(* Title: HOL/Tools/Lifting/lifting_def_code_dt.ML Author: Ondrej Kuncar Workaround that allows us to execute lifted constants that have as a return type a datatype containing a subtype; lift_definition command *) signature LIFTING_DEF_CODE_DT = sig type rep_isom_data val isom_of_rep_isom_data: rep_isom_data -> term val transfer_of_rep_isom_data: rep_isom_data -> thm val bundle_name_of_rep_isom_data: rep_isom_data -> string val pointer_of_rep_isom_data: rep_isom_data -> string type code_dt val rty_of_code_dt: code_dt -> typ val qty_of_code_dt: code_dt -> typ val wit_of_code_dt: code_dt -> term val wit_thm_of_code_dt: code_dt -> thm val rep_isom_data_of_code_dt: code_dt -> rep_isom_data option val morph_code_dt: morphism -> code_dt -> code_dt val mk_witness_of_code_dt: typ -> code_dt -> term val mk_rep_isom_of_code_dt: typ -> code_dt -> term option val code_dt_of: Proof.context -> typ * typ -> code_dt option val code_dt_of_global: theory -> typ * typ -> code_dt option val all_code_dt_of: Proof.context -> code_dt list val all_code_dt_of_global: theory -> code_dt list type config_code_dt = { code_dt: bool, lift_config: Lifting_Def.config } val default_config_code_dt: config_code_dt val add_lift_def_code_dt: config_code_dt -> binding * mixfix -> typ -> term -> thm -> thm list -> local_theory -> Lifting_Def.lift_def * local_theory val lift_def_code_dt: config_code_dt -> binding * mixfix -> typ -> term -> (Proof.context -> tactic) -> thm list -> local_theory -> Lifting_Def.lift_def * local_theory val lift_def_cmd: string list * (binding * string option * mixfix) * string * (Facts.ref * Token.src list) list -> local_theory -> Proof.state end structure Lifting_Def_Code_Dt: LIFTING_DEF_CODE_DT = struct open Ctr_Sugar_Util BNF_Util BNF_FP_Util BNF_FP_Def_Sugar Lifting_Def Lifting_Util infix 0 MRSL (** data structures **) (* all type variables in qty are in rty *) datatype rep_isom_data = REP_ISOM of { isom: term, transfer: thm, bundle_name: string, pointer: string } fun isom_of_rep_isom_data (REP_ISOM rep_isom) = #isom rep_isom; fun transfer_of_rep_isom_data (REP_ISOM rep_isom) = #transfer rep_isom; fun bundle_name_of_rep_isom_data (REP_ISOM rep_isom) = #bundle_name rep_isom; fun pointer_of_rep_isom_data (REP_ISOM rep_isom) = #pointer rep_isom; datatype code_dt = CODE_DT of { rty: typ, qty: typ, wit: term, wit_thm: thm, rep_isom_data: rep_isom_data option }; fun rty_of_code_dt (CODE_DT code_dt) = #rty code_dt; fun qty_of_code_dt (CODE_DT code_dt) = #qty code_dt; fun wit_of_code_dt (CODE_DT code_dt) = #wit code_dt; fun wit_thm_of_code_dt (CODE_DT code_dt) = #wit_thm code_dt; fun rep_isom_data_of_code_dt (CODE_DT code_dt) = #rep_isom_data code_dt; fun ty_alpha_equiv (T, U) = Type.raw_instance (T, U) andalso Type.raw_instance (U, T); fun code_dt_eq c = (ty_alpha_equiv o apply2 rty_of_code_dt) c andalso (ty_alpha_equiv o apply2 qty_of_code_dt) c; fun term_of_code_dt code_dt = code_dt |> `rty_of_code_dt ||> qty_of_code_dt |> HOLogic.mk_prodT |> Net.encode_type |> single; (* modulo renaming, typ must contain TVars *) fun is_code_dt_of_type (rty, qty) code_dt = code_dt |> `rty_of_code_dt ||> qty_of_code_dt |> HOLogic.mk_prodT |> curry ty_alpha_equiv (HOLogic.mk_prodT (rty, qty)); fun mk_rep_isom_data isom transfer bundle_name pointer = REP_ISOM { isom = isom, transfer = transfer, bundle_name = bundle_name, pointer = pointer} fun mk_code_dt rty qty wit wit_thm rep_isom_data = CODE_DT { rty = rty, qty = qty, wit = wit, wit_thm = wit_thm, rep_isom_data = rep_isom_data }; fun map_rep_isom_data f1 f2 f3 f4 (REP_ISOM { isom = isom, transfer = transfer, bundle_name = bundle_name, pointer = pointer }) = REP_ISOM { isom = f1 isom, transfer = f2 transfer, bundle_name = f3 bundle_name, pointer = f4 pointer }; fun map_code_dt f1 f2 f3 f4 f5 f6 f7 f8 (CODE_DT {rty = rty, qty = qty, wit = wit, wit_thm = wit_thm, rep_isom_data = rep_isom_data}) = CODE_DT {rty = f1 rty, qty = f2 qty, wit = f3 wit, wit_thm = f4 wit_thm, rep_isom_data = Option.map (map_rep_isom_data f5 f6 f7 f8) rep_isom_data}; fun update_rep_isom isom transfer binding pointer i = mk_code_dt (rty_of_code_dt i) (qty_of_code_dt i) (wit_of_code_dt i) (wit_thm_of_code_dt i) (SOME (mk_rep_isom_data isom transfer binding pointer)) fun morph_code_dt phi = let val mty = Morphism.typ phi val mterm = Morphism.term phi val mthm = Morphism.thm phi in map_code_dt mty mty mterm mthm mterm mthm I I end val transfer_code_dt = morph_code_dt o Morphism.transfer_morphism; structure Data = Generic_Data ( type T = code_dt Item_Net.T val empty = Item_Net.init code_dt_eq term_of_code_dt val extend = I val merge = Item_Net.merge ); fun code_dt_of_generic context (rty, qty) = let val typ = HOLogic.mk_prodT (rty, qty) val prefiltred = Item_Net.retrieve_matching (Data.get context) (Net.encode_type typ) in prefiltred |> filter (is_code_dt_of_type (rty, qty)) |> map (transfer_code_dt (Context.theory_of context)) |> find_first (fn _ => true) end; fun code_dt_of ctxt (rty, qty) = let val sch_rty = Logic.type_map (singleton (Variable.polymorphic ctxt)) rty val sch_qty = Logic.type_map (singleton (Variable.polymorphic ctxt)) qty in code_dt_of_generic (Context.Proof ctxt) (sch_rty, sch_qty) end; fun code_dt_of_global thy (rty, qty) = let val sch_rty = Logic.varifyT_global rty val sch_qty = Logic.varifyT_global qty in code_dt_of_generic (Context.Theory thy) (sch_rty, sch_qty) end; fun all_code_dt_of_generic context = Item_Net.content (Data.get context) |> map (transfer_code_dt (Context.theory_of context)); val all_code_dt_of = all_code_dt_of_generic o Context.Proof; val all_code_dt_of_global = all_code_dt_of_generic o Context.Theory; fun update_code_dt code_dt = Local_Theory.open_target #> snd #> Local_Theory.declaration {syntax = false, pervasive = true} (fn phi => Data.map (Item_Net.update (morph_code_dt phi code_dt))) #> Local_Theory.close_target fun mk_match_of_code_dt qty code_dt = Vartab.empty |> Type.raw_match (qty_of_code_dt code_dt, qty) |> Vartab.dest |> map (fn (x, (S, T)) => (TVar (x, S), T)); fun mk_witness_of_code_dt qty code_dt = Term.subst_atomic_types (mk_match_of_code_dt qty code_dt) (wit_of_code_dt code_dt) fun mk_rep_isom_of_code_dt qty code_dt = Option.map (isom_of_rep_isom_data #> Term.subst_atomic_types (mk_match_of_code_dt qty code_dt)) (rep_isom_data_of_code_dt code_dt) (** unique name for a type **) fun var_name name sort = if sort = \<^sort>\{type}\ orelse sort = [] then ["x" ^ name] else "x" ^ name :: "x_" :: sort @ ["x_"]; fun concat_Tnames (Type (name, ts)) = name :: maps concat_Tnames ts | concat_Tnames (TFree (name, sort)) = var_name name sort | concat_Tnames (TVar ((name, _), sort)) = var_name name sort; fun unique_Tname (rty, qty) = let val Tnames = map Long_Name.base_name (concat_Tnames rty @ ["x_x"] @ concat_Tnames qty); in fold (Binding.qualify false) (tl Tnames) (Binding.name (hd Tnames)) end; (** witnesses **) fun mk_undefined T = Const (\<^const_name>\undefined\, T); fun mk_witness quot_thm = let val wit_thm = quot_thm RS @{thm type_definition_Quotient_not_empty_witness} val wit = quot_thm_rep quot_thm $ mk_undefined (quot_thm_rty_qty quot_thm |> snd) in (wit, wit_thm) end (** config **) type config_code_dt = { code_dt: bool, lift_config: config } val default_config_code_dt = { code_dt = false, lift_config = default_config } (** Main code **) val ld_no_notes = { notes = false } fun comp_lift_error _ _ = error "Composition of abstract types has not been implemented yet." fun lift qty (quot_thm, (lthy, rel_eq_onps)) = let val quot_thm = Lifting_Term.force_qty_type lthy qty quot_thm val (rty, qty) = quot_thm_rty_qty quot_thm; in if is_none (code_dt_of lthy (rty, qty)) then let val (wit, wit_thm) = (mk_witness quot_thm handle THM _ => error ("code_dt: " ^ quote (Tname qty) ^ " was not defined as a subtype.")) val code_dt = mk_code_dt rty qty wit wit_thm NONE in (quot_thm, (update_code_dt code_dt lthy, rel_eq_onps)) end else (quot_thm, (lthy, rel_eq_onps)) end; fun case_tac rule = Subgoal.FOCUS_PARAMS (fn {context = ctxt, params, ...} => HEADGOAL (rtac ctxt (infer_instantiate' ctxt [SOME (snd (hd params))] rule))); fun bundle_name_of_bundle_binding binding phi context = Name_Space.full_name (Name_Space.naming_of context) (Morphism.binding phi binding); fun prove_schematic_quot_thm actions ctxt = Lifting_Term.prove_schematic_quot_thm actions (Lifting_Info.get_quotients ctxt) ctxt fun prove_code_dt (rty, qty) lthy = let val (fold_quot_thm: (local_theory * thm list) Lifting_Term.fold_quot_thm) = { constr = constr, lift = lift, comp_lift = comp_lift_error }; in prove_schematic_quot_thm fold_quot_thm lthy (rty, qty) (lthy, []) |> snd end and add_lift_def_code_dt config var qty rhs rsp_thm par_thms lthy = let fun binop_conv2 cv1 cv2 = Conv.combination_conv (Conv.arg_conv cv1) cv2 fun ret_rel_conv conv ctm = case (Thm.term_of ctm) of Const (\<^const_name>\rel_fun\, _) $ _ $ _ => binop_conv2 Conv.all_conv conv ctm | _ => conv ctm fun R_conv rel_eq_onps = Transfer.top_sweep_rewr_conv @{thms eq_onp_top_eq_eq[symmetric, THEN eq_reflection]} then_conv Transfer.bottom_rewr_conv rel_eq_onps val (ret_lift_def, lthy1) = add_lift_def (#lift_config config) var qty rhs rsp_thm par_thms lthy in if (not (#code_dt config) orelse (code_eq_of_lift_def ret_lift_def <> NONE_EQ) andalso (code_eq_of_lift_def ret_lift_def <> UNKNOWN_EQ)) (* Let us try even in case of UNKNOWN_EQ. If this leads to problems, the user can always say that they do not want this workaround. *) then (ret_lift_def, lthy1) else let val lift_def = inst_of_lift_def lthy1 qty ret_lift_def val rty = rty_of_lift_def lift_def val rty_ret = body_type rty val qty_ret = body_type qty val (lthy2, rel_eq_onps) = prove_code_dt (rty_ret, qty_ret) lthy1 val code_dt = code_dt_of lthy2 (rty_ret, qty_ret) in if is_none code_dt orelse is_none (rep_isom_data_of_code_dt (the code_dt)) then (ret_lift_def, lthy2) else let val code_dt = the code_dt val rhs = dest_comb (rhs_of_lift_def lift_def) |> snd val rep_isom_data = code_dt |> rep_isom_data_of_code_dt |> the val pointer = pointer_of_rep_isom_data rep_isom_data val quot_active = Lifting_Info.lookup_restore_data lthy2 pointer |> the |> #quotient |> #quot_thm |> Lifting_Info.lookup_quot_thm_quotients lthy2 |> is_some val qty_code_dt_bundle_name = bundle_name_of_rep_isom_data rep_isom_data val rep_isom = mk_rep_isom_of_code_dt qty_ret code_dt |> the val lthy3 = if quot_active then lthy2 else Bundle.includes [qty_code_dt_bundle_name] lthy2 fun qty_isom_of_rep_isom rep = rep |> dest_Const |> snd |> domain_type val qty_isom = qty_isom_of_rep_isom rep_isom val f'_var = (Binding.suffix_name "_aux" (fst var), NoSyn); val f'_qty = strip_type qty |> fst |> rpair qty_isom |> op ---> val f'_rsp_rel = Lifting_Term.equiv_relation lthy3 (rty, f'_qty); val rsp = rsp_thm_of_lift_def lift_def val rel_eq_onps_conv = HOLogic.Trueprop_conv (Conv.fun2_conv (ret_rel_conv (R_conv rel_eq_onps))) val rsp_norm = Conv.fconv_rule rel_eq_onps_conv rsp val f'_rsp_goal = HOLogic.mk_Trueprop (f'_rsp_rel $ rhs $ rhs); val f'_rsp = Goal.prove_sorry lthy3 [] [] f'_rsp_goal (fn {context = ctxt, prems = _} => HEADGOAL (CONVERSION (rel_eq_onps_conv) THEN' rtac ctxt rsp_norm)) |> Thm.close_derivation \<^here> val (f'_lift_def, lthy4) = add_lift_def ld_no_notes f'_var f'_qty rhs f'_rsp [] lthy3 val f'_lift_def = inst_of_lift_def lthy4 f'_qty f'_lift_def val f'_lift_const = mk_lift_const_of_lift_def f'_qty f'_lift_def val (args, args_ctxt) = mk_Frees "x" (binder_types qty) lthy4 val f_alt_def_goal_lhs = list_comb (lift_const_of_lift_def lift_def, args); val f_alt_def_goal_rhs = rep_isom $ list_comb (f'_lift_const, args); val f_alt_def_goal = HOLogic.mk_Trueprop (HOLogic.mk_eq (f_alt_def_goal_lhs, f_alt_def_goal_rhs)); fun f_alt_def_tac ctxt i = EVERY' [Transfer.gen_frees_tac [] ctxt, DETERM o Transfer.transfer_tac true ctxt, SELECT_GOAL (Local_Defs.unfold0_tac ctxt [id_apply]), rtac ctxt refl] i; val rep_isom_transfer = transfer_of_rep_isom_data rep_isom_data val (_, transfer_ctxt) = args_ctxt |> Proof_Context.note_thms "" (Binding.empty_atts, [([rep_isom_transfer], [Transfer.transfer_add])]) val f_alt_def = Goal.prove_sorry transfer_ctxt [] [] f_alt_def_goal (fn {context = goal_ctxt, ...} => HEADGOAL (f_alt_def_tac goal_ctxt)) |> Thm.close_derivation \<^here> |> singleton (Variable.export transfer_ctxt lthy4) val lthy5 = lthy4 |> Local_Theory.note ((Binding.empty, @{attributes [code]}), [f_alt_def]) |> snd (* if processing a mutual datatype (there is a cycle!) the corresponding quotient will be needed later and will be forgotten later *) |> (if quot_active then I else Lifting_Setup.lifting_forget pointer) in (ret_lift_def, lthy5) end end end and mk_rep_isom qty_isom_bundle (rty, qty, qty_isom) lthy0 = let (* logical definition of qty qty_isom isomorphism *) val uTname = unique_Tname (rty, qty) fun eq_onp_to_top_tac ctxt = SELECT_GOAL (Local_Defs.unfold0_tac ctxt (@{thm eq_onp_top_eq_eq[symmetric]} :: Lifting_Info.get_relator_eq_onp_rules ctxt)) fun lift_isom_tac ctxt = HEADGOAL (eq_onp_to_top_tac ctxt THEN' (rtac ctxt @{thm id_transfer})); val (rep_isom_lift_def, lthy1) = lthy0 |> Local_Theory.open_target |> snd |> lift_def ld_no_notes (Binding.qualify_name true uTname "Rep_isom", NoSyn) (qty_isom --> qty) (HOLogic.id_const rty) lift_isom_tac [] |>> inst_of_lift_def lthy0 (qty_isom --> qty); val (abs_isom, lthy2) = lthy1 |> lift_def ld_no_notes (Binding.qualify_name true uTname "Abs_isom", NoSyn) (qty --> qty_isom) (HOLogic.id_const rty) lift_isom_tac [] |>> mk_lift_const_of_lift_def (qty --> qty_isom); val rep_isom = lift_const_of_lift_def rep_isom_lift_def val pointer = Lifting_Setup.pointer_of_bundle_binding lthy2 qty_isom_bundle fun code_dt phi context = code_dt_of lthy2 (rty, qty) |> the |> update_rep_isom rep_isom (transfer_rules_of_lift_def rep_isom_lift_def |> hd) (bundle_name_of_bundle_binding qty_isom_bundle phi context) pointer; val lthy3 = lthy2 |> Local_Theory.declaration {syntax = false, pervasive = true} (fn phi => fn context => Data.map (Item_Net.update (morph_code_dt phi (code_dt phi context))) context) |> Local_Theory.close_target (* in order to make the qty qty_isom isomorphism executable we have to define discriminators and selectors for qty_isom *) val (rty_name, typs) = dest_Type rty val (_, qty_typs) = dest_Type qty val fp = BNF_FP_Def_Sugar.fp_sugar_of lthy3 rty_name val fp = if is_some fp then the fp else error ("code_dt: " ^ quote rty_name ^ " is not a datatype.") val ctr_sugar = fp |> #fp_ctr_sugar |> #ctr_sugar val ctrs = map (Ctr_Sugar.mk_ctr typs) (#ctrs ctr_sugar); val qty_ctrs = map (Ctr_Sugar.mk_ctr qty_typs) (#ctrs ctr_sugar); val ctr_Tss = map (dest_Const #> snd #> binder_types) ctrs; val qty_ctr_Tss = map (dest_Const #> snd #> binder_types) qty_ctrs; val n = length ctrs; val ks = 1 upto n; val (xss, _) = mk_Freess "x" ctr_Tss lthy3; fun sel_retT (rty' as Type (s, rtys'), qty' as Type (s', qtys')) = if (rty', qty') = (rty, qty) then qty_isom else (if s = s' then Type (s, map sel_retT (rtys' ~~ qtys')) else qty') | sel_retT (_, qty') = qty'; val sel_retTs = map2 (map2 (sel_retT oo pair)) ctr_Tss qty_ctr_Tss fun lazy_prove_code_dt (rty, qty) lthy = if is_none (code_dt_of lthy (rty, qty)) then prove_code_dt (rty, qty) lthy |> fst else lthy; val lthy4 = fold2 (fold2 (lazy_prove_code_dt oo pair)) ctr_Tss sel_retTs lthy3 val sel_argss = @{map 4} (fn k => fn xs => @{map 2} (fn x => fn qty_ret => (k, qty_ret, (xs, x)))) ks xss xss sel_retTs; fun mk_sel_casex (_, _, (_, x)) = Ctr_Sugar.mk_case typs (x |> dest_Free |> snd) (#casex ctr_sugar); val dis_casex = Ctr_Sugar.mk_case typs HOLogic.boolT (#casex ctr_sugar); fun mk_sel_case_args lthy ctr_Tss ks (k, qty_ret, (xs, x)) = let val T = x |> dest_Free |> snd; fun gen_undef_wit Ts wits = case code_dt_of lthy (T, qty_ret) of SOME code_dt => (fold_rev (Term.lambda o curry Free Name.uu) Ts (mk_witness_of_code_dt qty_ret code_dt), wit_thm_of_code_dt code_dt :: wits) | NONE => (fold_rev (Term.lambda o curry Free Name.uu) Ts (mk_undefined T), wits) in @{fold_map 2} (fn Ts => fn k' => fn wits => (if k = k' then (fold_rev Term.lambda xs x, wits) else gen_undef_wit Ts wits)) ctr_Tss ks [] end; fun mk_sel_rhs arg = let val (sel_rhs, wits) = mk_sel_case_args lthy4 ctr_Tss ks arg in (arg |> #2, wits, list_comb (mk_sel_casex arg, sel_rhs)) end; fun mk_dis_case_args args k = map (fn (k', arg) => (if k = k' then fold_rev Term.lambda arg \<^const>\True\ else fold_rev Term.lambda arg \<^const>\False\)) args; val sel_rhs = map (map mk_sel_rhs) sel_argss val dis_rhs = map (fn k => list_comb (dis_casex, mk_dis_case_args (ks ~~ xss) k)) ks val dis_qty = qty_isom --> HOLogic.boolT; val dis_names = map (fn k => Binding.qualify_name true uTname ("dis" ^ string_of_int k)) ks; val (diss, lthy5) = @{fold_map 2} (fn b => fn rhs => fn lthy => lift_def ld_no_notes (b, NoSyn) dis_qty rhs (K all_tac) [] lthy |>> mk_lift_const_of_lift_def dis_qty) dis_names dis_rhs lthy4 val unfold_lift_sel_rsp = @{lemma "(\x. P1 x \ P2 (f x)) \ (rel_fun (eq_onp P1) (eq_onp P2)) f f" by (simp add: eq_onp_same_args rel_fun_eq_onp_rel)} fun lift_sel_tac exhaust_rule dt_rules wits ctxt i = (Method.insert_tac ctxt wits THEN' eq_onp_to_top_tac ctxt THEN' (* normalize *) rtac ctxt unfold_lift_sel_rsp THEN' case_tac exhaust_rule ctxt THEN_ALL_NEW ( EVERY' [hyp_subst_tac ctxt, (* does not kill wits because = was rewritten to eq_onp top *) Raw_Simplifier.rewrite_goal_tac ctxt (map safe_mk_meta_eq dt_rules), REPEAT_DETERM o etac ctxt conjE, assume_tac ctxt])) i val pred_simps = Transfer.lookup_pred_data lthy5 (Tname rty) |> the |> Transfer.pred_simps val sel_tac = lift_sel_tac (#exhaust ctr_sugar) (#case_thms ctr_sugar @ pred_simps) val sel_names = map (fn (k, xs) => map (fn k' => Binding.qualify_name true uTname ("sel" ^ string_of_int k ^ string_of_int k')) (1 upto length xs)) (ks ~~ ctr_Tss); val (selss, lthy6) = @{fold_map 2} (@{fold_map 2} (fn b => fn (qty_ret, wits, rhs) => fn lthy => lift_def_code_dt { code_dt = true, lift_config = ld_no_notes } (b, NoSyn) (qty_isom --> qty_ret) rhs (HEADGOAL o sel_tac wits) [] lthy |>> mk_lift_const_of_lift_def (qty_isom --> qty_ret))) sel_names sel_rhs lthy5 (* now we can execute the qty qty_isom isomorphism *) fun mk_type_definition newT oldT RepC AbsC A = let val typedefC = Const (\<^const_name>\type_definition\, (newT --> oldT) --> (oldT --> newT) --> HOLogic.mk_setT oldT --> HOLogic.boolT); in typedefC $ RepC $ AbsC $ A end; val typedef_goal = mk_type_definition qty_isom qty rep_isom abs_isom (HOLogic.mk_UNIV qty) |> HOLogic.mk_Trueprop; fun typ_isom_tac ctxt i = EVERY' [ SELECT_GOAL (Local_Defs.unfold0_tac ctxt @{thms type_definition_def}), DETERM o Transfer.transfer_tac true ctxt, SELECT_GOAL (Local_Defs.unfold0_tac ctxt @{thms eq_onp_top_eq_eq}) (* normalize *), Raw_Simplifier.rewrite_goal_tac ctxt (map safe_mk_meta_eq @{thms id_apply simp_thms Ball_def}), rtac ctxt TrueI] i; val (_, transfer_ctxt) = Proof_Context.note_thms "" (Binding.empty_atts, [(@{thms right_total_UNIV_transfer}, [Transfer.transfer_add]), (@{thms Domain_eq_top}, [Transfer.transfer_domain_add])]) lthy6; val quot_thm_isom = Goal.prove_sorry transfer_ctxt [] [] typedef_goal (fn {context = goal_ctxt, ...} => typ_isom_tac goal_ctxt 1) |> Thm.close_derivation \<^here> |> singleton (Variable.export transfer_ctxt lthy6) |> (fn thm => @{thm UNIV_typedef_to_Quotient} OF [thm, @{thm reflexive}]) val qty_isom_name = Tname qty_isom; val quot_isom_rep = let val (quotients : Lifting_Term.quotients) = Symtab.insert (Lifting_Info.quotient_eq) (qty_isom_name, {quot_thm = quot_thm_isom, pcr_info = NONE}) Symtab.empty val id_actions = { constr = K I, lift = K I, comp_lift = K I } in fn ctxt => fn (rty, qty) => Lifting_Term.prove_schematic_quot_thm id_actions quotients ctxt (rty, qty) () |> fst |> Lifting_Term.force_qty_type ctxt qty |> quot_thm_rep end; val (x, x_ctxt) = yield_singleton (mk_Frees "x") qty_isom lthy6; fun mk_ctr ctr ctr_Ts sels = let val sel_ret_Ts = map (dest_Const #> snd #> body_type) sels; fun rep_isom lthy t (rty, qty) = let val rep = quot_isom_rep lthy (rty, qty) in if is_Const rep andalso (rep |> dest_Const |> fst) = \<^const_name>\id\ then t else rep $ t end; in @{fold 3} (fn sel => fn ctr_T => fn sel_ret_T => fn ctr => ctr $ rep_isom x_ctxt (sel $ x) (ctr_T, sel_ret_T)) sels ctr_Ts sel_ret_Ts ctr end; (* stolen from Metis *) exception BREAK_LIST fun break_list (x :: xs) = (x, xs) | break_list _ = raise BREAK_LIST val (ctr, ctrs) = qty_ctrs |> rev |> break_list; val (ctr_Ts, ctr_Tss) = qty_ctr_Tss |> rev |> break_list; val (sel, rselss) = selss |> rev |> break_list; val rdiss = rev diss |> tl; val first_ctr = mk_ctr ctr ctr_Ts sel; fun mk_If_ctr dis ctr ctr_Ts sel elsex = mk_If (dis$x) (mk_ctr ctr ctr_Ts sel) elsex; val rhs = @{fold 4} mk_If_ctr rdiss ctrs ctr_Tss rselss first_ctr; val rep_isom_code_goal = HOLogic.mk_Trueprop (HOLogic.mk_eq (rep_isom$x, rhs)); local val rep_isom_code_tac_rules = map safe_mk_meta_eq @{thms refl id_apply if_splits simp_thms} in fun rep_isom_code_tac (ctr_sugar:Ctr_Sugar.ctr_sugar) ctxt i = let val exhaust = ctr_sugar |> #exhaust val cases = ctr_sugar |> #case_thms val map_ids = fp |> #fp_nesting_bnfs |> map BNF_Def.map_id0_of_bnf val simp_rules = map safe_mk_meta_eq (cases @ map_ids) @ rep_isom_code_tac_rules in EVERY' [Transfer.gen_frees_tac [] ctxt, DETERM o (Transfer.transfer_tac true ctxt), case_tac exhaust ctxt THEN_ALL_NEW EVERY' [hyp_subst_tac ctxt, Raw_Simplifier.rewrite_goal_tac ctxt simp_rules, rtac ctxt TrueI ]] i end end (* stolen from bnf_fp_n2m.ML *) fun force_typ ctxt T = Term.map_types Type_Infer.paramify_vars #> Type.constraint T #> singleton (Type_Infer_Context.infer_types ctxt); (* The following tests that types in rty have corresponding arities imposed by constraints of the datatype fp. Otherwise rep_isom_code_tac could fail (especially transfer in it) is such a way that it is not easy to infer the problem with sorts. *) val _ = yield_singleton (mk_Frees "x") (#T fp) x_ctxt |> fst |> force_typ x_ctxt qty val rep_isom_code = Goal.prove_sorry x_ctxt [] [] rep_isom_code_goal (fn {context = goal_ctxt, ...} => rep_isom_code_tac ctr_sugar goal_ctxt 1) |> Thm.close_derivation \<^here> |> singleton(Variable.export x_ctxt lthy6) in lthy6 |> snd o Local_Theory.note ((Binding.empty, @{attributes [code]}), [rep_isom_code]) |> Lifting_Setup.lifting_forget pointer |> pair (selss, diss, rep_isom_code) end and constr qty (quot_thm, (lthy0, rel_eq_onps)) = let val quot_thm = Lifting_Term.force_qty_type lthy0 qty quot_thm val (rty, qty) = quot_thm_rty_qty quot_thm val rty_name = Tname rty; val pred_data = Transfer.lookup_pred_data lthy0 rty_name val pred_data = if is_some pred_data then the pred_data else error ("code_dt: " ^ quote rty_name ^ " is not a datatype.") val rel_eq_onp = safe_mk_meta_eq (Transfer.rel_eq_onp pred_data); val rel_eq_onps = insert Thm.eq_thm rel_eq_onp rel_eq_onps val R_conv = Transfer.top_sweep_rewr_conv @{thms eq_onp_top_eq_eq[symmetric, THEN eq_reflection]} then_conv Conv.rewr_conv rel_eq_onp val quot_thm = Conv.fconv_rule(HOLogic.Trueprop_conv (Quotient_R_conv R_conv)) quot_thm; in if is_none (code_dt_of lthy0 (rty, qty)) then let val non_empty_pred = quot_thm RS @{thm type_definition_Quotient_not_empty} val pred = quot_thm_rel quot_thm |> dest_comb |> snd; val (pred, lthy1) = lthy0 |> Local_Theory.open_target |> snd |> yield_singleton (Variable.import_terms true) pred; val TFrees = Term.add_tfreesT qty [] fun non_empty_typedef_tac non_empty_pred ctxt i = (Method.insert_tac ctxt [non_empty_pred] THEN' SELECT_GOAL (Local_Defs.unfold0_tac ctxt [mem_Collect_eq]) THEN' assume_tac ctxt) i val uTname = unique_Tname (rty, qty) val Tdef_set = HOLogic.mk_Collect ("x", rty, pred $ Free("x", rty)); val ((_, tcode_dt), lthy2) = lthy1 |> conceal_naming_result (typedef (Binding.concealed uTname, TFrees, NoSyn) Tdef_set NONE (fn lthy => HEADGOAL (non_empty_typedef_tac non_empty_pred lthy))); val type_definition_thm = tcode_dt |> snd |> #type_definition; val qty_isom = tcode_dt |> fst |> #abs_type; val (binding, lthy3) = lthy2 |> conceal_naming_result (Lifting_Setup.setup_by_typedef_thm {notes = false} type_definition_thm) ||> Local_Theory.close_target val (wit, wit_thm) = mk_witness quot_thm; val code_dt = mk_code_dt rty qty wit wit_thm NONE; val lthy4 = lthy3 |> update_code_dt code_dt |> mk_rep_isom binding (rty, qty, qty_isom) |> snd in (quot_thm, (lthy4, rel_eq_onps)) end else (quot_thm, (lthy0, rel_eq_onps)) end and lift_def_code_dt config = gen_lift_def (add_lift_def_code_dt config) (** from parsed parameters to the config record **) fun map_config_code_dt f1 f2 ({code_dt = code_dt, lift_config = lift_config}: config_code_dt) = {code_dt = f1 code_dt, lift_config = f2 lift_config} fun update_config_code_dt nval = map_config_code_dt (K nval) I val config_flags = [("code_dt", update_config_code_dt true)] fun evaluate_params params = let fun eval_param param config = case AList.lookup (op =) config_flags param of SOME update => update config | NONE => error ("Unknown parameter: " ^ (quote param)) in fold eval_param params default_config_code_dt end (** lift_definition command. It opens a proof of a corresponding respectfulness theorem in a user-friendly, readable form. Then add_lift_def_code_dt is called internally. **) local val eq_onp_assms_tac_fixed_rules = map (Transfer.prep_transfer_domain_thm \<^context>) [@{thm pcr_Domainp_total}, @{thm pcr_Domainp_par_left_total}, @{thm pcr_Domainp_par}, @{thm pcr_Domainp}] in fun mk_readable_rsp_thm_eq tm ctxt = let val ctm = Thm.cterm_of ctxt tm fun assms_rewr_conv tactic rule ct = let fun prove_extra_assms thm = let val assms = cprems_of thm fun finish thm = if Thm.no_prems thm then SOME (Goal.conclude thm) else NONE fun prove ctm = Option.mapPartial finish (SINGLE tactic (Goal.init ctm)) in map_interrupt prove assms end fun cconl_of thm = Drule.strip_imp_concl (Thm.cprop_of thm) fun lhs_of thm = fst (Thm.dest_equals (cconl_of thm)) fun rhs_of thm = snd (Thm.dest_equals (cconl_of thm)) val rule1 = Thm.incr_indexes (Thm.maxidx_of_cterm ct + 1) rule; val lhs = lhs_of rule1; val rule2 = Thm.rename_boundvars (Thm.term_of lhs) (Thm.term_of ct) rule1; val rule3 = Thm.instantiate (Thm.match (lhs, ct)) rule2 handle Pattern.MATCH => raise CTERM ("assms_rewr_conv", [lhs, ct]); val proved_assms = prove_extra_assms rule3 in case proved_assms of SOME proved_assms => let val rule3 = proved_assms MRSL rule3 val rule4 = if lhs_of rule3 aconvc ct then rule3 else let val ceq = Thm.dest_fun2 (Thm.cprop_of rule3) in rule3 COMP Thm.trivial (Thm.mk_binop ceq ct (rhs_of rule3)) end in Thm.transitive rule4 (Thm.beta_conversion true (rhs_of rule4)) end | NONE => Conv.no_conv ct end fun assms_rewrs_conv tactic rules = Conv.first_conv (map (assms_rewr_conv tactic) rules) fun simp_arrows_conv ctm = let val unfold_conv = Conv.rewrs_conv [@{thm rel_fun_eq_eq_onp[THEN eq_reflection]}, @{thm rel_fun_eq_onp_rel[THEN eq_reflection]}, @{thm rel_fun_eq[THEN eq_reflection]}, @{thm rel_fun_eq_rel[THEN eq_reflection]}, @{thm rel_fun_def[THEN eq_reflection]}] fun binop_conv2 cv1 cv2 = Conv.combination_conv (Conv.arg_conv cv1) cv2 val eq_onp_assms_tac_rules = @{thm left_unique_OO} :: eq_onp_assms_tac_fixed_rules @ (Transfer.get_transfer_raw ctxt) val intro_top_rule = @{thm eq_onp_top_eq_eq[symmetric, THEN eq_reflection]} val kill_tops = Transfer.top_sweep_rewr_conv [@{thm eq_onp_top_eq_eq[THEN eq_reflection]}] val eq_onp_assms_tac = (CONVERSION kill_tops THEN' TRY o REPEAT_ALL_NEW (resolve_tac ctxt eq_onp_assms_tac_rules) THEN_ALL_NEW (DETERM o Transfer.eq_tac ctxt)) 1 val relator_eq_onp_conv = Conv.bottom_conv (K (Conv.try_conv (assms_rewrs_conv eq_onp_assms_tac (intro_top_rule :: Lifting_Info.get_relator_eq_onp_rules ctxt)))) ctxt then_conv kill_tops val relator_eq_conv = Conv.bottom_conv (K (Conv.try_conv (Conv.rewrs_conv (Transfer.get_relator_eq ctxt)))) ctxt in case (Thm.term_of ctm) of Const (\<^const_name>\rel_fun\, _) $ _ $ _ => (binop_conv2 simp_arrows_conv simp_arrows_conv then_conv unfold_conv) ctm | _ => (relator_eq_onp_conv then_conv relator_eq_conv) ctm end val unfold_ret_val_invs = Conv.bottom_conv (K (Conv.try_conv (Conv.rewr_conv @{thm eq_onp_same_args[THEN eq_reflection]}))) ctxt val unfold_inv_conv = Conv.top_sweep_conv (K (Conv.rewr_conv @{thm eq_onp_def[THEN eq_reflection]})) ctxt val simp_conv = HOLogic.Trueprop_conv (Conv.fun2_conv simp_arrows_conv) val univq_conv = Conv.rewr_conv @{thm HOL.all_simps(6)[symmetric, THEN eq_reflection]} val univq_prenex_conv = Conv.top_conv (K (Conv.try_conv univq_conv)) ctxt val beta_conv = Thm.beta_conversion true val eq_thm = (simp_conv then_conv univq_prenex_conv then_conv beta_conv then_conv unfold_ret_val_invs then_conv unfold_inv_conv) ctm in Object_Logic.rulify ctxt (eq_thm RS Drule.equal_elim_rule2) end end fun rename_to_tnames ctxt term = let fun all_typs (Const (\<^const_name>\Pure.all\, _) $ Abs (_, T, t)) = T :: all_typs t | all_typs _ = [] fun rename (Const (\<^const_name>\Pure.all\, T1) $ Abs (_, T2, t)) (new_name :: names) = (Const (\<^const_name>\Pure.all\, T1) $ Abs (new_name, T2, rename t names)) | rename t _ = t val (fixed_def_t, _) = yield_singleton (Variable.importT_terms) term ctxt val new_names = Old_Datatype_Prop.make_tnames (all_typs fixed_def_t) in rename term new_names end fun quot_thm_err ctxt (rty, qty) pretty_msg = let val error_msg = cat_lines ["Lifting failed for the following types:", Pretty.string_of (Pretty.block [Pretty.str "Raw type:", Pretty.brk 2, Syntax.pretty_typ ctxt rty]), Pretty.string_of (Pretty.block [Pretty.str "Abstract type:", Pretty.brk 2, Syntax.pretty_typ ctxt qty]), "", (Pretty.string_of (Pretty.block [Pretty.str "Reason:", Pretty.brk 2, pretty_msg]))] in error error_msg end fun check_rty_err ctxt (rty_schematic, rty_forced) (raw_var, rhs_raw) = let val (_, ctxt') = Proof_Context.read_var raw_var ctxt val rhs = Syntax.read_term ctxt' rhs_raw val error_msg = cat_lines ["Lifting failed for the following term:", Pretty.string_of (Pretty.block [Pretty.str "Term:", Pretty.brk 2, Syntax.pretty_term ctxt rhs]), Pretty.string_of (Pretty.block [Pretty.str "Type:", Pretty.brk 2, Syntax.pretty_typ ctxt rty_schematic]), "", (Pretty.string_of (Pretty.block [Pretty.str "Reason:", Pretty.brk 2, Pretty.str "The type of the term cannot be instantiated to", Pretty.brk 1, Pretty.quote (Syntax.pretty_typ ctxt rty_forced), Pretty.str "."]))] in error error_msg end fun lift_def_cmd (params, raw_var, rhs_raw, par_xthms) lthy0 = let val config = evaluate_params params val ((binding, SOME qty, mx), lthy1) = Proof_Context.read_var raw_var lthy0 val var = (binding, mx) val rhs = Syntax.read_term lthy1 rhs_raw val par_thms = Attrib.eval_thms lthy1 par_xthms val (goal, after_qed) = lthy1 |> prepare_lift_def (add_lift_def_code_dt config) var qty rhs par_thms val (goal, after_qed) = case goal of NONE => (goal, K (after_qed Drule.dummy_thm)) | SOME prsp_tm => let val readable_rsp_thm_eq = mk_readable_rsp_thm_eq prsp_tm lthy1 val (readable_rsp_tm, _) = Logic.dest_implies (Thm.prop_of readable_rsp_thm_eq) val readable_rsp_tm_tnames = rename_to_tnames lthy1 readable_rsp_tm fun after_qed' [[thm]] lthy = let val internal_rsp_thm = Goal.prove lthy [] [] prsp_tm (fn {context = goal_ctxt, ...} => rtac goal_ctxt readable_rsp_thm_eq 1 THEN Proof_Context.fact_tac goal_ctxt [thm] 1) in after_qed internal_rsp_thm lthy end in (SOME readable_rsp_tm_tnames, after_qed') end fun after_qed_with_err_handling thmss ctxt = (after_qed thmss ctxt handle Lifting_Term.QUOT_THM (rty, qty, msg) => quot_thm_err lthy1 (rty, qty) msg) handle Lifting_Term.CHECK_RTY (rty_schematic, rty_forced) => check_rty_err lthy1 (rty_schematic, rty_forced) (raw_var, rhs_raw); in lthy1 |> Proof.theorem NONE (snd oo after_qed_with_err_handling) [map (rpair []) (the_list goal)] end fun lift_def_cmd_with_err_handling (params, (raw_var, rhs_raw, par_xthms)) lthy = (lift_def_cmd (params, raw_var, rhs_raw, par_xthms) lthy handle Lifting_Term.QUOT_THM (rty, qty, msg) => quot_thm_err lthy (rty, qty) msg) handle Lifting_Term.CHECK_RTY (rty_schematic, rty_forced) => check_rty_err lthy (rty_schematic, rty_forced) (raw_var, rhs_raw); val parse_param = Parse.name val parse_params = Scan.optional (Args.parens (Parse.list parse_param)) []; (* command syntax *) val _ = Outer_Syntax.local_theory_to_proof \<^command_keyword>\lift_definition\ "definition for constants over the quotient type" (parse_params -- (((Parse.binding -- (\<^keyword>\::\ |-- (Parse.typ >> SOME) -- Parse.opt_mixfix') >> Scan.triple2) -- (\<^keyword>\is\ |-- Parse.term) -- Scan.optional (\<^keyword>\parametric\ |-- Parse.!!! Parse.thms1) []) >> Scan.triple1) >> lift_def_cmd_with_err_handling); end