(* Title: HOL/Tools/BNF/bnf_lfp_tactics.ML Author: Dmitriy Traytel, TU Muenchen Author: Andrei Popescu, TU Muenchen Copyright 2012 Tactics for the datatype construction. *) signature BNF_LFP_TACTICS = sig val mk_alg_min_alg_tac: Proof.context -> int -> thm -> thm list -> thm -> thm -> thm list list -> thm list -> thm list -> tactic val mk_alg_not_empty_tac: Proof.context -> thm -> thm list -> thm list -> tactic val mk_alg_select_tac: Proof.context -> thm -> tactic val mk_alg_set_tac: Proof.context -> thm -> tactic val mk_bd_card_order_tac: Proof.context -> thm list -> tactic val mk_bd_limit_tac: Proof.context -> int -> thm -> tactic val mk_card_of_min_alg_tac: Proof.context -> thm -> thm -> thm -> thm -> thm -> tactic val mk_copy_tac: Proof.context -> int -> thm -> thm -> thm list -> thm list list -> tactic val mk_ctor_induct_tac: Proof.context -> int -> thm list list -> thm -> thm list -> thm -> thm list -> thm list -> thm list -> tactic val mk_ctor_induct2_tac: Proof.context -> ctyp option list -> cterm option list -> thm -> thm list -> tactic val mk_ctor_set_tac: Proof.context -> thm -> thm -> thm list -> tactic val mk_ctor_rec_transfer_tac: Proof.context -> int -> int -> thm list -> thm list -> thm list -> thm list -> tactic val mk_ctor_rel_tac: Proof.context -> thm list -> int -> thm -> thm -> thm -> thm -> thm list -> thm -> thm -> thm list -> thm list -> thm list list -> tactic val mk_dtor_o_ctor_tac: Proof.context -> thm -> thm -> thm -> thm -> thm list -> tactic val mk_init_ex_mor_tac: Proof.context -> thm -> thm -> thm list -> thm -> thm -> thm -> thm -> tactic val mk_init_induct_tac: Proof.context -> int -> thm -> thm -> thm list -> thm list -> tactic val mk_init_unique_mor_tac: Proof.context -> cterm list -> int -> thm -> thm -> thm list -> thm list -> thm list -> thm list -> thm list -> tactic val mk_fold_unique_mor_tac: Proof.context -> thm list -> thm list -> thm list -> thm -> thm -> thm -> tactic val mk_fold_transfer_tac: Proof.context -> int -> thm -> thm list -> thm list -> tactic val mk_least_min_alg_tac: Proof.context -> thm -> thm -> tactic val mk_le_rel_OO_tac: Proof.context -> int -> thm -> thm list -> thm list -> thm list -> thm list -> tactic val mk_map_comp0_tac: Proof.context -> thm list -> thm list -> thm -> int -> tactic val mk_map_id0_tac: Proof.context -> thm list -> thm -> tactic val mk_map_tac: Proof.context -> int -> int -> thm -> thm -> thm -> tactic val mk_ctor_map_unique_tac: Proof.context -> thm -> thm list -> tactic val mk_mcong_tac: Proof.context -> (int -> tactic) -> thm list list list -> thm list -> thm list -> tactic val mk_min_algs_card_of_tac: Proof.context -> ctyp -> cterm -> int -> thm -> thm list -> thm list -> thm -> thm -> thm -> thm -> thm -> thm -> thm -> tactic val mk_min_algs_least_tac: Proof.context -> ctyp -> cterm -> thm -> thm list -> thm list -> tactic val mk_min_algs_mono_tac: Proof.context -> thm -> tactic val mk_min_algs_tac: Proof.context -> thm -> thm list -> tactic val mk_mor_Abs_tac: Proof.context -> cterm list -> thm list -> thm list -> thm list -> thm list -> tactic val mk_mor_Rep_tac: Proof.context -> int -> thm list -> thm list -> thm list -> thm -> thm list -> thm list list -> tactic val mk_mor_UNIV_tac: Proof.context -> int -> thm list -> thm -> tactic val mk_mor_comp_tac: Proof.context -> thm -> thm list list -> thm list -> tactic val mk_mor_elim_tac: Proof.context -> thm -> tactic val mk_mor_incl_tac: Proof.context -> thm -> thm list -> tactic val mk_mor_fold_tac: Proof.context -> ctyp -> cterm -> thm list -> thm -> thm -> tactic val mk_mor_select_tac: Proof.context -> thm -> thm -> thm -> thm -> thm -> thm -> thm list -> thm list list -> thm list -> tactic val mk_mor_str_tac: Proof.context -> 'a list -> thm -> tactic val mk_rel_induct_tac: Proof.context -> thm list -> int -> thm -> int list -> thm list -> thm list -> tactic val mk_rec_tac: Proof.context -> thm list -> thm -> thm list -> tactic val mk_rec_unique_mor_tac: Proof.context -> thm list -> thm list -> thm -> tactic val mk_set_bd_tac: Proof.context -> int -> (int -> tactic) -> thm -> thm list list -> thm list -> int -> tactic val mk_set_nat_tac: Proof.context -> int -> (int -> tactic) -> thm list list -> thm list -> cterm list -> thm list -> int -> tactic val mk_set_map0_tac: Proof.context -> thm -> tactic val mk_set_tac: Proof.context -> thm -> tactic val mk_wit_tac: Proof.context -> int -> thm list -> thm list -> tactic end; structure BNF_LFP_Tactics : BNF_LFP_TACTICS = struct open BNF_Tactics open BNF_LFP_Util open BNF_Util val fst_snd_convs = @{thms fst_conv snd_conv}; val ord_eq_le_trans = @{thm ord_eq_le_trans}; val subset_trans = @{thm subset_trans}; val trans_fun_cong_image_id_id_apply = @{thm trans[OF fun_cong[OF image_id] id_apply]}; val rev_bspec = Drule.rotate_prems 1 bspec; val Un_cong = @{thm arg_cong2[of _ _ _ _ "(\)"]}; val relChainD = @{thm iffD2[OF meta_eq_to_obj_eq[OF relChain_def]]}; fun mk_alg_set_tac ctxt alg_def = EVERY' [dtac ctxt (alg_def RS iffD1), REPEAT_DETERM o etac ctxt conjE, etac ctxt bspec, rtac ctxt CollectI, REPEAT_DETERM o (rtac ctxt (subset_UNIV RS conjI) ORELSE' etac ctxt conjI), assume_tac ctxt] 1; fun mk_alg_not_empty_tac ctxt alg_set alg_sets wits = (EVERY' [rtac ctxt notI, hyp_subst_tac ctxt, forward_tac ctxt [alg_set]] THEN' REPEAT_DETERM o FIRST' [EVERY' [rtac ctxt @{thm subset_emptyI}, eresolve_tac ctxt wits], EVERY' [rtac ctxt subsetI, rtac ctxt FalseE, eresolve_tac ctxt wits], EVERY' [rtac ctxt subsetI, dresolve_tac ctxt wits, hyp_subst_tac ctxt, FIRST' (map (fn thm => rtac ctxt thm THEN' assume_tac ctxt) alg_sets)]] THEN' etac ctxt @{thm emptyE}) 1; fun mk_mor_elim_tac ctxt mor_def = (dtac ctxt (mor_def RS iffD1) THEN' REPEAT o etac ctxt conjE THEN' TRY o rtac ctxt @{thm image_subsetI} THEN' etac ctxt bspec THEN' assume_tac ctxt) 1; fun mk_mor_incl_tac ctxt mor_def map_ids = (rtac ctxt (mor_def RS iffD2) THEN' rtac ctxt conjI THEN' CONJ_WRAP' (K (EVERY' [rtac ctxt ballI, etac ctxt set_mp, etac ctxt (id_apply RS @{thm ssubst_mem})])) map_ids THEN' CONJ_WRAP' (fn thm => (EVERY' [rtac ctxt ballI, rtac ctxt trans, rtac ctxt id_apply, stac ctxt thm, rtac ctxt refl])) map_ids) 1; fun mk_mor_comp_tac ctxt mor_def set_maps map_comp_ids = let val fbetw_tac = EVERY' [rtac ctxt ballI, rtac ctxt (o_apply RS @{thm ssubst_mem}), etac ctxt bspec, etac ctxt bspec, assume_tac ctxt]; fun mor_tac (set_map, map_comp_id) = EVERY' [rtac ctxt ballI, rtac ctxt (o_apply RS trans), rtac ctxt trans, rtac ctxt trans, dtac ctxt rev_bspec, assume_tac ctxt, etac ctxt arg_cong, REPEAT o eresolve_tac ctxt [CollectE, conjE], etac ctxt bspec, rtac ctxt CollectI] THEN' CONJ_WRAP' (fn thm => FIRST' [rtac ctxt subset_UNIV, (EVERY' [rtac ctxt ord_eq_le_trans, rtac ctxt thm, rtac ctxt @{thm image_subsetI}, etac ctxt bspec, etac ctxt set_mp, assume_tac ctxt])]) set_map THEN' rtac ctxt (map_comp_id RS arg_cong); in (dtac ctxt (mor_def RS iffD1) THEN' dtac ctxt (mor_def RS iffD1) THEN' rtac ctxt (mor_def RS iffD2) THEN' REPEAT o etac ctxt conjE THEN' rtac ctxt conjI THEN' CONJ_WRAP' (K fbetw_tac) set_maps THEN' CONJ_WRAP' mor_tac (set_maps ~~ map_comp_ids)) 1 end; fun mk_mor_str_tac ctxt ks mor_def = (rtac ctxt (mor_def RS iffD2) THEN' rtac ctxt conjI THEN' CONJ_WRAP' (K (EVERY' [rtac ctxt ballI, rtac ctxt UNIV_I])) ks THEN' CONJ_WRAP' (K (EVERY' [rtac ctxt ballI, rtac ctxt refl])) ks) 1; fun mk_mor_UNIV_tac ctxt m morEs mor_def = let val n = length morEs; fun mor_tac morE = EVERY' [rtac ctxt @{thm ext}, rtac ctxt trans, rtac ctxt o_apply, rtac ctxt trans, etac ctxt morE, rtac ctxt CollectI, CONJ_WRAP' (K (rtac ctxt subset_UNIV)) (1 upto m + n), rtac ctxt sym, rtac ctxt o_apply]; in EVERY' [rtac ctxt iffI, CONJ_WRAP' mor_tac morEs, rtac ctxt (mor_def RS iffD2), rtac ctxt conjI, CONJ_WRAP' (K (rtac ctxt ballI THEN' rtac ctxt UNIV_I)) morEs, REPEAT_DETERM o etac ctxt conjE, REPEAT_DETERM_N n o dtac ctxt (@{thm fun_eq_iff} RS iffD1), CONJ_WRAP' (K (EVERY' [rtac ctxt ballI, REPEAT_DETERM o etac ctxt allE, rtac ctxt trans, etac ctxt (o_apply RS sym RS trans), rtac ctxt o_apply])) morEs] 1 end; fun mk_copy_tac ctxt m alg_def mor_def alg_sets set_mapss = let val n = length alg_sets; fun set_tac thm = EVERY' [rtac ctxt ord_eq_le_trans, rtac ctxt thm, rtac ctxt subset_trans, etac ctxt @{thm image_mono}, rtac ctxt equalityD1, etac ctxt @{thm bij_betw_imp_surj_on}]; val alg_tac = CONJ_WRAP' (fn (set_maps, alg_set) => EVERY' [rtac ctxt ballI, REPEAT_DETERM o eresolve_tac ctxt [CollectE, conjE], rtac ctxt set_mp, rtac ctxt equalityD1, etac ctxt @{thm bij_betw_imp_surj_on[OF bij_betw_the_inv_into]}, rtac ctxt imageI, etac ctxt alg_set, EVERY' (map set_tac (drop m set_maps))]) (set_mapss ~~ alg_sets); val mor_tac = rtac ctxt conjI THEN' CONJ_WRAP' (K (etac ctxt @{thm bij_betwE})) alg_sets THEN' CONJ_WRAP' (fn (set_maps, alg_set) => EVERY' [rtac ctxt ballI, REPEAT_DETERM o eresolve_tac ctxt [CollectE, conjE], etac ctxt @{thm f_the_inv_into_f_bij_betw}, etac ctxt alg_set, EVERY' (map set_tac (drop m set_maps))]) (set_mapss ~~ alg_sets); in (REPEAT_DETERM_N n o rtac ctxt exI THEN' rtac ctxt conjI THEN' rtac ctxt (alg_def RS iffD2) THEN' alg_tac THEN' rtac ctxt (mor_def RS iffD2) THEN' mor_tac) 1 end; fun mk_bd_limit_tac ctxt n bd_Cinfinite = EVERY' [REPEAT_DETERM o etac ctxt conjE, rtac ctxt rev_mp, rtac ctxt @{thm Cinfinite_limit_finite}, REPEAT_DETERM_N n o rtac ctxt @{thm finite.insertI}, rtac ctxt @{thm finite.emptyI}, REPEAT_DETERM_N n o etac ctxt @{thm insert_subsetI}, rtac ctxt @{thm empty_subsetI}, rtac ctxt bd_Cinfinite, rtac ctxt impI, etac ctxt bexE, rtac ctxt bexI, CONJ_WRAP' (fn i => EVERY' [etac ctxt bspec, REPEAT_DETERM_N i o rtac ctxt @{thm insertI2}, rtac ctxt @{thm insertI1}]) (0 upto n - 1), assume_tac ctxt] 1; fun mk_min_algs_tac ctxt worel in_congs = let val minG_tac = EVERY' [rtac ctxt @{thm SUP_cong}, rtac ctxt refl, dtac ctxt bspec, assume_tac ctxt, etac ctxt arg_cong]; fun minH_tac thm = EVERY' [rtac ctxt Un_cong, minG_tac, rtac ctxt @{thm image_cong}, rtac ctxt thm, REPEAT_DETERM_N (length in_congs) o minG_tac, rtac ctxt refl]; in (rtac ctxt (worel RS (@{thm wo_rel.worec_fixpoint} RS fun_cong)) THEN' rtac ctxt iffD2 THEN' rtac ctxt meta_eq_to_obj_eq THEN' rtac ctxt (worel RS @{thm wo_rel.adm_wo_def}) THEN' REPEAT_DETERM_N 3 o rtac ctxt allI THEN' rtac ctxt impI THEN' CONJ_WRAP_GEN' (EVERY' [rtac ctxt prod_injectI, rtac ctxt conjI]) minH_tac in_congs) 1 end; fun mk_min_algs_mono_tac ctxt min_algs = EVERY' [rtac ctxt relChainD, rtac ctxt allI, rtac ctxt allI, rtac ctxt impI, rtac ctxt @{thm case_split}, rtac ctxt @{thm xt1(3)}, rtac ctxt min_algs, etac ctxt @{thm FieldI2}, rtac ctxt subsetI, rtac ctxt UnI1, rtac ctxt @{thm UN_I}, etac ctxt @{thm underS_I}, assume_tac ctxt, assume_tac ctxt, rtac ctxt equalityD1, dtac ctxt @{thm notnotD}, hyp_subst_tac ctxt, rtac ctxt refl] 1; fun mk_min_algs_card_of_tac ctxt cT ct m worel min_algs in_bds bd_Card_order bd_Cnotzero suc_Card_order suc_Cinfinite suc_Cnotzero suc_Asuc Asuc_Cinfinite = let val induct = worel RS Thm.instantiate' [SOME cT] [NONE, SOME ct] @{thm well_order_induct_imp}; val src = 1 upto m + 1; val dest = (m + 1) :: (1 upto m); val absorbAs_tac = if m = 0 then K (all_tac) else EVERY' [rtac ctxt @{thm ordIso_transitive}, rtac ctxt @{thm csum_cong1}, rtac ctxt @{thm ordIso_transitive}, BNF_Tactics.mk_rotate_eq_tac ctxt (rtac ctxt @{thm ordIso_refl} THEN' FIRST' [rtac ctxt @{thm card_of_Card_order}, rtac ctxt @{thm Card_order_csum}, rtac ctxt @{thm Card_order_cexp}]) @{thm ordIso_transitive} @{thm csum_assoc} @{thm csum_com} @{thm csum_cong} src dest, rtac ctxt @{thm csum_absorb1}, rtac ctxt Asuc_Cinfinite, rtac ctxt ctrans, rtac ctxt @{thm ordLeq_csum1}, FIRST' [rtac ctxt @{thm Card_order_csum}, rtac ctxt @{thm card_of_Card_order}], rtac ctxt @{thm ordLeq_cexp1}, rtac ctxt suc_Cnotzero, rtac ctxt @{thm Card_order_csum}]; val minG_tac = EVERY' [rtac ctxt @{thm UNION_Cinfinite_bound}, rtac ctxt @{thm ordLess_imp_ordLeq}, rtac ctxt @{thm ordLess_transitive}, rtac ctxt @{thm card_of_underS}, rtac ctxt suc_Card_order, assume_tac ctxt, rtac ctxt suc_Asuc, rtac ctxt ballI, etac ctxt allE, dtac ctxt mp, etac ctxt @{thm underS_E}, dtac ctxt mp, etac ctxt @{thm underS_Field}, REPEAT o etac ctxt conjE, assume_tac ctxt, rtac ctxt Asuc_Cinfinite] fun mk_minH_tac (min_alg, in_bd) = EVERY' [rtac ctxt @{thm ordIso_ordLeq_trans}, rtac ctxt @{thm card_of_ordIso_subst}, etac ctxt min_alg, rtac ctxt @{thm Un_Cinfinite_bound}, minG_tac, rtac ctxt ctrans, rtac ctxt @{thm card_of_image}, rtac ctxt ctrans, rtac ctxt in_bd, rtac ctxt ctrans, rtac ctxt @{thm cexp_mono1}, rtac ctxt @{thm csum_mono1}, REPEAT_DETERM_N m o rtac ctxt @{thm csum_mono2}, CONJ_WRAP_GEN' (rtac ctxt @{thm csum_cinfinite_bound}) (K minG_tac) min_algs, REPEAT_DETERM o FIRST' [rtac ctxt @{thm card_of_Card_order}, rtac ctxt @{thm Card_order_csum}, rtac ctxt Asuc_Cinfinite, rtac ctxt bd_Card_order], rtac ctxt @{thm ordIso_ordLeq_trans}, rtac ctxt @{thm cexp_cong1}, absorbAs_tac, rtac ctxt @{thm csum_absorb1}, rtac ctxt Asuc_Cinfinite, rtac ctxt @{thm ctwo_ordLeq_Cinfinite}, rtac ctxt Asuc_Cinfinite, rtac ctxt bd_Card_order, rtac ctxt @{thm ordIso_imp_ordLeq}, rtac ctxt @{thm cexp_cprod_ordLeq}, resolve_tac ctxt @{thms Card_order_csum Card_order_ctwo}, rtac ctxt suc_Cinfinite, rtac ctxt bd_Cnotzero, rtac ctxt @{thm cardSuc_ordLeq}, rtac ctxt bd_Card_order, rtac ctxt Asuc_Cinfinite]; in (rtac ctxt induct THEN' rtac ctxt impI THEN' CONJ_WRAP' mk_minH_tac (min_algs ~~ in_bds)) 1 end; fun mk_min_algs_least_tac ctxt cT ct worel min_algs alg_sets = let val induct = worel RS Thm.instantiate' [SOME cT] [NONE, SOME ct] @{thm well_order_induct_imp}; val minG_tac = EVERY' [rtac ctxt @{thm UN_least}, etac ctxt allE, dtac ctxt mp, etac ctxt @{thm underS_E}, dtac ctxt mp, etac ctxt @{thm underS_Field}, REPEAT_DETERM o etac ctxt conjE, assume_tac ctxt]; fun mk_minH_tac (min_alg, alg_set) = EVERY' [rtac ctxt ord_eq_le_trans, etac ctxt min_alg, rtac ctxt @{thm Un_least}, minG_tac, rtac ctxt @{thm image_subsetI}, REPEAT_DETERM o eresolve_tac ctxt [CollectE, conjE], etac ctxt alg_set, REPEAT_DETERM o (etac ctxt subset_trans THEN' minG_tac)]; in (rtac ctxt induct THEN' rtac ctxt impI THEN' CONJ_WRAP' mk_minH_tac (min_algs ~~ alg_sets)) 1 end; fun mk_alg_min_alg_tac ctxt m alg_def min_alg_defs bd_limit bd_Cinfinite set_bdss min_algs min_alg_monos = let val n = length min_algs; fun mk_cardSuc_UNION_tac set_bds (mono, def) = EVERY' [rtac ctxt bexE, rtac ctxt @{thm cardSuc_UNION_Cinfinite}, rtac ctxt bd_Cinfinite, rtac ctxt mono, etac ctxt (def RSN (2, @{thm subset_trans[OF _ equalityD1]})), resolve_tac ctxt set_bds]; fun mk_conjunct_tac (set_bds, (min_alg, min_alg_def)) = EVERY' [rtac ctxt ballI, REPEAT_DETERM o eresolve_tac ctxt [CollectE, conjE], EVERY' (map (mk_cardSuc_UNION_tac set_bds) (min_alg_monos ~~ min_alg_defs)), rtac ctxt bexE, rtac ctxt bd_limit, REPEAT_DETERM_N (n - 1) o etac ctxt conjI, assume_tac ctxt, rtac ctxt (min_alg_def RS @{thm set_mp[OF equalityD2]}), rtac ctxt @{thm UN_I}, REPEAT_DETERM_N (m + 3 * n) o etac ctxt thin_rl, assume_tac ctxt, rtac ctxt set_mp, rtac ctxt equalityD2, rtac ctxt min_alg, assume_tac ctxt, rtac ctxt UnI2, rtac ctxt @{thm image_eqI}, rtac ctxt refl, rtac ctxt CollectI, REPEAT_DETERM_N m o dtac ctxt asm_rl, REPEAT_DETERM_N n o etac ctxt thin_rl, REPEAT_DETERM o etac ctxt conjE, CONJ_WRAP' (K (FIRST' [assume_tac ctxt, EVERY' [etac ctxt subset_trans, rtac ctxt subsetI, rtac ctxt @{thm UN_I}, etac ctxt @{thm underS_I}, assume_tac ctxt, assume_tac ctxt]])) set_bds]; in (rtac ctxt (alg_def RS iffD2) THEN' CONJ_WRAP' mk_conjunct_tac (set_bdss ~~ (min_algs ~~ min_alg_defs))) 1 end; fun mk_card_of_min_alg_tac ctxt min_alg_def card_of suc_Card_order suc_Asuc Asuc_Cinfinite = EVERY' [rtac ctxt @{thm ordIso_ordLeq_trans}, rtac ctxt (min_alg_def RS @{thm card_of_ordIso_subst}), rtac ctxt @{thm UNION_Cinfinite_bound}, rtac ctxt @{thm ordIso_ordLeq_trans}, rtac ctxt @{thm card_of_Field_ordIso}, rtac ctxt suc_Card_order, rtac ctxt @{thm ordLess_imp_ordLeq}, rtac ctxt suc_Asuc, rtac ctxt ballI, dtac ctxt rev_mp, rtac ctxt card_of, REPEAT_DETERM o etac ctxt conjE, assume_tac ctxt, rtac ctxt Asuc_Cinfinite] 1; fun mk_least_min_alg_tac ctxt min_alg_def least = EVERY' [rtac ctxt (min_alg_def RS ord_eq_le_trans), rtac ctxt @{thm UN_least}, dtac ctxt least, dtac ctxt mp, assume_tac ctxt, REPEAT_DETERM o etac ctxt conjE, assume_tac ctxt] 1; fun mk_alg_select_tac ctxt Abs_inverse = EVERY' [rtac ctxt ballI, REPEAT_DETERM o eresolve_tac ctxt [CollectE, exE, conjE], hyp_subst_tac ctxt] 1 THEN unfold_thms_tac ctxt (Abs_inverse :: fst_snd_convs) THEN assume_tac ctxt 1; fun mk_mor_select_tac ctxt mor_def mor_cong mor_comp mor_incl_min_alg alg_def alg_select alg_sets set_maps str_init_defs = let val n = length alg_sets; val fbetw_tac = CONJ_WRAP' (K (EVERY' [rtac ctxt ballI, etac ctxt rev_bspec, etac ctxt CollectE, assume_tac ctxt])) alg_sets; val mor_tac = CONJ_WRAP' (fn thm => EVERY' [rtac ctxt ballI, rtac ctxt thm]) str_init_defs; fun alg_epi_tac ((alg_set, str_init_def), set_map) = EVERY' [rtac ctxt ballI, REPEAT_DETERM o eresolve_tac ctxt [CollectE, conjE], rtac ctxt CollectI, rtac ctxt ballI, forward_tac ctxt [alg_select RS bspec], rtac ctxt (str_init_def RS @{thm ssubst_mem}), etac ctxt alg_set, REPEAT_DETERM o EVERY' [rtac ctxt ord_eq_le_trans, resolve_tac ctxt set_map, rtac ctxt subset_trans, etac ctxt @{thm image_mono}, rtac ctxt @{thm image_Collect_subsetI}, etac ctxt bspec, assume_tac ctxt]]; in EVERY' [rtac ctxt mor_cong, REPEAT_DETERM_N n o (rtac ctxt sym THEN' rtac ctxt @{thm comp_id}), rtac ctxt (Thm.permute_prems 0 1 mor_comp), etac ctxt (Thm.permute_prems 0 1 mor_comp), rtac ctxt (mor_def RS iffD2), rtac ctxt conjI, fbetw_tac, mor_tac, rtac ctxt mor_incl_min_alg, rtac ctxt (alg_def RS iffD2), CONJ_WRAP' alg_epi_tac ((alg_sets ~~ str_init_defs) ~~ set_maps)] 1 end; fun mk_init_ex_mor_tac ctxt Abs_inverse copy card_of_min_algs mor_Rep mor_comp mor_select mor_incl = let val n = length card_of_min_algs; in EVERY' [Method.insert_tac ctxt (map (fn thm => thm RS @{thm ex_bij_betw}) card_of_min_algs), REPEAT_DETERM o dtac ctxt meta_spec, REPEAT_DETERM o etac ctxt exE, rtac ctxt rev_mp, rtac ctxt copy, REPEAT_DETERM_N n o assume_tac ctxt, rtac ctxt impI, REPEAT_DETERM o eresolve_tac ctxt [exE, conjE], REPEAT_DETERM_N n o rtac ctxt exI, rtac ctxt mor_comp, rtac ctxt mor_Rep, rtac ctxt mor_select, rtac ctxt CollectI, REPEAT_DETERM o rtac ctxt exI, rtac ctxt conjI, rtac ctxt refl, assume_tac ctxt, SELECT_GOAL (unfold_thms_tac ctxt (Abs_inverse :: fst_snd_convs)), etac ctxt mor_comp, rtac ctxt mor_incl, REPEAT_DETERM_N n o rtac ctxt subset_UNIV] 1 end; fun mk_init_unique_mor_tac ctxt cts m alg_def alg_min_alg least_min_algs in_monos alg_sets morEs map_cong0s = let val n = length least_min_algs; val ks = (1 upto n); fun mor_tac morE in_mono = EVERY' [etac ctxt morE, rtac ctxt set_mp, rtac ctxt in_mono, REPEAT_DETERM_N n o rtac ctxt @{thm Collect_restrict}, rtac ctxt CollectI, REPEAT_DETERM_N (m + n) o (TRY o rtac ctxt conjI THEN' assume_tac ctxt)]; fun cong_tac ct map_cong0 = EVERY' [rtac ctxt (map_cong0 RS infer_instantiate' ctxt [NONE, NONE, SOME ct] arg_cong), REPEAT_DETERM_N m o rtac ctxt refl, REPEAT_DETERM_N n o (etac ctxt @{thm prop_restrict} THEN' assume_tac ctxt)]; fun mk_alg_tac (ct, (alg_set, (in_mono, (morE, map_cong0)))) = EVERY' [rtac ctxt ballI, rtac ctxt CollectI, REPEAT_DETERM o eresolve_tac ctxt [CollectE, conjE], rtac ctxt conjI, rtac ctxt (alg_min_alg RS alg_set), REPEAT_DETERM_N n o (etac ctxt subset_trans THEN' rtac ctxt @{thm Collect_restrict}), rtac ctxt trans, mor_tac morE in_mono, rtac ctxt trans, cong_tac ct map_cong0, rtac ctxt sym, mor_tac morE in_mono]; fun mk_unique_tac (k, least_min_alg) = select_prem_tac ctxt n (etac ctxt @{thm prop_restrict}) k THEN' rtac ctxt least_min_alg THEN' rtac ctxt (alg_def RS iffD2) THEN' CONJ_WRAP' mk_alg_tac (cts ~~ (alg_sets ~~ (in_monos ~~ (morEs ~~ map_cong0s)))); in CONJ_WRAP' mk_unique_tac (ks ~~ least_min_algs) 1 end; fun mk_init_induct_tac ctxt m alg_def alg_min_alg least_min_algs alg_sets = let val n = length least_min_algs; fun mk_alg_tac alg_set = EVERY' [rtac ctxt ballI, rtac ctxt CollectI, REPEAT_DETERM o eresolve_tac ctxt [CollectE, conjE], rtac ctxt conjI, rtac ctxt (alg_min_alg RS alg_set), REPEAT_DETERM_N n o (etac ctxt subset_trans THEN' rtac ctxt @{thm Collect_restrict}), rtac ctxt mp, etac ctxt bspec, rtac ctxt CollectI, REPEAT_DETERM_N m o (rtac ctxt conjI THEN' assume_tac ctxt), CONJ_WRAP' (K (etac ctxt subset_trans THEN' rtac ctxt @{thm Collect_restrict})) alg_sets, CONJ_WRAP' (K (rtac ctxt ballI THEN' etac ctxt @{thm prop_restrict} THEN' assume_tac ctxt)) alg_sets]; fun mk_induct_tac least_min_alg = rtac ctxt ballI THEN' etac ctxt @{thm prop_restrict} THEN' rtac ctxt least_min_alg THEN' rtac ctxt (alg_def RS iffD2) THEN' CONJ_WRAP' mk_alg_tac alg_sets; in CONJ_WRAP' mk_induct_tac least_min_algs 1 end; fun mk_mor_Rep_tac ctxt m defs Reps Abs_inverses alg_min_alg alg_sets set_mapss = unfold_thms_tac ctxt (@{thm o_apply} :: defs) THEN EVERY' [rtac ctxt conjI, CONJ_WRAP' (fn thm => rtac ctxt ballI THEN' rtac ctxt thm) Reps, CONJ_WRAP' (fn (Abs_inverse, (set_maps, alg_set)) => EVERY' [rtac ctxt ballI, rtac ctxt Abs_inverse, rtac ctxt (alg_min_alg RS alg_set), EVERY' (map2 (fn Rep => fn set_map => EVERY' [rtac ctxt (set_map RS ord_eq_le_trans), rtac ctxt @{thm image_subsetI}, rtac ctxt Rep]) Reps (drop m set_maps))]) (Abs_inverses ~~ (set_mapss ~~ alg_sets))] 1; fun mk_mor_Abs_tac ctxt cts defs Abs_inverses map_comp_ids map_congLs = unfold_thms_tac ctxt (@{thm o_apply} :: defs) THEN EVERY' [rtac ctxt conjI, CONJ_WRAP' (K (rtac ctxt ballI THEN' rtac ctxt UNIV_I)) Abs_inverses, CONJ_WRAP' (fn (ct, thm) => EVERY' [rtac ctxt ballI, REPEAT_DETERM o eresolve_tac ctxt [CollectE, conjE], rtac ctxt (thm RS (infer_instantiate' ctxt [NONE, NONE, SOME ct] arg_cong) RS sym), EVERY' (map (fn Abs_inverse => EVERY' [rtac ctxt (o_apply RS trans RS ballI), etac ctxt (set_mp RS Abs_inverse), assume_tac ctxt]) Abs_inverses)]) (cts ~~ map2 mk_trans map_comp_ids map_congLs)] 1; fun mk_mor_fold_tac ctxt cT ct fold_defs ex_mor mor = (EVERY' (map (stac ctxt) fold_defs) THEN' EVERY' [rtac ctxt rev_mp, rtac ctxt ex_mor, rtac ctxt impI] THEN' REPEAT_DETERM_N (length fold_defs) o etac ctxt exE THEN' rtac ctxt (Thm.instantiate' [SOME cT] [SOME ct] @{thm someI}) THEN' etac ctxt mor) 1; fun mk_fold_unique_mor_tac ctxt type_defs init_unique_mors Reps mor_comp mor_Abs mor_fold = let fun mk_unique type_def = EVERY' [rtac ctxt @{thm surj_fun_eq}, rtac ctxt (type_def RS @{thm type_definition.Abs_image}), rtac ctxt ballI, resolve_tac ctxt init_unique_mors, EVERY' (map (fn thm => assume_tac ctxt ORELSE' rtac ctxt thm) Reps), rtac ctxt mor_comp, rtac ctxt mor_Abs, assume_tac ctxt, rtac ctxt mor_comp, rtac ctxt mor_Abs, rtac ctxt mor_fold]; in CONJ_WRAP' mk_unique type_defs 1 end; fun mk_dtor_o_ctor_tac ctxt dtor_def foldx map_comp_id map_cong0L ctor_o_folds = EVERY' [rtac ctxt @{thm ext}, rtac ctxt trans, rtac ctxt o_apply, rtac ctxt (dtor_def RS fun_cong RS trans), rtac ctxt trans, rtac ctxt foldx, rtac ctxt trans, rtac ctxt map_comp_id, rtac ctxt trans, rtac ctxt map_cong0L, EVERY' (map (fn thm => rtac ctxt ballI THEN' rtac ctxt (trans OF [thm RS fun_cong, id_apply])) ctor_o_folds), rtac ctxt sym, rtac ctxt id_apply] 1; fun mk_rec_tac ctxt rec_defs foldx fst_recs = unfold_thms_tac ctxt (rec_defs @ map (fn thm => thm RS @{thm convol_expand_snd}) fst_recs) THEN EVERY' [rtac ctxt trans, rtac ctxt o_apply, rtac ctxt trans, rtac ctxt (foldx RS @{thm arg_cong[of _ _ snd]}), rtac ctxt @{thm snd_convol'}] 1; fun mk_rec_unique_mor_tac ctxt rec_defs fst_recs fold_unique_mor = unfold_thms_tac ctxt (rec_defs @ map (fn thm => thm RS @{thm convol_expand_snd'}) fst_recs) THEN etac ctxt fold_unique_mor 1; fun mk_ctor_induct_tac ctxt m set_mapss init_induct morEs mor_Abs Rep_invs Abs_invs Reps = let val n = length set_mapss; val ks = 1 upto n; fun mk_IH_tac Rep_inv Abs_inv set_map = DETERM o EVERY' [dtac ctxt meta_mp, rtac ctxt (Rep_inv RS arg_cong RS iffD1), etac ctxt bspec, dtac ctxt set_rev_mp, rtac ctxt equalityD1, rtac ctxt set_map, etac ctxt imageE, hyp_subst_tac ctxt, rtac ctxt (Abs_inv RS @{thm ssubst_mem}), etac ctxt set_mp, assume_tac ctxt, assume_tac ctxt]; fun mk_closed_tac (k, (morE, set_maps)) = EVERY' [select_prem_tac ctxt n (dtac ctxt asm_rl) k, rtac ctxt ballI, rtac ctxt impI, rtac ctxt (mor_Abs RS morE RS arg_cong RS iffD2), assume_tac ctxt, REPEAT_DETERM o eresolve_tac ctxt [CollectE, conjE], dtac ctxt @{thm meta_spec}, EVERY' (@{map 3} mk_IH_tac Rep_invs Abs_invs (drop m set_maps)), assume_tac ctxt]; fun mk_induct_tac (Rep, Rep_inv) = EVERY' [rtac ctxt (Rep_inv RS arg_cong RS iffD1), etac ctxt (Rep RSN (2, bspec))]; in (rtac ctxt mp THEN' rtac ctxt impI THEN' DETERM o CONJ_WRAP_GEN' (etac ctxt conjE THEN' rtac ctxt conjI) mk_induct_tac (Reps ~~ Rep_invs) THEN' rtac ctxt init_induct THEN' DETERM o CONJ_WRAP' mk_closed_tac (ks ~~ (morEs ~~ set_mapss))) 1 end; fun mk_ctor_induct2_tac ctxt cTs cts ctor_induct weak_ctor_inducts = let val n = length weak_ctor_inducts; val ks = 1 upto n; fun mk_inner_induct_tac induct i = EVERY' [rtac ctxt allI, fo_rtac ctxt induct, select_prem_tac ctxt n (dtac ctxt @{thm meta_spec2}) i, REPEAT_DETERM_N n o EVERY' [dtac ctxt meta_mp THEN_ALL_NEW Goal.norm_hhf_tac ctxt, REPEAT_DETERM o dtac ctxt @{thm meta_spec}, etac ctxt (spec RS meta_mp), assume_tac ctxt], assume_tac ctxt]; in EVERY' [rtac ctxt rev_mp, rtac ctxt (Thm.instantiate' cTs cts ctor_induct), EVERY' (map2 mk_inner_induct_tac weak_ctor_inducts ks), rtac ctxt impI, REPEAT_DETERM o eresolve_tac ctxt [conjE, allE], CONJ_WRAP' (K (assume_tac ctxt)) ks] 1 end; fun mk_map_tac ctxt m n foldx map_comp_id map_cong0 = EVERY' [rtac ctxt @{thm ext}, rtac ctxt trans, rtac ctxt o_apply, rtac ctxt trans, rtac ctxt foldx, rtac ctxt trans, rtac ctxt o_apply, rtac ctxt trans, rtac ctxt (map_comp_id RS arg_cong), rtac ctxt trans, rtac ctxt (map_cong0 RS arg_cong), REPEAT_DETERM_N m o rtac ctxt refl, REPEAT_DETERM_N n o (EVERY' (map (rtac ctxt) [trans, o_apply, id_apply])), rtac ctxt sym, rtac ctxt o_apply] 1; fun mk_ctor_map_unique_tac ctxt fold_unique sym_map_comps = rtac ctxt fold_unique 1 THEN unfold_thms_tac ctxt (sym_map_comps @ @{thms comp_assoc id_comp comp_id}) THEN ALLGOALS (assume_tac ctxt); fun mk_set_tac ctxt foldx = EVERY' [rtac ctxt @{thm ext}, rtac ctxt trans, rtac ctxt o_apply, rtac ctxt trans, rtac ctxt foldx, rtac ctxt sym, rtac ctxt o_apply] 1; fun mk_ctor_set_tac ctxt set set_map set_maps = let val n = length set_maps; fun mk_UN thm = rtac ctxt (thm RS @{thm arg_cong[of _ _ Union]} RS trans) THEN' rtac ctxt @{thm refl}; in EVERY' [rtac ctxt (set RS @{thm comp_eq_dest} RS trans), rtac ctxt Un_cong, rtac ctxt (trans OF [set_map, trans_fun_cong_image_id_id_apply]), REPEAT_DETERM_N (n - 1) o rtac ctxt Un_cong, EVERY' (map mk_UN set_maps)] 1 end; fun mk_set_nat_tac ctxt m induct_tac set_mapss ctor_maps csets ctor_sets i = let val n = length ctor_maps; fun useIH set_nat = EVERY' [rtac ctxt trans, rtac ctxt @{thm image_UN}, rtac ctxt trans, rtac ctxt @{thm SUP_cong}, rtac ctxt refl, Goal.assume_rule_tac ctxt, rtac ctxt sym, rtac ctxt trans, rtac ctxt @{thm SUP_cong}, rtac ctxt set_nat, rtac ctxt refl, rtac ctxt @{thm UN_simps(10)}]; fun mk_set_nat cset ctor_map ctor_set set_nats = EVERY' [rtac ctxt trans, rtac ctxt @{thm image_cong}, rtac ctxt ctor_set, rtac ctxt refl, rtac ctxt sym, rtac ctxt (trans OF [ctor_map RS infer_instantiate' ctxt [NONE, NONE, SOME cset] arg_cong, ctor_set RS trans]), rtac ctxt sym, EVERY' (map (rtac ctxt) [trans, @{thm image_Un}, Un_cong]), rtac ctxt sym, rtac ctxt (nth set_nats (i - 1)), REPEAT_DETERM_N (n - 1) o EVERY' (map (rtac ctxt) [trans, @{thm image_Un}, Un_cong]), EVERY' (map useIH (drop m set_nats))]; in (induct_tac THEN' EVERY' (@{map 4} mk_set_nat csets ctor_maps ctor_sets set_mapss)) 1 end; fun mk_set_bd_tac ctxt m induct_tac bd_Cinfinite set_bdss ctor_sets i = let val n = length ctor_sets; fun useIH set_bd = EVERY' [rtac ctxt @{thm UNION_Cinfinite_bound}, rtac ctxt set_bd, rtac ctxt ballI, Goal.assume_rule_tac ctxt, rtac ctxt bd_Cinfinite]; fun mk_set_nat ctor_set set_bds = EVERY' [rtac ctxt @{thm ordIso_ordLeq_trans}, rtac ctxt @{thm card_of_ordIso_subst}, rtac ctxt ctor_set, rtac ctxt (bd_Cinfinite RSN (3, @{thm Un_Cinfinite_bound})), rtac ctxt (nth set_bds (i - 1)), REPEAT_DETERM_N (n - 1) o rtac ctxt (bd_Cinfinite RSN (3, @{thm Un_Cinfinite_bound})), EVERY' (map useIH (drop m set_bds))]; in (induct_tac THEN' EVERY' (map2 mk_set_nat ctor_sets set_bdss)) 1 end; fun mk_mcong_tac ctxt induct_tac set_setsss map_cong0s ctor_maps = let fun use_asm thm = EVERY' [etac ctxt bspec, etac ctxt set_rev_mp, rtac ctxt thm]; fun useIH set_sets = EVERY' [rtac ctxt mp, Goal.assume_rule_tac ctxt, CONJ_WRAP' (fn thm => EVERY' [rtac ctxt ballI, etac ctxt bspec, etac ctxt set_rev_mp, etac ctxt thm]) set_sets]; fun mk_map_cong0 ctor_map map_cong0 set_setss = EVERY' [rtac ctxt impI, REPEAT_DETERM o etac ctxt conjE, rtac ctxt trans, rtac ctxt ctor_map, rtac ctxt trans, rtac ctxt (map_cong0 RS arg_cong), EVERY' (map use_asm (map hd set_setss)), EVERY' (map useIH (transpose (map tl set_setss))), rtac ctxt sym, rtac ctxt ctor_map]; in (induct_tac THEN' EVERY' (@{map 3} mk_map_cong0 ctor_maps map_cong0s set_setsss)) 1 end; fun mk_le_rel_OO_tac ctxt m induct ctor_nchotomys ctor_Irels rel_mono_strong0s le_rel_OOs = EVERY' (rtac ctxt induct :: @{map 4} (fn nchotomy => fn Irel => fn rel_mono => fn le_rel_OO => EVERY' [rtac ctxt impI, etac ctxt (nchotomy RS @{thm nchotomy_relcomppE}), REPEAT_DETERM_N 2 o dtac ctxt (Irel RS iffD1), rtac ctxt (Irel RS iffD2), rtac ctxt rel_mono, rtac ctxt (le_rel_OO RS @{thm predicate2D}), rtac ctxt @{thm relcomppI}, assume_tac ctxt, assume_tac ctxt, REPEAT_DETERM_N m o EVERY' [rtac ctxt ballI, rtac ctxt ballI, rtac ctxt impI, assume_tac ctxt], REPEAT_DETERM_N (length le_rel_OOs) o EVERY' [rtac ctxt ballI, rtac ctxt ballI, Goal.assume_rule_tac ctxt]]) ctor_nchotomys ctor_Irels rel_mono_strong0s le_rel_OOs) 1; (* BNF tactics *) fun mk_map_id0_tac ctxt map_id0s unique = (rtac ctxt sym THEN' rtac ctxt unique THEN' EVERY' (map (fn thm => EVERY' [rtac ctxt trans, rtac ctxt @{thm id_comp}, rtac ctxt trans, rtac ctxt sym, rtac ctxt @{thm comp_id}, rtac ctxt (thm RS sym RS arg_cong)]) map_id0s)) 1; fun mk_map_comp0_tac ctxt map_comp0s ctor_maps unique iplus1 = let val i = iplus1 - 1; val unique' = Thm.permute_prems 0 i unique; val map_comp0s' = drop i map_comp0s @ take i map_comp0s; val ctor_maps' = drop i ctor_maps @ take i ctor_maps; fun mk_comp comp simp = EVERY' [rtac ctxt @{thm ext}, rtac ctxt trans, rtac ctxt o_apply, rtac ctxt trans, rtac ctxt o_apply, rtac ctxt trans, rtac ctxt (simp RS arg_cong), rtac ctxt trans, rtac ctxt simp, rtac ctxt trans, rtac ctxt (comp RS arg_cong), rtac ctxt sym, rtac ctxt o_apply]; in (rtac ctxt sym THEN' rtac ctxt unique' THEN' EVERY' (map2 mk_comp map_comp0s' ctor_maps')) 1 end; fun mk_set_map0_tac ctxt set_nat = EVERY' (map (rtac ctxt) [@{thm ext}, trans, o_apply, sym, trans, o_apply, set_nat]) 1; fun mk_bd_card_order_tac ctxt bd_card_orders = CONJ_WRAP_GEN' (rtac ctxt @{thm card_order_csum}) (rtac ctxt) bd_card_orders 1; fun mk_wit_tac ctxt n ctor_set wit = REPEAT_DETERM (assume_tac ctxt 1 ORELSE EVERY' [dtac ctxt set_rev_mp, rtac ctxt equalityD1, resolve_tac ctxt ctor_set, REPEAT_DETERM o (TRY o REPEAT_DETERM o etac ctxt UnE THEN' TRY o etac ctxt @{thm UN_E} THEN' (eresolve_tac ctxt wit ORELSE' (dresolve_tac ctxt wit THEN' (etac ctxt FalseE ORELSE' EVERY' [hyp_subst_tac ctxt, dtac ctxt set_rev_mp, rtac ctxt equalityD1, resolve_tac ctxt ctor_set, REPEAT_DETERM_N n o etac ctxt UnE]))))] 1); fun mk_ctor_rel_tac ctxt in_Irels i in_rel map_comp0 map_cong0 ctor_map ctor_sets ctor_inject ctor_dtor set_map0s ctor_set_incls ctor_set_set_inclss = let val m = length ctor_set_incls; val n = length ctor_set_set_inclss; val (passive_set_map0s, active_set_map0s) = chop m set_map0s; val in_Irel = nth in_Irels (i - 1); val le_arg_cong_ctor_dtor = ctor_dtor RS arg_cong RS ord_eq_le_trans; val eq_arg_cong_ctor_dtor = ctor_dtor RS arg_cong RS trans; val if_tac = EVERY' [dtac ctxt (in_Irel RS iffD1), REPEAT_DETERM o eresolve_tac ctxt [exE, conjE, CollectE], rtac ctxt (in_rel RS iffD2), rtac ctxt exI, rtac ctxt conjI, rtac ctxt CollectI, EVERY' (map2 (fn set_map0 => fn ctor_set_incl => EVERY' [rtac ctxt conjI, rtac ctxt ord_eq_le_trans, rtac ctxt set_map0, rtac ctxt ord_eq_le_trans, rtac ctxt trans_fun_cong_image_id_id_apply, rtac ctxt (ctor_set_incl RS subset_trans), etac ctxt le_arg_cong_ctor_dtor]) passive_set_map0s ctor_set_incls), CONJ_WRAP' (fn (in_Irel, (set_map0, ctor_set_set_incls)) => EVERY' [rtac ctxt ord_eq_le_trans, rtac ctxt set_map0, rtac ctxt @{thm image_subsetI}, rtac ctxt CollectI, rtac ctxt @{thm case_prodI}, rtac ctxt (in_Irel RS iffD2), rtac ctxt exI, rtac ctxt conjI, rtac ctxt CollectI, CONJ_WRAP' (fn thm => EVERY' (map (etac ctxt) [thm RS subset_trans, le_arg_cong_ctor_dtor])) ctor_set_set_incls, rtac ctxt conjI, rtac ctxt refl, rtac ctxt refl]) (in_Irels ~~ (active_set_map0s ~~ ctor_set_set_inclss)), CONJ_WRAP' (fn conv => EVERY' [rtac ctxt trans, rtac ctxt map_comp0, rtac ctxt trans, rtac ctxt map_cong0, REPEAT_DETERM_N m o rtac ctxt @{thm fun_cong[OF comp_id]}, REPEAT_DETERM_N n o EVERY' (map (rtac ctxt) [trans, o_apply, conv]), rtac ctxt (ctor_inject RS iffD1), rtac ctxt trans, rtac ctxt sym, rtac ctxt ctor_map, etac ctxt eq_arg_cong_ctor_dtor]) fst_snd_convs]; val only_if_tac = EVERY' [dtac ctxt (in_rel RS iffD1), REPEAT_DETERM o eresolve_tac ctxt [exE, conjE, CollectE], rtac ctxt (in_Irel RS iffD2), rtac ctxt exI, rtac ctxt conjI, rtac ctxt CollectI, CONJ_WRAP' (fn (ctor_set, passive_set_map0) => EVERY' [rtac ctxt ord_eq_le_trans, rtac ctxt ctor_set, rtac ctxt @{thm Un_least}, rtac ctxt ord_eq_le_trans, rtac ctxt @{thm box_equals[OF _ refl]}, rtac ctxt passive_set_map0, rtac ctxt trans_fun_cong_image_id_id_apply, assume_tac ctxt, CONJ_WRAP_GEN' (rtac ctxt (Thm.permute_prems 0 1 @{thm Un_least})) (fn (active_set_map0, in_Irel) => EVERY' [rtac ctxt ord_eq_le_trans, rtac ctxt @{thm SUP_cong[OF _ refl]}, rtac ctxt active_set_map0, rtac ctxt @{thm UN_least}, dtac ctxt set_rev_mp, etac ctxt @{thm image_mono}, etac ctxt imageE, dtac ctxt @{thm ssubst_mem[OF prod.collapse]}, REPEAT_DETERM o eresolve_tac ctxt (CollectE :: conjE :: @{thms case_prodE iffD1[OF prod.inject, elim_format]}), hyp_subst_tac ctxt, dtac ctxt (in_Irel RS iffD1), dtac ctxt @{thm someI_ex}, REPEAT_DETERM o etac ctxt conjE, REPEAT_DETERM o eresolve_tac ctxt [CollectE, conjE], assume_tac ctxt]) (rev (active_set_map0s ~~ in_Irels))]) (ctor_sets ~~ passive_set_map0s), rtac ctxt conjI, REPEAT_DETERM_N 2 o EVERY' [rtac ctxt trans, rtac ctxt ctor_map, rtac ctxt (ctor_inject RS iffD2), rtac ctxt trans, rtac ctxt map_comp0, rtac ctxt trans, rtac ctxt map_cong0, REPEAT_DETERM_N m o rtac ctxt @{thm fun_cong[OF comp_id]}, EVERY' (map (fn in_Irel => EVERY' [rtac ctxt trans, rtac ctxt o_apply, dtac ctxt set_rev_mp, assume_tac ctxt, dtac ctxt @{thm ssubst_mem[OF prod.collapse]}, REPEAT_DETERM o eresolve_tac ctxt (CollectE :: conjE :: @{thms case_prodE iffD1[OF prod.inject, elim_format]}), hyp_subst_tac ctxt, dtac ctxt (in_Irel RS iffD1), dtac ctxt @{thm someI_ex}, REPEAT_DETERM o etac ctxt conjE, assume_tac ctxt]) in_Irels), assume_tac ctxt]] in EVERY' [rtac ctxt iffI, if_tac, only_if_tac] 1 end; fun mk_ctor_rec_transfer_tac ctxt n m ctor_rec_defs ctor_fold_transfers pre_T_map_transfers ctor_rels = CONJ_WRAP (fn (ctor_rec_def, ctor_fold_transfer) => REPEAT_DETERM (HEADGOAL (rtac ctxt rel_funI)) THEN unfold_thms_tac ctxt [ctor_rec_def, o_apply] THEN HEADGOAL (rtac ctxt @{thm rel_funD[OF snd_transfer]} THEN' etac ctxt (mk_rel_funDN_rotated (n + 1) ctor_fold_transfer) THEN' EVERY' (map2 (fn pre_T_map_transfer => fn ctor_rel => etac ctxt (mk_rel_funDN_rotated 2 @{thm convol_transfer}) THEN' rtac ctxt (mk_rel_funDN_rotated 2 @{thm comp_transfer}) THEN' rtac ctxt (mk_rel_funDN (m + n) pre_T_map_transfer) THEN' REPEAT_DETERM_N m o rtac ctxt @{thm id_transfer} THEN' REPEAT_DETERM o rtac ctxt @{thm fst_transfer} THEN' rtac ctxt rel_funI THEN' etac ctxt (ctor_rel RS iffD2)) pre_T_map_transfers ctor_rels))) (ctor_rec_defs ~~ ctor_fold_transfers); fun mk_rel_induct_tac ctxt IHs m ctor_induct2 ks ctor_rels rel_mono_strong0s = let val n = length ks; in unfold_tac ctxt @{thms le_fun_def le_bool_def all_simps(1,2)[symmetric]} THEN EVERY' [REPEAT_DETERM o rtac ctxt allI, rtac ctxt ctor_induct2, EVERY' (@{map 3} (fn IH => fn ctor_rel => fn rel_mono_strong0 => EVERY' [rtac ctxt impI, dtac ctxt (ctor_rel RS iffD1), rtac ctxt (IH RS @{thm spec2} RS mp), etac ctxt rel_mono_strong0, REPEAT_DETERM_N m o rtac ctxt @{thm ballI[OF ballI[OF imp_refl]]}, EVERY' (map (fn j => EVERY' [select_prem_tac ctxt n (dtac ctxt asm_rl) j, rtac ctxt @{thm ballI[OF ballI]}, Goal.assume_rule_tac ctxt]) ks)]) IHs ctor_rels rel_mono_strong0s)] 1 end; fun mk_fold_transfer_tac ctxt m ctor_rel_induct map_transfers folds = let val n = length map_transfers; in unfold_thms_tac ctxt @{thms rel_fun_def_butlast all_conj_distrib[symmetric] imp_conjR[symmetric]} THEN unfold_thms_tac ctxt @{thms rel_fun_iff_leq_vimage2p} THEN HEADGOAL (EVERY' [REPEAT_DETERM o resolve_tac ctxt [allI, impI], rtac ctxt ctor_rel_induct, EVERY' (map (fn map_transfer => EVERY' [REPEAT_DETERM o resolve_tac ctxt [allI, impI, @{thm vimage2pI}], SELECT_GOAL (unfold_thms_tac ctxt folds), etac ctxt @{thm predicate2D_vimage2p}, rtac ctxt (funpow (m + n + 1) (fn thm => thm RS rel_funD) map_transfer), REPEAT_DETERM_N m o rtac ctxt @{thm id_transfer}, REPEAT_DETERM_N n o rtac ctxt @{thm vimage2p_rel_fun}, assume_tac ctxt]) map_transfers)]) end; end;