(* Title: HOL/UNITY/Simple/NSP_Bad.thy Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1996 University of Cambridge Original file is ../Auth/NS_Public_Bad *) section\Analyzing the Needham-Schroeder Public-Key Protocol in UNITY\ theory NSP_Bad imports "HOL-Auth.Public" "../UNITY_Main" begin text\This is the flawed version, vulnerable to Lowe's attack. From page 260 of Burrows, Abadi and Needham. A Logic of Authentication. Proc. Royal Soc. 426 (1989). \ type_synonym state = "event list" (*The spy MAY say anything he CAN say. We do not expect him to invent new nonces here, but he can also use NS1. Common to all similar protocols.*) definition Fake :: "(state*state) set" where "Fake = {(s,s'). \B X. s' = Says Spy B X # s & X \ synth (analz (spies s))}" (*The numeric suffixes on A identify the rule*) (*Alice initiates a protocol run, sending a nonce to Bob*) definition NS1 :: "(state*state) set" where "NS1 = {(s1,s'). \A1 B NA. s' = Says A1 B (Crypt (pubK B) \Nonce NA, Agent A1\) # s1 & Nonce NA \ used s1}" (*Bob responds to Alice's message with a further nonce*) definition NS2 :: "(state*state) set" where "NS2 = {(s2,s'). \A' A2 B NA NB. s' = Says B A2 (Crypt (pubK A2) \Nonce NA, Nonce NB\) # s2 & Says A' B (Crypt (pubK B) \Nonce NA, Agent A2\) \ set s2 & Nonce NB \ used s2}" (*Alice proves her existence by sending NB back to Bob.*) definition NS3 :: "(state*state) set" where "NS3 = {(s3,s'). \A3 B' B NA NB. s' = Says A3 B (Crypt (pubK B) (Nonce NB)) # s3 & Says A3 B (Crypt (pubK B) \Nonce NA, Agent A3\) \ set s3 & Says B' A3 (Crypt (pubK A3) \Nonce NA, Nonce NB\) \ set s3}" definition Nprg :: "state program" where (*Initial trace is empty*) "Nprg = mk_total_program({[]}, {Fake, NS1, NS2, NS3}, UNIV)" declare spies_partsEs [elim] declare analz_into_parts [dest] declare Fake_parts_insert_in_Un [dest] text\For other theories, e.g. Mutex and Lift, using [iff] slows proofs down. Here, it facilitates re-use of the Auth proofs.\ declare Fake_def [THEN def_act_simp, iff] declare NS1_def [THEN def_act_simp, iff] declare NS2_def [THEN def_act_simp, iff] declare NS3_def [THEN def_act_simp, iff] declare Nprg_def [THEN def_prg_Init, simp] text\A "possibility property": there are traces that reach the end. Replace by LEADSTO proof!\ lemma "A \ B ==> \NB. \s \ reachable Nprg. Says A B (Crypt (pubK B) (Nonce NB)) \ set s" apply (intro exI bexI) apply (rule_tac [2] act = "totalize_act NS3" in reachable.Acts) apply (rule_tac [3] act = "totalize_act NS2" in reachable.Acts) apply (rule_tac [4] act = "totalize_act NS1" in reachable.Acts) apply (rule_tac [5] reachable.Init) apply (simp_all (no_asm_simp) add: Nprg_def totalize_act_def) apply auto done subsection\Inductive Proofs about \<^term>\ns_public\\ lemma ns_constrainsI: "(!!act s s'. [| act \ {Id, Fake, NS1, NS2, NS3}; (s,s') \ act; s \ A |] ==> s' \ A') ==> Nprg \ A co A'" apply (simp add: Nprg_def mk_total_program_def) apply (rule constrainsI, auto) done text\This ML code does the inductions directly.\ ML\ fun ns_constrains_tac ctxt i = SELECT_GOAL (EVERY [REPEAT (eresolve_tac ctxt @{thms Always_ConstrainsI} 1), REPEAT (resolve_tac ctxt [@{thm StableI}, @{thm stableI}, @{thm constrains_imp_Constrains}] 1), resolve_tac ctxt @{thms ns_constrainsI} 1, full_simp_tac ctxt 1, REPEAT (FIRSTGOAL (eresolve_tac ctxt [disjE])), ALLGOALS (clarify_tac (ctxt delrules [impI, @{thm impCE}])), REPEAT (FIRSTGOAL (analz_mono_contra_tac ctxt)), ALLGOALS (asm_simp_tac ctxt)]) i; (*Tactic for proving secrecy theorems*) fun ns_induct_tac ctxt = (SELECT_GOAL o EVERY) [resolve_tac ctxt @{thms AlwaysI} 1, force_tac ctxt 1, (*"reachable" gets in here*) resolve_tac ctxt [@{thm Always_reachable} RS @{thm Always_ConstrainsI} RS @{thm StableI}] 1, ns_constrains_tac ctxt 1]; \ method_setup ns_induct = \ Scan.succeed (SIMPLE_METHOD' o ns_induct_tac)\ "for inductive reasoning about the Needham-Schroeder protocol" text\Converts invariants into statements about reachable states\ lemmas Always_Collect_reachableD = Always_includes_reachable [THEN subsetD, THEN CollectD] text\Spy never sees another agent's private key! (unless it's bad at start)\ lemma Spy_see_priK: "Nprg \ Always {s. (Key (priK A) \ parts (spies s)) = (A \ bad)}" apply ns_induct apply blast done declare Spy_see_priK [THEN Always_Collect_reachableD, simp] lemma Spy_analz_priK: "Nprg \ Always {s. (Key (priK A) \ analz (spies s)) = (A \ bad)}" by (rule Always_reachable [THEN Always_weaken], auto) declare Spy_analz_priK [THEN Always_Collect_reachableD, simp] subsection\Authenticity properties obtained from NS2\ text\It is impossible to re-use a nonce in both NS1 and NS2 provided the nonce is secret. (Honest users generate fresh nonces.)\ lemma no_nonce_NS1_NS2: "Nprg \ Always {s. Crypt (pubK C) \NA', Nonce NA\ \ parts (spies s) --> Crypt (pubK B) \Nonce NA, Agent A\ \ parts (spies s) --> Nonce NA \ analz (spies s)}" apply ns_induct apply (blast intro: analz_insertI)+ done text\Adding it to the claset slows down proofs...\ lemmas no_nonce_NS1_NS2_reachable = no_nonce_NS1_NS2 [THEN Always_Collect_reachableD, rule_format] text\Unicity for NS1: nonce NA identifies agents A and B\ lemma unique_NA_lemma: "Nprg \ Always {s. Nonce NA \ analz (spies s) --> Crypt(pubK B) \Nonce NA, Agent A\ \ parts(spies s) --> Crypt(pubK B') \Nonce NA, Agent A'\ \ parts(spies s) --> A=A' & B=B'}" apply ns_induct apply auto txt\Fake, NS1 are non-trivial\ done text\Unicity for NS1: nonce NA identifies agents A and B\ lemma unique_NA: "[| Crypt(pubK B) \Nonce NA, Agent A\ \ parts(spies s); Crypt(pubK B') \Nonce NA, Agent A'\ \ parts(spies s); Nonce NA \ analz (spies s); s \ reachable Nprg |] ==> A=A' & B=B'" by (blast dest: unique_NA_lemma [THEN Always_Collect_reachableD]) text\Secrecy: Spy does not see the nonce sent in msg NS1 if A and B are secure\ lemma Spy_not_see_NA: "[| A \ bad; B \ bad |] ==> Nprg \ Always {s. Says A B (Crypt(pubK B) \Nonce NA, Agent A\) \ set s --> Nonce NA \ analz (spies s)}" apply ns_induct txt\NS3\ prefer 4 apply (blast intro: no_nonce_NS1_NS2_reachable) txt\NS2\ prefer 3 apply (blast dest: unique_NA) txt\NS1\ prefer 2 apply blast txt\Fake\ apply spy_analz done text\Authentication for A: if she receives message 2 and has used NA to start a run, then B has sent message 2.\ lemma A_trusts_NS2: "[| A \ bad; B \ bad |] ==> Nprg \ Always {s. Says A B (Crypt(pubK B) \Nonce NA, Agent A\) \ set s & Crypt(pubK A) \Nonce NA, Nonce NB\ \ parts (knows Spy s) --> Says B A (Crypt(pubK A) \Nonce NA, Nonce NB\) \ set s}" (*insert an invariant for use in some of the subgoals*) apply (insert Spy_not_see_NA [of A B NA], simp, ns_induct) apply (auto dest: unique_NA) done text\If the encrypted message appears then it originated with Alice in NS1\ lemma B_trusts_NS1: "Nprg \ Always {s. Nonce NA \ analz (spies s) --> Crypt (pubK B) \Nonce NA, Agent A\ \ parts (spies s) --> Says A B (Crypt (pubK B) \Nonce NA, Agent A\) \ set s}" apply ns_induct apply blast done subsection\Authenticity properties obtained from NS2\ text\Unicity for NS2: nonce NB identifies nonce NA and agent A. Proof closely follows that of \unique_NA\.\ lemma unique_NB_lemma: "Nprg \ Always {s. Nonce NB \ analz (spies s) --> Crypt (pubK A) \Nonce NA, Nonce NB\ \ parts (spies s) --> Crypt(pubK A') \Nonce NA', Nonce NB\ \ parts(spies s) --> A=A' & NA=NA'}" apply ns_induct apply auto txt\Fake, NS2 are non-trivial\ done lemma unique_NB: "[| Crypt(pubK A) \Nonce NA, Nonce NB\ \ parts(spies s); Crypt(pubK A') \Nonce NA', Nonce NB\ \ parts(spies s); Nonce NB \ analz (spies s); s \ reachable Nprg |] ==> A=A' & NA=NA'" apply (blast dest: unique_NB_lemma [THEN Always_Collect_reachableD]) done text\NB remains secret PROVIDED Alice never responds with round 3\ lemma Spy_not_see_NB: "[| A \ bad; B \ bad |] ==> Nprg \ Always {s. Says B A (Crypt (pubK A) \Nonce NA, Nonce NB\) \ set s & (\C. Says A C (Crypt (pubK C) (Nonce NB)) \ set s) --> Nonce NB \ analz (spies s)}" apply ns_induct apply (simp_all (no_asm_simp) add: all_conj_distrib) txt\NS3: because NB determines A\ prefer 4 apply (blast dest: unique_NB) txt\NS2: by freshness and unicity of NB\ prefer 3 apply (blast intro: no_nonce_NS1_NS2_reachable) txt\NS1: by freshness\ prefer 2 apply blast txt\Fake\ apply spy_analz done text\Authentication for B: if he receives message 3 and has used NB in message 2, then A has sent message 3--to somebody....\ lemma B_trusts_NS3: "[| A \ bad; B \ bad |] ==> Nprg \ Always {s. Crypt (pubK B) (Nonce NB) \ parts (spies s) & Says B A (Crypt (pubK A) \Nonce NA, Nonce NB\) \ set s --> (\C. Says A C (Crypt (pubK C) (Nonce NB)) \ set s)}" (*insert an invariant for use in some of the subgoals*) apply (insert Spy_not_see_NB [of A B NA NB], simp, ns_induct) apply (simp_all (no_asm_simp) add: ex_disj_distrib) apply auto txt\NS3: because NB determines A. This use of \unique_NB\ is robust.\ apply (blast intro: unique_NB [THEN conjunct1]) done text\Can we strengthen the secrecy theorem? NO\ lemma "[| A \ bad; B \ bad |] ==> Nprg \ Always {s. Says B A (Crypt (pubK A) \Nonce NA, Nonce NB\) \ set s --> Nonce NB \ analz (spies s)}" apply ns_induct apply auto txt\Fake\ apply spy_analz txt\NS2: by freshness and unicity of NB\ apply (blast intro: no_nonce_NS1_NS2_reachable) txt\NS3: unicity of NB identifies A and NA, but not B\ apply (frule_tac A'=A in Says_imp_spies [THEN parts.Inj, THEN unique_NB]) apply (erule Says_imp_spies [THEN parts.Inj], auto) apply (rename_tac s B' C) txt\This is the attack! @{subgoals[display,indent=0,margin=65]} \ oops (* THIS IS THE ATTACK! [| A \ bad; B \ bad |] ==> Nprg \ Always {s. Says B A (Crypt (pubK A) \Nonce NA, Nonce NB\) \ set s --> Nonce NB \ analz (knows Spy s)} 1. !!s B' C. [| A \ bad; B \ bad; s \ reachable Nprg Says A C (Crypt (pubK C) \Nonce NA, Agent A\) \ set s; Says B' A (Crypt (pubK A) \Nonce NA, Nonce NB\) \ set s; C \ bad; Says B A (Crypt (pubK A) \Nonce NA, Nonce NB\) \ set s; Nonce NB \ analz (knows Spy s) |] ==> False *) end