(* Title: HOL/Wfrec.thy Author: Tobias Nipkow Author: Lawrence C Paulson Author: Konrad Slind *) section \Well-Founded Recursion Combinator\ theory Wfrec imports Wellfounded begin inductive wfrec_rel :: "('a \ 'a) set \ (('a \ 'b) \ ('a \ 'b)) \ 'a \ 'b \ bool" for R F where wfrecI: "(\z. (z, x) \ R \ wfrec_rel R F z (g z)) \ wfrec_rel R F x (F g x)" definition cut :: "('a \ 'b) \ ('a \ 'a) set \ 'a \ 'a \ 'b" where "cut f R x = (\y. if (y, x) \ R then f y else undefined)" definition adm_wf :: "('a \ 'a) set \ (('a \ 'b) \ ('a \ 'b)) \ bool" where "adm_wf R F \ (\f g x. (\z. (z, x) \ R \ f z = g z) \ F f x = F g x)" definition wfrec :: "('a \ 'a) set \ (('a \ 'b) \ ('a \ 'b)) \ ('a \ 'b)" where "wfrec R F = (\x. THE y. wfrec_rel R (\f x. F (cut f R x) x) x y)" lemma cuts_eq: "(cut f R x = cut g R x) \ (\y. (y, x) \ R \ f y = g y)" by (simp add: fun_eq_iff cut_def) lemma cut_apply: "(x, a) \ R \ cut f R a x = f x" by (simp add: cut_def) text \ Inductive characterization of \wfrec\ combinator; for details see: John Harrison, "Inductive definitions: automation and application". \ lemma theI_unique: "\!x. P x \ P x \ x = The P" by (auto intro: the_equality[symmetric] theI) lemma wfrec_unique: assumes "adm_wf R F" "wf R" shows "\!y. wfrec_rel R F x y" using \wf R\ proof induct define f where "f y = (THE z. wfrec_rel R F y z)" for y case (less x) then have "\y z. (y, x) \ R \ wfrec_rel R F y z \ z = f y" unfolding f_def by (rule theI_unique) with \adm_wf R F\ show ?case by (subst wfrec_rel.simps) (auto simp: adm_wf_def) qed lemma adm_lemma: "adm_wf R (\f x. F (cut f R x) x)" by (auto simp: adm_wf_def intro!: arg_cong[where f="\x. F x y" for y] cuts_eq[THEN iffD2]) lemma wfrec: "wf R \ wfrec R F a = F (cut (wfrec R F) R a) a" apply (simp add: wfrec_def) apply (rule adm_lemma [THEN wfrec_unique, THEN the1_equality]) apply assumption apply (rule wfrec_rel.wfrecI) apply (erule adm_lemma [THEN wfrec_unique, THEN theI']) done text \This form avoids giant explosions in proofs. NOTE USE OF \\\.\ lemma def_wfrec: "f \ wfrec R F \ wf R \ f a = F (cut f R a) a" by (auto intro: wfrec) subsubsection \Well-founded recursion via genuine fixpoints\ lemma wfrec_fixpoint: assumes wf: "wf R" and adm: "adm_wf R F" shows "wfrec R F = F (wfrec R F)" proof (rule ext) fix x have "wfrec R F x = F (cut (wfrec R F) R x) x" using wfrec[of R F] wf by simp also have "\y. (y, x) \ R \ cut (wfrec R F) R x y = wfrec R F y" by (auto simp add: cut_apply) then have "F (cut (wfrec R F) R x) x = F (wfrec R F) x" using adm adm_wf_def[of R F] by auto finally show "wfrec R F x = F (wfrec R F) x" . qed subsection \Wellfoundedness of \same_fst\\ definition same_fst :: "('a \ bool) \ ('a \ ('b \ 'b) set) \ (('a \ 'b) \ ('a \ 'b)) set" where "same_fst P R = {((x', y'), (x, y)) . x' = x \ P x \ (y',y) \ R x}" \ \For \<^const>\wfrec\ declarations where the first n parameters stay unchanged in the recursive call.\ lemma same_fstI [intro!]: "P x \ (y', y) \ R x \ ((x, y'), (x, y)) \ same_fst P R" by (simp add: same_fst_def) lemma wf_same_fst: assumes "\x. P x \ wf (R x)" shows "wf (same_fst P R)" proof (clarsimp simp add: wf_def same_fst_def) fix Q a b assume *: "\a b. (\x. P a \ (x,b) \ R a \ Q (a,x)) \ Q (a,b)" show "Q(a,b)" proof (cases "wf (R a)") case True then show ?thesis by (induction b rule: wf_induct_rule) (use * in blast) qed (use * assms in blast) qed end