a)-Suc n) (to_bl x) @ drop (LENGTH('a)-Suc n) (to_bl x)" by simp show ?thesis apply simp apply (rule conjI) apply (clarsimp simp: word_size) apply (simp add: bl_word_xor to_bl_2p) apply (subst x) apply (subst zip_append) apply simp apply (simp add: map_zip_replicate_False_xor drop_minus) apply (auto simp add: word_size nth_w2p intro!: word_eqI) done qed lemma aligned_add_xor: assumes al: "is_aligned (x::'a::len word) n'" and le: "n < n'" shows "(x + 2^n) xor 2^n = x" proof cases assume "n' < LENGTH('a)" with assms show ?thesis apply - apply (rule word_bl.Rep_eqD) apply (subst xor_2p_to_bl) apply simp apply (subst is_aligned_add_conv, simp, simp add: word_less_nat_alt)+ apply (simp add: to_bl_2p nth_append) apply (cases "n' = Suc n") apply simp apply (subst is_aligned_replicate [where n="Suc n", simplified, symmetric]; simp) apply (subgoal_tac "\ LENGTH('a) - Suc n \ LENGTH('a) - n'") prefer 2 apply arith apply (subst replicate_Suc [symmetric]) apply (subst replicate_add [symmetric]) apply (simp add: is_aligned_replicate [simplified, symmetric]) done next assume "\ n' < LENGTH('a)" with al show ?thesis by (simp add: is_aligned_mask mask_def not_less power_overflow) qed lemma is_aligned_0 [simp]: "is_aligned p 0" by (simp add: is_aligned_def) lemma is_aligned_replicateD: "\ is_aligned (w::'a::len word) n; n \ LENGTH('a) \ \ \xs. to_bl w = xs @ replicate n False \ length xs = size w - n" apply (subst is_aligned_replicate, assumption+) apply (rule exI, rule conjI, rule refl) apply (simp add: word_size) done lemma is_aligned_add_mult_multI: fixes p :: "'a::len word" shows "\is_aligned p m; n \ m; n' = n\ \ is_aligned (p + x * 2 ^ n * z) n'" apply (erule aligned_add_aligned) apply (auto intro: is_alignedI [where k="x*z"]) done lemma is_aligned_add_multI: fixes p :: "'a::len word" shows "\is_aligned p m; n \ m; n' = n\ \ is_aligned (p + x * 2 ^ n) n'" apply (erule aligned_add_aligned) apply (auto intro: is_alignedI [where k="x"]) done lemma unat_of_nat_len: "x < 2 ^ LENGTH('a) \ unat (of_nat x :: 'a::len word) = x" by (simp add: word_size unat_of_nat) lemma is_aligned_no_wrap''': fixes ptr :: "'a::len word" shows"\ is_aligned ptr sz; sz < LENGTH('a); off < 2 ^ sz \ \ unat ptr + off < 2 ^ LENGTH('a)" apply (drule is_aligned_no_wrap[where off="of_nat off"]) apply (simp add: word_less_nat_alt) apply (erule order_le_less_trans[rotated]) apply (subst unat_of_nat) apply (rule mod_less_eq_dividend) apply (subst(asm) unat_of_nat_len) apply (erule order_less_trans) apply (erule power_strict_increasing) apply simp apply assumption done lemma is_aligned_get_word_bits: fixes p :: "'a::len word" shows "\ is_aligned p n; \ is_aligned p n; n < LENGTH('a) \ \ P; \ p = 0; n \ LENGTH('a) \ \ P \ \ P" apply (cases "n < LENGTH('a)") apply simp apply simp apply (erule meta_mp) apply (clarsimp simp: is_aligned_mask mask_def power_add power_overflow) done lemma aligned_small_is_0: "\ is_aligned x n; x < 2 ^ n \ \ x = 0" apply (erule is_aligned_get_word_bits) apply (frule is_aligned_add_conv [rotated, where w=0]) apply (simp add: is_aligned_def) apply simp apply (drule is_aligned_replicateD) apply simp apply (clarsimp simp: word_size) apply (subst (asm) replicate_add [symmetric]) apply (drule arg_cong[where f="of_bl :: bool list \ 'a::len word"]) apply simp apply (simp only: replicate.simps[symmetric, where x=False] drop_replicate) done corollary is_aligned_less_sz: "\is_aligned a sz; a \ 0\ \ \ a < 2 ^ sz" by (rule notI, drule(1) aligned_small_is_0, erule(1) notE) lemma aligned_at_least_t2n_diff: "\is_aligned x n; is_aligned y n; x < y\ \ x \ y - 2 ^ n" apply (erule is_aligned_get_word_bits[where p=y]) apply (rule ccontr) apply (clarsimp simp: linorder_not_le) apply (subgoal_tac "y - x = 0") apply clarsimp apply (rule aligned_small_is_0) apply (erule(1) aligned_sub_aligned) apply simp apply unat_arith apply simp done lemma word_sub_1_le: "x \ 0 \ x - 1 \ (x :: ('a :: len) word)" apply (subst no_ulen_sub) apply simp apply (cases "uint x = 0") apply (simp add: uint_0_iff) apply (insert uint_ge_0[where x=x]) apply arith done lemma is_aligned_no_overflow'': "\is_aligned x n; x + 2 ^ n \ 0\ \ x \ x + 2 ^ n" apply (frule is_aligned_no_overflow') apply (erule order_trans) apply (simp add: field_simps) apply (erule word_sub_1_le) done lemma is_aligned_nth: "is_aligned p m = (\n < m. \p !! n)" apply (clarsimp simp: is_aligned_mask bang_eq word_size) apply (rule iffI) apply clarsimp apply (case_tac "n < size p") apply (simp add: word_size) apply (drule test_bit_size) apply simp apply clarsimp done lemma range_inter: "({a..b} \ {c..d} = {}) = (\x. \(a \ x \ x \ b \ c \ x \ x \ d))" by auto lemma aligned_inter_non_empty: "\ {p..p + (2 ^ n - 1)} \ {p..p + 2 ^ m - 1} = {}; is_aligned p n; is_aligned p m\ \ False" apply (clarsimp simp only: range_inter) apply (erule_tac x=p in allE) apply simp apply (erule impE) apply (erule is_aligned_no_overflow') apply (erule notE) apply (erule is_aligned_no_overflow) done lemma not_aligned_mod_nz: assumes al: "\ is_aligned a n" shows "a mod 2 ^ n \ 0" proof cases assume "n < LENGTH('a)" with al show ?thesis apply (simp add: is_aligned_def dvd_eq_mod_eq_0 word_arith_nat_mod) apply (erule of_nat_neq_0) apply (rule order_less_trans) apply (rule mod_less_divisor) apply simp apply simp done next assume "\ n < LENGTH('a)" with al show ?thesis by (simp add: is_aligned_mask mask_def not_less power_overflow word_less_nat_alt word_mod_by_0) qed lemma nat_add_offset_le: fixes x :: nat assumes yv: "y \ 2 ^ n" and xv: "x < 2 ^ m" and mn: "sz = m + n" shows "x * 2 ^ n + y \ 2 ^ sz" proof (subst mn) from yv obtain qy where "y + qy = 2 ^ n" by (auto simp: le_iff_add) have "x * 2 ^ n + y \ x * 2 ^ n + 2 ^ n" using yv xv by simp also have "\ = (x + 1) * 2 ^ n" by simp also have "\ \ 2 ^ (m + n)" using xv by (subst power_add) (rule mult_le_mono1, simp) finally show "x * 2 ^ n + y \ 2 ^ (m + n)" . qed lemma is_aligned_no_wrap_le: fixes ptr::"'a::len word" assumes al: "is_aligned ptr sz" and szv: "sz < LENGTH('a)" and off: "off \ 2 ^ sz" shows "unat ptr + off \ 2 ^ LENGTH('a)" proof - from al obtain q where ptrq: "ptr = 2 ^ sz * of_nat q" and qv: "q < 2 ^ (LENGTH('a) - sz)" by (auto elim: is_alignedE) show ?thesis proof (cases "sz = 0") case True then show ?thesis using off ptrq qv apply (clarsimp) apply (erule le_SucE) apply (simp add: unat_of_nat) apply (simp add: less_eq_Suc_le [symmetric] unat_of_nat) done next case False then have sne: "0 < sz" .. show ?thesis proof - have uq: "unat (of_nat q :: 'a word) = q" apply (subst unat_of_nat) apply (rule mod_less) apply (rule order_less_trans [OF qv]) apply (rule power_strict_increasing [OF diff_less [OF sne]]) apply simp_all done have uptr: "unat ptr = 2 ^ sz * q" apply (subst ptrq) apply (subst iffD1 [OF unat_mult_lem]) apply (subst unat_power_lower [OF szv]) apply (subst uq) apply (rule nat_less_power_trans [OF qv order_less_imp_le [OF szv]]) apply (subst uq) apply (subst unat_power_lower [OF szv]) apply simp done show "unat ptr + off \ 2 ^ LENGTH('a)" using szv apply (subst uptr) apply (subst mult.commute, rule nat_add_offset_le [OF off qv]) apply simp done qed qed qed lemma is_aligned_neg_mask: "m \ n \ is_aligned (x && ~~ (mask n)) m" by (metis and_not_mask is_aligned_shift is_aligned_weaken) lemma unat_minus: "unat (- (x :: 'a :: len word)) = (if x = 0 then 0 else 2 ^ size x - unat x)" using unat_sub_if_size[where x="2 ^ size x" and y=x] by (simp add: unat_eq_0 word_size) lemma is_aligned_minus: "is_aligned p n \ is_aligned (- p) n" apply (clarsimp simp: is_aligned_def unat_minus word_size word_neq_0_conv) apply (rule dvd_diff_nat, simp_all) apply (rule le_imp_power_dvd) apply (fold is_aligned_def) apply (erule_tac Q="0is_aligned (x :: 'a :: len word) n; \n' \ n. n' < LENGTH('a) \ \ p !! n'\ \ x + p && ~~ (mask n) = x" apply (subst word_plus_and_or_coroll) apply (rule word_eqI) apply (clarsimp simp: word_size is_aligned_nth) apply (erule_tac x=na in allE)+ apply simp apply (rule word_eqI) apply (clarsimp simp: word_size is_aligned_nth word_ops_nth_size le_def) apply blast done lemma is_aligned_andI1: "is_aligned x n \ is_aligned (x && y) n" by (simp add: is_aligned_nth) lemma is_aligned_andI2: "is_aligned y n \ is_aligned (x && y) n" by (simp add: is_aligned_nth) lemma is_aligned_shiftl: "is_aligned w (n - m) \ is_aligned (w << m) n" by (simp add: is_aligned_nth nth_shiftl) lemma is_aligned_shiftr: "is_aligned w (n + m) \ is_aligned (w >> m) n" by (simp add: is_aligned_nth nth_shiftr) lemma is_aligned_shiftl_self: "is_aligned (p << n) n" by (rule is_aligned_shift) lemma is_aligned_neg_mask_eq: "is_aligned p n \ p && ~~ (mask n) = p" by (metis add.left_neutral is_aligned_mask word_plus_and_or_coroll2) lemma is_aligned_shiftr_shiftl: "is_aligned w n \ w >> n << n = w" by (metis and_not_mask is_aligned_neg_mask_eq) lemma aligned_shiftr_mask_shiftl: "is_aligned x n \ ((x >> n) && mask v) << n = x && mask (v + n)" apply (rule word_eqI) apply (simp add: word_size nth_shiftl nth_shiftr) apply (subgoal_tac "\m. x !! m \ m \ n") apply auto[1] apply (clarsimp simp: is_aligned_mask) apply (drule_tac x=m in word_eqD) apply (frule test_bit_size) apply (simp add: word_size) done lemma mask_zero: "is_aligned x a \ x && mask a = 0" by (metis is_aligned_mask) lemma is_aligned_neg_mask_eq_concrete: "\ is_aligned p n; msk && ~~(mask n) = ~~(mask n) \ \ p && msk = p" by (metis word_bw_assocs(1) word_bw_comms(1) is_aligned_neg_mask_eq) lemma is_aligned_and_not_zero: "\ is_aligned n k; n \ 0 \ \ 2 ^ k \ n" using is_aligned_less_sz leI by blast lemma is_aligned_and_2_to_k: "(n && 2 ^ k - 1) = 0 \ is_aligned (n :: 'a :: len word) k" by (simp add: is_aligned_mask mask_def) lemma is_aligned_power2: "b \ a \ is_aligned (2 ^ a) b" by (metis is_aligned_triv is_aligned_weaken) lemma aligned_sub_aligned': "\ is_aligned (a :: 'a :: len word) n; is_aligned b n; n < LENGTH('a) \ \ is_aligned (a - b) n" by (simp add: aligned_sub_aligned) lemma is_aligned_neg_mask_weaken: "\ is_aligned p n; m \ n \ \ p && ~~(mask m) = p" using is_aligned_neg_mask_eq is_aligned_weaken by blast lemma is_aligned_neg_mask2[simp]: "is_aligned (a && ~~(mask n)) n" by (simp add: and_not_mask is_aligned_shift) end