(* Title: ZF/Ordinal.thy Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1994 University of Cambridge *) section\Transitive Sets and Ordinals\ theory Ordinal imports WF Bool equalities begin definition Memrel :: "i=>i" where "Memrel(A) == {z\A*A . \x y. z= & x\y }" definition Transset :: "i=>o" where "Transset(i) == \x\i. x<=i" definition Ord :: "i=>o" where "Ord(i) == Transset(i) & (\x\i. Transset(x))" definition lt :: "[i,i] => o" (infixl \<\ 50) (*less-than on ordinals*) where "ij & Ord(j)" definition Limit :: "i=>o" where "Limit(i) == Ord(i) & 0y. y succ(y)\\ 50) where "x \ y == x < succ(y)" subsection\Rules for Transset\ subsubsection\Three Neat Characterisations of Transset\ lemma Transset_iff_Pow: "Transset(A) <-> A<=Pow(A)" by (unfold Transset_def, blast) lemma Transset_iff_Union_succ: "Transset(A) <-> \(succ(A)) = A" apply (unfold Transset_def) apply (blast elim!: equalityE) done lemma Transset_iff_Union_subset: "Transset(A) <-> \(A) \ A" by (unfold Transset_def, blast) subsubsection\Consequences of Downwards Closure\ lemma Transset_doubleton_D: "[| Transset(C); {a,b}: C |] ==> a\C & b\C" by (unfold Transset_def, blast) lemma Transset_Pair_D: "[| Transset(C); \C |] ==> a\C & b\C" apply (simp add: Pair_def) apply (blast dest: Transset_doubleton_D) done lemma Transset_includes_domain: "[| Transset(C); A*B \ C; b \ B |] ==> A \ C" by (blast dest: Transset_Pair_D) lemma Transset_includes_range: "[| Transset(C); A*B \ C; a \ A |] ==> B \ C" by (blast dest: Transset_Pair_D) subsubsection\Closure Properties\ lemma Transset_0: "Transset(0)" by (unfold Transset_def, blast) lemma Transset_Un: "[| Transset(i); Transset(j) |] ==> Transset(i \ j)" by (unfold Transset_def, blast) lemma Transset_Int: "[| Transset(i); Transset(j) |] ==> Transset(i \ j)" by (unfold Transset_def, blast) lemma Transset_succ: "Transset(i) ==> Transset(succ(i))" by (unfold Transset_def, blast) lemma Transset_Pow: "Transset(i) ==> Transset(Pow(i))" by (unfold Transset_def, blast) lemma Transset_Union: "Transset(A) ==> Transset(\(A))" by (unfold Transset_def, blast) lemma Transset_Union_family: "[| !!i. i\A ==> Transset(i) |] ==> Transset(\(A))" by (unfold Transset_def, blast) lemma Transset_Inter_family: "[| !!i. i\A ==> Transset(i) |] ==> Transset(\(A))" by (unfold Inter_def Transset_def, blast) lemma Transset_UN: "(!!x. x \ A ==> Transset(B(x))) ==> Transset (\x\A. B(x))" by (rule Transset_Union_family, auto) lemma Transset_INT: "(!!x. x \ A ==> Transset(B(x))) ==> Transset (\x\A. B(x))" by (rule Transset_Inter_family, auto) subsection\Lemmas for Ordinals\ lemma OrdI: "[| Transset(i); !!x. x\i ==> Transset(x) |] ==> Ord(i)" by (simp add: Ord_def) lemma Ord_is_Transset: "Ord(i) ==> Transset(i)" by (simp add: Ord_def) lemma Ord_contains_Transset: "[| Ord(i); j\i |] ==> Transset(j) " by (unfold Ord_def, blast) lemma Ord_in_Ord: "[| Ord(i); j\i |] ==> Ord(j)" by (unfold Ord_def Transset_def, blast) (*suitable for rewriting PROVIDED i has been fixed*) lemma Ord_in_Ord': "[| j\i; Ord(i) |] ==> Ord(j)" by (blast intro: Ord_in_Ord) (* Ord(succ(j)) ==> Ord(j) *) lemmas Ord_succD = Ord_in_Ord [OF _ succI1] lemma Ord_subset_Ord: "[| Ord(i); Transset(j); j<=i |] ==> Ord(j)" by (simp add: Ord_def Transset_def, blast) lemma OrdmemD: "[| j\i; Ord(i) |] ==> j<=i" by (unfold Ord_def Transset_def, blast) lemma Ord_trans: "[| i\j; j\k; Ord(k) |] ==> i\k" by (blast dest: OrdmemD) lemma Ord_succ_subsetI: "[| i\j; Ord(j) |] ==> succ(i) \ j" by (blast dest: OrdmemD) subsection\The Construction of Ordinals: 0, succ, Union\ lemma Ord_0 [iff,TC]: "Ord(0)" by (blast intro: OrdI Transset_0) lemma Ord_succ [TC]: "Ord(i) ==> Ord(succ(i))" by (blast intro: OrdI Transset_succ Ord_is_Transset Ord_contains_Transset) lemmas Ord_1 = Ord_0 [THEN Ord_succ] lemma Ord_succ_iff [iff]: "Ord(succ(i)) <-> Ord(i)" by (blast intro: Ord_succ dest!: Ord_succD) lemma Ord_Un [intro,simp,TC]: "[| Ord(i); Ord(j) |] ==> Ord(i \ j)" apply (unfold Ord_def) apply (blast intro!: Transset_Un) done lemma Ord_Int [TC]: "[| Ord(i); Ord(j) |] ==> Ord(i \ j)" apply (unfold Ord_def) apply (blast intro!: Transset_Int) done text\There is no set of all ordinals, for then it would contain itself\ lemma ON_class: "~ (\i. i\X <-> Ord(i))" proof (rule notI) assume X: "\i. i \ X \ Ord(i)" have "\x y. x\X \ y\x \ y\X" by (simp add: X, blast intro: Ord_in_Ord) hence "Transset(X)" by (auto simp add: Transset_def) moreover have "\x. x \ X \ Transset(x)" by (simp add: X Ord_def) ultimately have "Ord(X)" by (rule OrdI) hence "X \ X" by (simp add: X) thus "False" by (rule mem_irrefl) qed subsection\< is 'less Than' for Ordinals\ lemma ltI: "[| i\j; Ord(j) |] ==> ij; Ord(i); Ord(j) |] ==> P |] ==> P" apply (unfold lt_def) apply (blast intro: Ord_in_Ord) done lemma ltD: "i i\j" by (erule ltE, assumption) lemma not_lt0 [simp]: "~ i<0" by (unfold lt_def, blast) lemma lt_Ord: "j Ord(j)" by (erule ltE, assumption) lemma lt_Ord2: "j Ord(i)" by (erule ltE, assumption) (* @{term"ja \ j ==> Ord(j)"} *) lemmas le_Ord2 = lt_Ord2 [THEN Ord_succD] (* i<0 ==> R *) lemmas lt0E = not_lt0 [THEN notE, elim!] lemma lt_trans [trans]: "[| i i ~ (j j P *) lemmas lt_asym = lt_not_sym [THEN swap] lemma lt_irrefl [elim!]: "i P" by (blast intro: lt_asym) lemma lt_not_refl: "~ iRecall that \<^term>\i \ j\ abbreviates \<^term>\i !!\ lemma le_iff: "i \ j <-> i i < succ(j)*) lemma leI: "i i \ j" by (simp add: le_iff) lemma le_eqI: "[| i=j; Ord(j) |] ==> i \ j" by (simp add: le_iff) lemmas le_refl = refl [THEN le_eqI] lemma le_refl_iff [iff]: "i \ i <-> Ord(i)" by (simp (no_asm_simp) add: lt_not_refl le_iff) lemma leCI: "(~ (i=j & Ord(j)) ==> i i \ j" by (simp add: le_iff, blast) lemma leE: "[| i \ j; i P; [| i=j; Ord(j) |] ==> P |] ==> P" by (simp add: le_iff, blast) lemma le_anti_sym: "[| i \ j; j \ i |] ==> i=j" apply (simp add: le_iff) apply (blast elim: lt_asym) done lemma le0_iff [simp]: "i \ 0 <-> i=0" by (blast elim!: leE) lemmas le0D = le0_iff [THEN iffD1, dest!] subsection\Natural Deduction Rules for Memrel\ (*The lemmas MemrelI/E give better speed than [iff] here*) lemma Memrel_iff [simp]: " \ Memrel(A) <-> a\b & a\A & b\A" by (unfold Memrel_def, blast) lemma MemrelI [intro!]: "[| a \ b; a \ A; b \ A |] ==> \ Memrel(A)" by auto lemma MemrelE [elim!]: "[| \ Memrel(A); [| a \ A; b \ A; a\b |] ==> P |] ==> P" by auto lemma Memrel_type: "Memrel(A) \ A*A" by (unfold Memrel_def, blast) lemma Memrel_mono: "A<=B ==> Memrel(A) \ Memrel(B)" by (unfold Memrel_def, blast) lemma Memrel_0 [simp]: "Memrel(0) = 0" by (unfold Memrel_def, blast) lemma Memrel_1 [simp]: "Memrel(1) = 0" by (unfold Memrel_def, blast) lemma relation_Memrel: "relation(Memrel(A))" by (simp add: relation_def Memrel_def) (*The membership relation (as a set) is well-founded. Proof idea: show A<=B by applying the foundation axiom to A-B *) lemma wf_Memrel: "wf(Memrel(A))" apply (unfold wf_def) apply (rule foundation [THEN disjE, THEN allI], erule disjI1, blast) done text\The premise \<^term>\Ord(i)\ does not suffice.\ lemma trans_Memrel: "Ord(i) ==> trans(Memrel(i))" by (unfold Ord_def Transset_def trans_def, blast) text\However, the following premise is strong enough.\ lemma Transset_trans_Memrel: "\j\i. Transset(j) ==> trans(Memrel(i))" by (unfold Transset_def trans_def, blast) (*If Transset(A) then Memrel(A) internalizes the membership relation below A*) lemma Transset_Memrel_iff: "Transset(A) ==> \ Memrel(A) <-> a\b & b\A" by (unfold Transset_def, blast) subsection\Transfinite Induction\ (*Epsilon induction over a transitive set*) lemma Transset_induct: "[| i \ k; Transset(k); !!x.[| x \ k; \y\x. P(y) |] ==> P(x) |] ==> P(i)" apply (simp add: Transset_def) apply (erule wf_Memrel [THEN wf_induct2], blast+) done (*Induction over an ordinal*) lemma Ord_induct [consumes 2]: "i \ k \ Ord(k) \ (\x. x \ k \ (\y. y \ x \ P(y)) \ P(x)) \ P(i)" using Transset_induct [OF _ Ord_is_Transset, of i k P] by simp (*Induction over the class of ordinals -- a useful corollary of Ord_induct*) lemma trans_induct [consumes 1, case_names step]: "Ord(i) \ (\x. Ord(x) \ (\y. y \ x \ P(y)) \ P(x)) \ P(i)" apply (rule Ord_succ [THEN succI1 [THEN Ord_induct]], assumption) apply (blast intro: Ord_succ [THEN Ord_in_Ord]) done section\Fundamental properties of the epsilon ordering (< on ordinals)\ subsubsection\Proving That < is a Linear Ordering on the Ordinals\ lemma Ord_linear: "Ord(i) \ Ord(j) \ i\j | i=j | j\i" proof (induct i arbitrary: j rule: trans_induct) case (step i) note step_i = step show ?case using \Ord(j)\ proof (induct j rule: trans_induct) case (step j) thus ?case using step_i by (blast dest: Ord_trans) qed qed text\The trichotomy law for ordinals\ lemma Ord_linear_lt: assumes o: "Ord(i)" "Ord(j)" obtains (lt) "i i" apply (rule_tac i = i and j = j in Ord_linear_lt) apply (blast intro: leI le_eqI sym o) + done lemma Ord_linear_le: assumes o: "Ord(i)" "Ord(j)" obtains (le) "i \ j" | (ge) "j \ i" apply (rule_tac i = i and j = j in Ord_linear_lt) apply (blast intro: leI le_eqI o) + done lemma le_imp_not_lt: "j \ i ==> ~ i j \ i" by (rule_tac i = i and j = j in Ord_linear2, auto) subsubsection \Some Rewrite Rules for \<\, \\\\ lemma Ord_mem_iff_lt: "Ord(j) ==> i\j <-> i ~ i j \ i" by (blast dest: le_imp_not_lt not_lt_imp_le) lemma not_le_iff_lt: "[| Ord(i); Ord(j) |] ==> ~ i \ j <-> j 0 \ i" by (erule not_lt_iff_le [THEN iffD1], auto) lemma Ord_0_lt: "[| Ord(i); i\0 |] ==> 0 i\0 <-> 0Results about Less-Than or Equals\ (** For ordinals, @{term"j\i"} implies @{term"j \ i"} (less-than or equals) **) lemma zero_le_succ_iff [iff]: "0 \ succ(x) <-> Ord(x)" by (blast intro: Ord_0_le elim: ltE) lemma subset_imp_le: "[| j<=i; Ord(i); Ord(j) |] ==> j \ i" apply (rule not_lt_iff_le [THEN iffD1], assumption+) apply (blast elim: ltE mem_irrefl) done lemma le_imp_subset: "i \ j ==> i<=j" by (blast dest: OrdmemD elim: ltE leE) lemma le_subset_iff: "j \ i <-> j<=i & Ord(i) & Ord(j)" by (blast dest: subset_imp_le le_imp_subset elim: ltE) lemma le_succ_iff: "i \ succ(j) <-> i \ j | i=succ(j) & Ord(i)" apply (simp (no_asm) add: le_iff) apply blast done (*Just a variant of subset_imp_le*) lemma all_lt_imp_le: "[| Ord(i); Ord(j); !!x. x x j \ i" by (blast intro: not_lt_imp_le dest: lt_irrefl) subsubsection\Transitivity Laws\ lemma lt_trans1: "[| i \ j; j i k |] ==> i j; j \ k |] ==> i \ k" by (blast intro: lt_trans1) lemma succ_leI: "i succ(i) \ j" apply (rule not_lt_iff_le [THEN iffD1]) apply (blast elim: ltE leE lt_asym)+ done (*Identical to succ(i) < succ(j) ==> i j ==> i j <-> i succ(j) ==> i \ j" by (blast dest!: succ_leE) lemma lt_subset_trans: "[| i \ j; j i 0 i j" apply auto apply (blast intro: lt_trans le_refl dest: lt_Ord) apply (frule lt_Ord) apply (rule not_le_iff_lt [THEN iffD1]) apply (blast intro: lt_Ord2) apply blast apply (simp add: lt_Ord lt_Ord2 le_iff) apply (blast dest: lt_asym) done lemma Ord_succ_mem_iff: "Ord(j) ==> succ(i) \ succ(j) <-> i\j" apply (insert succ_le_iff [of i j]) apply (simp add: lt_def) done subsubsection\Union and Intersection\ lemma Un_upper1_le: "[| Ord(i); Ord(j) |] ==> i \ i \ j" by (rule Un_upper1 [THEN subset_imp_le], auto) lemma Un_upper2_le: "[| Ord(i); Ord(j) |] ==> j \ i \ j" by (rule Un_upper2 [THEN subset_imp_le], auto) (*Replacing k by succ(k') yields the similar rule for le!*) lemma Un_least_lt: "[| i i \ j < k" apply (rule_tac i = i and j = j in Ord_linear_le) apply (auto simp add: Un_commute le_subset_iff subset_Un_iff lt_Ord) done lemma Un_least_lt_iff: "[| Ord(i); Ord(j) |] ==> i \ j < k <-> i i \ j \ k <-> i\k & j\k" apply (insert Un_least_lt_iff [of i j k]) apply (simp add: lt_def) done (*Replacing k by succ(k') yields the similar rule for le!*) lemma Int_greatest_lt: "[| i i \ j < k" apply (rule_tac i = i and j = j in Ord_linear_le) apply (auto simp add: Int_commute le_subset_iff subset_Int_iff lt_Ord) done lemma Ord_Un_if: "[| Ord(i); Ord(j) |] ==> i \ j = (if j succ(i \ j) = succ(i) \ succ(j)" by (simp add: Ord_Un_if lt_Ord le_Ord2) lemma lt_Un_iff: "[| Ord(i); Ord(j) |] ==> k < i \ j <-> k < i | k < j" apply (simp add: Ord_Un_if not_lt_iff_le) apply (blast intro: leI lt_trans2)+ done lemma le_Un_iff: "[| Ord(i); Ord(j) |] ==> k \ i \ j <-> k \ i | k \ j" by (simp add: succ_Un_distrib lt_Un_iff [symmetric]) lemma Un_upper1_lt: "[|k < i; Ord(j)|] ==> k < i \ j" by (simp add: lt_Un_iff lt_Ord2) lemma Un_upper2_lt: "[|k < j; Ord(i)|] ==> k < i \ j" by (simp add: lt_Un_iff lt_Ord2) (*See also Transset_iff_Union_succ*) lemma Ord_Union_succ_eq: "Ord(i) ==> \(succ(i)) = i" by (blast intro: Ord_trans) subsection\Results about Limits\ lemma Ord_Union [intro,simp,TC]: "[| !!i. i\A ==> Ord(i) |] ==> Ord(\(A))" apply (rule Ord_is_Transset [THEN Transset_Union_family, THEN OrdI]) apply (blast intro: Ord_contains_Transset)+ done lemma Ord_UN [intro,simp,TC]: "[| !!x. x\A ==> Ord(B(x)) |] ==> Ord(\x\A. B(x))" by (rule Ord_Union, blast) lemma Ord_Inter [intro,simp,TC]: "[| !!i. i\A ==> Ord(i) |] ==> Ord(\(A))" apply (rule Transset_Inter_family [THEN OrdI]) apply (blast intro: Ord_is_Transset) apply (simp add: Inter_def) apply (blast intro: Ord_contains_Transset) done lemma Ord_INT [intro,simp,TC]: "[| !!x. x\A ==> Ord(B(x)) |] ==> Ord(\x\A. B(x))" by (rule Ord_Inter, blast) (* No < version of this theorem: consider that @{term"(\i\nat.i)=nat"}! *) lemma UN_least_le: "[| Ord(i); !!x. x\A ==> b(x) \ i |] ==> (\x\A. b(x)) \ i" apply (rule le_imp_subset [THEN UN_least, THEN subset_imp_le]) apply (blast intro: Ord_UN elim: ltE)+ done lemma UN_succ_least_lt: "[| jA ==> b(x) (\x\A. succ(b(x))) < i" apply (rule ltE, assumption) apply (rule UN_least_le [THEN lt_trans2]) apply (blast intro: succ_leI)+ done lemma UN_upper_lt: "[| a\A; i < b(a); Ord(\x\A. b(x)) |] ==> i < (\x\A. b(x))" by (unfold lt_def, blast) lemma UN_upper_le: "[| a \ A; i \ b(a); Ord(\x\A. b(x)) |] ==> i \ (\x\A. b(x))" apply (frule ltD) apply (rule le_imp_subset [THEN subset_trans, THEN subset_imp_le]) apply (blast intro: lt_Ord UN_upper)+ done lemma lt_Union_iff: "\i\A. Ord(i) ==> (j < \(A)) <-> (\i\A. j J; i\j; Ord(\(J)) |] ==> i \ \J" apply (subst Union_eq_UN) apply (rule UN_upper_le, auto) done lemma le_implies_UN_le_UN: "[| !!x. x\A ==> c(x) \ d(x) |] ==> (\x\A. c(x)) \ (\x\A. d(x))" apply (rule UN_least_le) apply (rule_tac [2] UN_upper_le) apply (blast intro: Ord_UN le_Ord2)+ done lemma Ord_equality: "Ord(i) ==> (\y\i. succ(y)) = i" by (blast intro: Ord_trans) (*Holds for all transitive sets, not just ordinals*) lemma Ord_Union_subset: "Ord(i) ==> \(i) \ i" by (blast intro: Ord_trans) subsection\Limit Ordinals -- General Properties\ lemma Limit_Union_eq: "Limit(i) ==> \(i) = i" apply (unfold Limit_def) apply (fast intro!: ltI elim!: ltE elim: Ord_trans) done lemma Limit_is_Ord: "Limit(i) ==> Ord(i)" apply (unfold Limit_def) apply (erule conjunct1) done lemma Limit_has_0: "Limit(i) ==> 0 < i" apply (unfold Limit_def) apply (erule conjunct2 [THEN conjunct1]) done lemma Limit_nonzero: "Limit(i) ==> i \ 0" by (drule Limit_has_0, blast) lemma Limit_has_succ: "[| Limit(i); j succ(j) < i" by (unfold Limit_def, blast) lemma Limit_succ_lt_iff [simp]: "Limit(i) ==> succ(j) < i <-> (j 1 < i" by (blast intro: Limit_has_0 Limit_has_succ) lemma increasing_LimitI: "[| 0x\l. \y\l. x Limit(l)" apply (unfold Limit_def, simp add: lt_Ord2, clarify) apply (drule_tac i=y in ltD) apply (blast intro: lt_trans1 [OF _ ltI] lt_Ord2) done lemma non_succ_LimitI: assumes i: "0y. succ(y) \ i" shows "Limit(i)" proof - have Oi: "Ord(i)" using i by (simp add: lt_def) { fix y assume yi: "y y" using yi by (blast dest: le_imp_not_lt) hence "succ(y) < i" using nsucc [of y] by (blast intro: Ord_linear_lt [OF Osy Oi]) } thus ?thesis using i Oi by (auto simp add: Limit_def) qed lemma succ_LimitE [elim!]: "Limit(succ(i)) ==> P" apply (rule lt_irrefl) apply (rule Limit_has_succ, assumption) apply (erule Limit_is_Ord [THEN Ord_succD, THEN le_refl]) done lemma not_succ_Limit [simp]: "~ Limit(succ(i))" by blast lemma Limit_le_succD: "[| Limit(i); i \ succ(j) |] ==> i \ j" by (blast elim!: leE) subsubsection\Traditional 3-Way Case Analysis on Ordinals\ lemma Ord_cases_disj: "Ord(i) ==> i=0 | (\j. Ord(j) & i=succ(j)) | Limit(i)" by (blast intro!: non_succ_LimitI Ord_0_lt) lemma Ord_cases: assumes i: "Ord(i)" obtains ("0") "i=0" | (succ) j where "Ord(j)" "i=succ(j)" | (limit) "Limit(i)" by (insert Ord_cases_disj [OF i], auto) lemma trans_induct3_raw: "[| Ord(i); P(0); !!x. [| Ord(x); P(x) |] ==> P(succ(x)); !!x. [| Limit(x); \y\x. P(y) |] ==> P(x) |] ==> P(i)" apply (erule trans_induct) apply (erule Ord_cases, blast+) done lemma trans_induct3 [case_names 0 succ limit, consumes 1]: "Ord(i) \ P(0) \ (\x. Ord(x) \ P(x) \ P(succ(x))) \ (\x. Limit(x) \ (\y. y \ x \ P(y)) \ P(x)) \ P(i)" using trans_induct3_raw [of i P] by simp text\A set of ordinals is either empty, contains its own union, or its union is a limit ordinal.\ lemma Union_le: "[| !!x. x\I ==> x\j; Ord(j) |] ==> \(I) \ j" by (auto simp add: le_subset_iff Union_least) lemma Ord_set_cases: assumes I: "\i\I. Ord(i)" shows "I=0 \ \(I) \ I \ (\(I) \ I \ Limit(\(I)))" proof (cases "\(I)" rule: Ord_cases) show "Ord(\I)" using I by (blast intro: Ord_Union) next assume "\I = 0" thus ?thesis by (simp, blast intro: subst_elem) next fix j assume j: "Ord(j)" and UIj:"\(I) = succ(j)" { assume "\i\I. i\j" hence "\(I) \ j" by (simp add: Union_le j) hence False by (simp add: UIj lt_not_refl) } then obtain i where i: "i \ I" "succ(j) \ i" using I j by (atomize, auto simp add: not_le_iff_lt) have "\(I) \ succ(j)" using UIj j by auto hence "i \ succ(j)" using i by (simp add: le_subset_iff Union_subset_iff) hence "succ(j) = i" using i by (blast intro: le_anti_sym) hence "succ(j) \ I" by (simp add: i) thus ?thesis by (simp add: UIj) next assume "Limit(\I)" thus ?thesis by auto qed text\If the union of a set of ordinals is a successor, then it is an element of that set.\ lemma Ord_Union_eq_succD: "[|\x\X. Ord(x); \X = succ(j)|] ==> succ(j) \ X" by (drule Ord_set_cases, auto) lemma Limit_Union [rule_format]: "[| I \ 0; (\i. i\I \ Limit(i)) |] ==> Limit(\I)" apply (simp add: Limit_def lt_def) apply (blast intro!: equalityI) done end