(* Title: HOL/Tools/BNF/bnf_def_tactics.ML Author: Dmitriy Traytel, TU Muenchen Author: Jasmin Blanchette, TU Muenchen Author: Martin Desharnais, TU Muenchen Author: Ondrej Kuncar, TU Muenchen Copyright 2012, 2013, 2014, 2015 Tactics for definition of bounded natural functors. *) signature BNF_DEF_TACTICS = sig val mk_collect_set_map_tac: Proof.context -> thm list -> tactic val mk_in_mono_tac: Proof.context -> int -> tactic val mk_inj_map_strong_tac: Proof.context -> thm -> thm list -> thm -> tactic val mk_inj_map_tac: Proof.context -> int -> thm -> thm -> thm -> thm -> tactic val mk_map_id: thm -> thm val mk_map_ident: Proof.context -> thm -> thm val mk_map_comp: thm -> thm val mk_map_cong_tac: Proof.context -> thm -> tactic val mk_set_map: thm -> thm val mk_rel_Grp_tac: Proof.context -> thm list -> thm -> thm -> thm -> thm -> thm list -> tactic val mk_rel_eq_tac: Proof.context -> int -> thm -> thm -> thm -> tactic val mk_rel_OO_le_tac: Proof.context -> thm list -> thm -> thm -> thm -> thm list -> tactic val mk_rel_conversep_tac: Proof.context -> thm -> thm -> tactic val mk_rel_conversep_le_tac: Proof.context -> thm list -> thm -> thm -> thm -> thm list -> tactic val mk_rel_map0_tac: Proof.context -> int -> thm -> thm -> thm -> thm -> tactic val mk_rel_mono_tac: Proof.context -> thm list -> thm -> tactic val mk_rel_mono_strong0_tac: Proof.context -> thm -> thm list -> tactic val mk_rel_cong_tac: Proof.context -> thm list * thm list -> thm -> tactic val mk_rel_eq_onp_tac: Proof.context -> thm -> thm -> thm -> tactic val mk_pred_mono_strong0_tac: Proof.context -> thm -> thm -> tactic val mk_pred_mono_tac: Proof.context -> thm -> thm -> tactic val mk_map_transfer_tac: Proof.context -> thm -> thm -> thm list -> thm -> thm -> tactic val mk_pred_transfer_tac: Proof.context -> int -> thm -> thm -> thm -> tactic val mk_rel_transfer_tac: Proof.context -> thm -> thm list -> thm -> tactic val mk_set_transfer_tac: Proof.context -> thm -> thm list -> tactic val mk_in_bd_tac: Proof.context -> int -> thm -> thm -> thm -> thm -> thm list -> thm list -> thm -> thm -> thm -> thm -> tactic val mk_trivial_wit_tac: Proof.context -> thm list -> thm list -> tactic end; structure BNF_Def_Tactics : BNF_DEF_TACTICS = struct open BNF_Util open BNF_Tactics val ord_eq_le_trans = @{thm ord_eq_le_trans}; val ord_le_eq_trans = @{thm ord_le_eq_trans}; val conversep_shift = @{thm conversep_le_swap} RS iffD1; fun mk_map_id id = mk_trans (fun_cong OF [id]) @{thm id_apply}; fun mk_map_ident ctxt = unfold_thms ctxt @{thms id_def}; fun mk_map_comp comp = @{thm comp_eq_dest_lhs} OF [mk_sym comp]; fun mk_map_cong_tac ctxt cong0 = (hyp_subst_tac ctxt THEN' rtac ctxt cong0 THEN' REPEAT_DETERM o (dtac ctxt meta_spec THEN' etac ctxt meta_mp THEN' assume_tac ctxt)) 1; fun mk_set_map set_map0 = set_map0 RS @{thm comp_eq_dest}; fun mk_in_mono_tac ctxt n = if n = 0 then rtac ctxt subset_UNIV 1 else (rtac ctxt @{thm subsetI} THEN' rtac ctxt @{thm CollectI}) 1 THEN REPEAT_DETERM (eresolve_tac ctxt @{thms CollectE conjE} 1) THEN REPEAT_DETERM_N (n - 1) ((rtac ctxt conjI THEN' etac ctxt @{thm subset_trans} THEN' assume_tac ctxt) 1) THEN (etac ctxt @{thm subset_trans} THEN' assume_tac ctxt) 1; fun mk_inj_map_tac ctxt n map_id map_comp map_cong0 map_cong = let val map_cong' = map_cong OF (asm_rl :: replicate n refl); val map_cong0' = map_cong0 OF (replicate n @{thm the_inv_f_o_f_id}); in HEADGOAL (rtac ctxt @{thm injI} THEN' etac ctxt (map_cong' RS box_equals) THEN' REPEAT_DETERM_N 2 o (rtac ctxt (box_equals OF [map_cong0', map_comp RS sym, map_id]) THEN' REPEAT_DETERM_N n o assume_tac ctxt)) end; fun mk_inj_map_strong_tac ctxt rel_eq rel_maps rel_mono_strong = let val rel_eq' = rel_eq RS @{thm predicate2_eqD}; val rel_maps' = map (fn thm => thm RS iffD1) rel_maps; in HEADGOAL (dtac ctxt (rel_eq' RS iffD2) THEN' rtac ctxt (rel_eq' RS iffD1)) THEN EVERY (map (HEADGOAL o dtac ctxt) rel_maps') THEN HEADGOAL (etac ctxt rel_mono_strong) THEN TRYALL (Goal.assume_rule_tac ctxt) end; fun mk_collect_set_map_tac ctxt set_map0s = (rtac ctxt (@{thm collect_comp} RS trans) THEN' rtac ctxt @{thm arg_cong[of _ _ collect]} THEN' EVERY' (map (fn set_map0 => rtac ctxt (mk_trans @{thm image_insert} @{thm arg_cong2[of _ _ _ _ insert]}) THEN' rtac ctxt set_map0) set_map0s) THEN' rtac ctxt @{thm image_empty}) 1; fun mk_rel_Grp_tac ctxt rel_OO_Grps map_id0 map_cong0 map_id map_comp set_maps = let val n = length set_maps; val rel_OO_Grps_tac = if null rel_OO_Grps then K all_tac else rtac ctxt (hd rel_OO_Grps RS trans); in if null set_maps then unfold_thms_tac ctxt ((map_id0 RS @{thm Grp_UNIV_id}) :: rel_OO_Grps) THEN resolve_tac ctxt @{thms refl Grp_UNIV_idI[OF refl]} 1 else EVERY' [rel_OO_Grps_tac, rtac ctxt @{thm antisym}, rtac ctxt @{thm predicate2I}, REPEAT_DETERM o eresolve_tac ctxt @{thms CollectE exE conjE GrpE relcomppE conversepE}, hyp_subst_tac ctxt, rtac ctxt @{thm GrpI}, rtac ctxt trans, rtac ctxt map_comp, rtac ctxt map_cong0, REPEAT_DETERM_N n o EVERY' [rtac ctxt @{thm Collect_case_prod_Grp_eqD}, etac ctxt @{thm set_mp}, assume_tac ctxt], rtac ctxt @{thm CollectI}, CONJ_WRAP' (fn thm => EVERY' [rtac ctxt (thm RS ord_eq_le_trans), rtac ctxt @{thm image_subsetI}, rtac ctxt @{thm Collect_case_prod_Grp_in}, etac ctxt @{thm set_mp}, assume_tac ctxt]) set_maps, rtac ctxt @{thm predicate2I}, REPEAT_DETERM o eresolve_tac ctxt [@{thm GrpE}, exE, conjE], hyp_subst_tac ctxt, rtac ctxt @{thm relcomppI}, rtac ctxt @{thm conversepI}, EVERY' (map2 (fn convol => fn map_id0 => EVERY' [rtac ctxt @{thm GrpI}, rtac ctxt (@{thm box_equals} OF [map_cong0, map_comp RS sym, map_id0]), REPEAT_DETERM_N n o rtac ctxt (convol RS fun_cong), REPEAT_DETERM o eresolve_tac ctxt @{thms CollectE conjE}, rtac ctxt @{thm CollectI}, CONJ_WRAP' (fn thm => EVERY' [rtac ctxt ord_eq_le_trans, rtac ctxt thm, rtac ctxt @{thm image_subsetI}, rtac ctxt @{thm convol_mem_GrpI}, etac ctxt set_mp, assume_tac ctxt]) set_maps]) @{thms fst_convol snd_convol} [map_id, refl])] 1 end; fun mk_rel_eq_tac ctxt n rel_Grp rel_cong map_id0 = (EVERY' (rtac ctxt (rel_cong RS trans) :: replicate n (rtac ctxt @{thm eq_alt})) THEN' rtac ctxt (rel_Grp RSN (2, @{thm box_equals[OF _ sym sym[OF eq_alt]]})) THEN' (if n = 0 then SELECT_GOAL (unfold_thms_tac ctxt (no_refl [map_id0])) THEN' rtac ctxt refl else EVERY' [rtac ctxt @{thm arg_cong2[of _ _ _ _ "Grp"]}, rtac ctxt @{thm equalityI}, rtac ctxt subset_UNIV, rtac ctxt @{thm subsetI}, rtac ctxt @{thm CollectI}, CONJ_WRAP' (K (rtac ctxt subset_UNIV)) (1 upto n), rtac ctxt map_id0])) 1; fun mk_rel_map0_tac ctxt live rel_compp rel_conversep rel_Grp map_id = if live = 0 then HEADGOAL (Goal.conjunction_tac) THEN unfold_thms_tac ctxt @{thms id_apply} THEN ALLGOALS (rtac ctxt refl) else let val ks = 1 upto live; in Goal.conjunction_tac 1 THEN unfold_thms_tac ctxt [rel_compp, rel_conversep, rel_Grp, @{thm vimage2p_Grp}] THEN TRYALL (EVERY' [rtac ctxt iffI, rtac ctxt @{thm relcomppI}, rtac ctxt @{thm GrpI}, resolve_tac ctxt [map_id, refl], rtac ctxt @{thm CollectI}, CONJ_WRAP' (K (rtac ctxt @{thm subset_UNIV})) ks, rtac ctxt @{thm relcomppI}, assume_tac ctxt, rtac ctxt @{thm conversepI}, rtac ctxt @{thm GrpI}, resolve_tac ctxt [map_id, refl], rtac ctxt @{thm CollectI}, CONJ_WRAP' (K (rtac ctxt @{thm subset_UNIV})) ks, REPEAT_DETERM o eresolve_tac ctxt @{thms relcomppE conversepE GrpE}, dtac ctxt (trans OF [sym, map_id]), hyp_subst_tac ctxt, assume_tac ctxt]) end; fun mk_rel_mono_tac ctxt rel_OO_Grps in_mono = let val rel_OO_Grps_tac = if null rel_OO_Grps then K all_tac else rtac ctxt (hd rel_OO_Grps RS ord_eq_le_trans) THEN' rtac ctxt (hd rel_OO_Grps RS sym RSN (2, ord_le_eq_trans)); in EVERY' [rel_OO_Grps_tac, rtac ctxt @{thm relcompp_mono}, rtac ctxt @{thm iffD2[OF conversep_mono]}, rtac ctxt @{thm Grp_mono}, rtac ctxt in_mono, REPEAT_DETERM o etac ctxt @{thm Collect_case_prod_mono}, rtac ctxt @{thm Grp_mono}, rtac ctxt in_mono, REPEAT_DETERM o etac ctxt @{thm Collect_case_prod_mono}] 1 end; fun mk_rel_conversep_le_tac ctxt rel_OO_Grps rel_eq map_cong0 map_comp set_maps = let val n = length set_maps; val rel_OO_Grps_tac = if null rel_OO_Grps then K all_tac else rtac ctxt (hd rel_OO_Grps RS ord_eq_le_trans) THEN' rtac ctxt (hd rel_OO_Grps RS sym RS @{thm arg_cong[of _ _ conversep]} RSN (2, ord_le_eq_trans)); in if null set_maps then rtac ctxt (rel_eq RS @{thm leq_conversepI}) 1 else EVERY' [rel_OO_Grps_tac, rtac ctxt @{thm predicate2I}, REPEAT_DETERM o eresolve_tac ctxt @{thms CollectE exE conjE GrpE relcomppE conversepE}, hyp_subst_tac ctxt, rtac ctxt @{thm conversepI}, rtac ctxt @{thm relcomppI}, rtac ctxt @{thm conversepI}, EVERY' (map (fn thm => EVERY' [rtac ctxt @{thm GrpI}, rtac ctxt sym, rtac ctxt trans, rtac ctxt map_cong0, REPEAT_DETERM_N n o rtac ctxt thm, rtac ctxt (map_comp RS sym), rtac ctxt @{thm CollectI}, CONJ_WRAP' (fn thm => EVERY' [rtac ctxt (thm RS ord_eq_le_trans), etac ctxt @{thm flip_pred}]) set_maps]) [@{thm snd_fst_flip}, @{thm fst_snd_flip}])] 1 end; fun mk_rel_conversep_tac ctxt le_conversep rel_mono = EVERY' [rtac ctxt @{thm antisym}, rtac ctxt le_conversep, rtac ctxt @{thm xt1(6)}, rtac ctxt conversep_shift, rtac ctxt le_conversep, rtac ctxt @{thm iffD2[OF conversep_mono]}, rtac ctxt rel_mono, REPEAT_DETERM o rtac ctxt @{thm eq_refl[OF sym[OF conversep_conversep]]}] 1; fun mk_rel_OO_le_tac ctxt rel_OO_Grps rel_eq map_cong0 map_comp set_maps = let val n = length set_maps; fun in_tac nthO_in = rtac ctxt @{thm CollectI} THEN' CONJ_WRAP' (fn thm => EVERY' [rtac ctxt (thm RS ord_eq_le_trans), rtac ctxt @{thm image_subsetI}, rtac ctxt nthO_in, etac ctxt set_mp, assume_tac ctxt]) set_maps; val rel_OO_Grps_tac = if null rel_OO_Grps then K all_tac else rtac ctxt (hd rel_OO_Grps RS ord_eq_le_trans) THEN' rtac ctxt (@{thm arg_cong2[of _ _ _ _ "(OO)"]} OF (replicate 2 (hd rel_OO_Grps RS sym)) RSN (2, ord_le_eq_trans)); in if null set_maps then rtac ctxt (rel_eq RS @{thm leq_OOI}) 1 else EVERY' [rel_OO_Grps_tac, rtac ctxt @{thm predicate2I}, REPEAT_DETERM o eresolve_tac ctxt @{thms CollectE exE conjE GrpE relcomppE conversepE}, hyp_subst_tac ctxt, rtac ctxt @{thm relcomppI}, rtac ctxt @{thm relcomppI}, rtac ctxt @{thm conversepI}, rtac ctxt @{thm GrpI}, rtac ctxt trans, rtac ctxt map_comp, rtac ctxt sym, rtac ctxt map_cong0, REPEAT_DETERM_N n o rtac ctxt @{thm fst_fstOp}, in_tac @{thm fstOp_in}, rtac ctxt @{thm GrpI}, rtac ctxt trans, rtac ctxt map_comp, rtac ctxt map_cong0, REPEAT_DETERM_N n o EVERY' [rtac ctxt trans, rtac ctxt o_apply, rtac ctxt @{thm ballE}, rtac ctxt subst, rtac ctxt @{thm csquare_def}, rtac ctxt @{thm csquare_fstOp_sndOp}, assume_tac ctxt, etac ctxt notE, etac ctxt set_mp, assume_tac ctxt], in_tac @{thm fstOp_in}, rtac ctxt @{thm relcomppI}, rtac ctxt @{thm conversepI}, rtac ctxt @{thm GrpI}, rtac ctxt trans, rtac ctxt map_comp, rtac ctxt map_cong0, REPEAT_DETERM_N n o rtac ctxt o_apply, in_tac @{thm sndOp_in}, rtac ctxt @{thm GrpI}, rtac ctxt trans, rtac ctxt map_comp, rtac ctxt sym, rtac ctxt map_cong0, REPEAT_DETERM_N n o rtac ctxt @{thm snd_sndOp}, in_tac @{thm sndOp_in}] 1 end; fun mk_rel_mono_strong0_tac ctxt in_rel set_maps = if null set_maps then assume_tac ctxt 1 else unfold_tac ctxt [in_rel] THEN REPEAT_DETERM (eresolve_tac ctxt @{thms exE CollectE conjE} 1) THEN hyp_subst_tac ctxt 1 THEN EVERY' [rtac ctxt exI, rtac ctxt @{thm conjI[OF CollectI conjI[OF refl refl]]}, CONJ_WRAP' (fn thm => (etac ctxt (@{thm Collect_split_mono_strong} OF [thm, thm]) THEN' assume_tac ctxt)) set_maps] 1; fun mk_rel_transfer_tac ctxt in_rel rel_map rel_mono_strong = let fun last_tac iffD = HEADGOAL (etac ctxt rel_mono_strong) THEN REPEAT_DETERM (HEADGOAL (etac ctxt (@{thm predicate2_transferD} RS iffD) THEN' REPEAT_DETERM o assume_tac ctxt)); in REPEAT_DETERM (HEADGOAL (rtac ctxt rel_funI)) THEN (HEADGOAL (hyp_subst_tac ctxt THEN' rtac ctxt refl) ORELSE REPEAT_DETERM (HEADGOAL (eresolve_tac ctxt (Tactic.make_elim (in_rel RS iffD1) :: @{thms exE conjE CollectE}))) THEN HEADGOAL (hyp_subst_tac ctxt) THEN REPEAT_DETERM (HEADGOAL (resolve_tac ctxt (maps (fn thm => [thm RS trans, thm RS @{thm trans[rotated, OF sym]}]) rel_map))) THEN HEADGOAL (rtac ctxt iffI) THEN last_tac iffD1 THEN last_tac iffD2) end; fun mk_map_transfer_tac ctxt rel_mono in_rel set_maps map_cong0 map_comp = let val n = length set_maps; val in_tac = if n = 0 then rtac ctxt @{thm UNIV_I} else rtac ctxt @{thm CollectI} THEN' CONJ_WRAP' (fn thm => etac ctxt (thm RS @{thm ord_eq_le_trans[OF _ subset_trans[OF image_mono convol_image_vimage2p]]})) set_maps; in REPEAT_DETERM_N n (HEADGOAL (rtac ctxt rel_funI)) THEN unfold_thms_tac ctxt @{thms rel_fun_iff_leq_vimage2p} THEN HEADGOAL (EVERY' [rtac ctxt @{thm order_trans}, rtac ctxt rel_mono, REPEAT_DETERM_N n o assume_tac ctxt, rtac ctxt @{thm predicate2I}, dtac ctxt (in_rel RS iffD1), REPEAT_DETERM o eresolve_tac ctxt @{thms exE CollectE conjE}, hyp_subst_tac ctxt, rtac ctxt @{thm vimage2pI}, rtac ctxt (in_rel RS iffD2), rtac ctxt exI, rtac ctxt conjI, in_tac, rtac ctxt conjI, EVERY' (map (fn convol => rtac ctxt (@{thm box_equals} OF [map_cong0, map_comp RS sym, map_comp RS sym]) THEN' REPEAT_DETERM_N n o rtac ctxt (convol RS fun_cong)) @{thms fst_convol snd_convol})]) end; fun mk_in_bd_tac ctxt live surj_imp_ordLeq_inst map_comp map_id map_cong0 set_maps set_bds bd_card_order bd_Card_order bd_Cinfinite bd_Cnotzero = if live = 0 then rtac ctxt @{thm ordLeq_transitive[OF ordLeq_csum2[OF card_of_Card_order] ordLeq_cexp2[OF ordLeq_refl[OF Card_order_ctwo] Card_order_csum]]} 1 else let val bd'_Cinfinite = bd_Cinfinite RS @{thm Cinfinite_csum1}; val inserts = map (fn set_bd => iffD2 OF [@{thm card_of_ordLeq}, @{thm ordLeq_ordIso_trans} OF [set_bd, bd_Card_order RS @{thm card_of_Field_ordIso} RS @{thm ordIso_symmetric}]]) set_bds; in EVERY' [rtac ctxt (Drule.rotate_prems 1 ctrans), rtac ctxt @{thm cprod_cinfinite_bound}, rtac ctxt (ctrans OF @{thms ordLeq_csum2 ordLeq_cexp2}), rtac ctxt @{thm card_of_Card_order}, rtac ctxt @{thm ordLeq_csum2}, rtac ctxt @{thm Card_order_ctwo}, rtac ctxt @{thm Card_order_csum}, rtac ctxt @{thm ordIso_ordLeq_trans}, rtac ctxt @{thm cexp_cong1}, if live = 1 then rtac ctxt @{thm ordIso_refl[OF Card_order_csum]} else REPEAT_DETERM_N (live - 2) o rtac ctxt @{thm ordIso_transitive[OF csum_cong2]} THEN' REPEAT_DETERM_N (live - 1) o rtac ctxt @{thm csum_csum}, rtac ctxt bd_Card_order, rtac ctxt (@{thm cexp_mono2_Cnotzero} RS ctrans), rtac ctxt @{thm ordLeq_csum1}, rtac ctxt bd_Card_order, rtac ctxt @{thm Card_order_csum}, rtac ctxt bd_Cnotzero, rtac ctxt @{thm csum_Cfinite_cexp_Cinfinite}, rtac ctxt (if live = 1 then @{thm card_of_Card_order} else @{thm Card_order_csum}), CONJ_WRAP_GEN' (rtac ctxt @{thm Cfinite_csum}) (K (rtac ctxt @{thm Cfinite_cone})) set_maps, rtac ctxt bd'_Cinfinite, rtac ctxt @{thm card_of_Card_order}, rtac ctxt @{thm Card_order_cexp}, rtac ctxt @{thm Cinfinite_cexp}, rtac ctxt @{thm ordLeq_csum2}, rtac ctxt @{thm Card_order_ctwo}, rtac ctxt bd'_Cinfinite, rtac ctxt (Drule.rotate_prems 1 (@{thm cprod_mono2} RSN (2, ctrans))), REPEAT_DETERM_N (live - 1) o (rtac ctxt (bd_Cinfinite RS @{thm cprod_cexp_csum_cexp_Cinfinite} RSN (2, ctrans)) THEN' rtac ctxt @{thm ordLeq_ordIso_trans[OF cprod_mono2 ordIso_symmetric[OF cprod_cexp]]}), rtac ctxt @{thm ordLeq_refl[OF Card_order_cexp]}] 1 THEN unfold_thms_tac ctxt [bd_card_order RS @{thm card_order_csum_cone_cexp_def}] THEN unfold_thms_tac ctxt @{thms cprod_def Field_card_of} THEN EVERY' [rtac ctxt (Drule.rotate_prems 1 ctrans), rtac ctxt surj_imp_ordLeq_inst, rtac ctxt @{thm subsetI}, Method.insert_tac ctxt inserts, REPEAT_DETERM o dtac ctxt meta_spec, REPEAT_DETERM o eresolve_tac ctxt [exE, Tactic.make_elim conjunct1], etac ctxt @{thm CollectE}, if live = 1 then K all_tac else REPEAT_DETERM_N (live - 2) o (etac ctxt conjE THEN' rotate_tac ~1) THEN' etac ctxt conjE, rtac ctxt (Drule.rotate_prems 1 @{thm image_eqI}), rtac ctxt @{thm SigmaI}, rtac ctxt @{thm UNIV_I}, CONJ_WRAP_GEN' (rtac ctxt @{thm SigmaI}) (K (etac ctxt @{thm If_the_inv_into_in_Func} THEN' assume_tac ctxt)) set_maps, rtac ctxt sym, rtac ctxt (Drule.rotate_prems 1 ((@{thm box_equals} OF [map_cong0 OF replicate live @{thm If_the_inv_into_f_f}, map_comp RS sym, map_id]) RSN (2, trans))), REPEAT_DETERM_N (2 * live) o assume_tac ctxt, REPEAT_DETERM_N live o rtac ctxt (@{thm prod.case} RS trans), rtac ctxt refl, rtac ctxt @{thm surj_imp_ordLeq}, rtac ctxt @{thm subsetI}, rtac ctxt (Drule.rotate_prems 1 @{thm image_eqI}), REPEAT_DETERM o eresolve_tac ctxt @{thms CollectE conjE}, rtac ctxt @{thm CollectI}, CONJ_WRAP' (fn thm => rtac ctxt (thm RS ord_eq_le_trans) THEN' etac ctxt @{thm subset_trans[OF image_mono Un_upper1]}) set_maps, rtac ctxt sym, rtac ctxt (@{thm box_equals} OF [map_cong0 OF replicate live @{thm fun_cong[OF case_sum_o_inj(1)]}, map_comp RS sym, map_id])] 1 end; fun mk_trivial_wit_tac ctxt wit_defs set_maps = unfold_thms_tac ctxt wit_defs THEN HEADGOAL (EVERY' (map (fn thm => dtac ctxt (thm RS @{thm equalityD1} RS set_mp) THEN' etac ctxt @{thm imageE} THEN' assume_tac ctxt) set_maps)) THEN ALLGOALS (assume_tac ctxt); fun mk_set_transfer_tac ctxt in_rel set_maps = Goal.conjunction_tac 1 THEN EVERY (map (fn set_map => HEADGOAL (rtac ctxt rel_funI) THEN REPEAT_DETERM (HEADGOAL (eresolve_tac ctxt (Tactic.make_elim (in_rel RS iffD1) :: @{thms exE conjE CollectE}))) THEN HEADGOAL (hyp_subst_tac ctxt THEN' rtac ctxt (@{thm iffD2[OF arg_cong2]} OF [set_map, set_map]) THEN' rtac ctxt @{thm rel_setI}) THEN REPEAT (HEADGOAL (etac ctxt @{thm imageE} THEN' dtac ctxt @{thm set_mp} THEN' assume_tac ctxt THEN' REPEAT_DETERM o (eresolve_tac ctxt @{thms CollectE case_prodE}) THEN' hyp_subst_tac ctxt THEN' rtac ctxt @{thm bexI} THEN' etac ctxt @{thm subst_Pair[OF _ refl]} THEN' etac ctxt @{thm imageI}))) set_maps); fun mk_rel_cong_tac ctxt (eqs, prems) mono = let fun mk_tac thm = etac ctxt thm THEN_ALL_NEW assume_tac ctxt; fun mk_tacs iffD = etac ctxt mono :: map (fn thm => (unfold_thms ctxt @{thms simp_implies_def} thm RS iffD) |> Drule.rotate_prems ~1 |> mk_tac) prems; in unfold_thms_tac ctxt eqs THEN HEADGOAL (EVERY' (rtac ctxt iffI :: mk_tacs iffD1 @ mk_tacs iffD2)) end; fun subst_conv ctxt thm = Conv.arg_conv (Conv.arg_conv (Conv.top_sweep_conv (K (Conv.rewr_conv (safe_mk_meta_eq thm))) ctxt)); fun mk_rel_eq_onp_tac ctxt pred_def map_id0 rel_Grp = HEADGOAL (EVERY' [SELECT_GOAL (unfold_thms_tac ctxt (pred_def :: @{thms UNIV_def eq_onp_Grp Ball_Collect})), CONVERSION (subst_conv ctxt (map_id0 RS sym)), rtac ctxt (unfold_thms ctxt @{thms UNIV_def} rel_Grp)]); fun mk_pred_mono_strong0_tac ctxt pred_rel rel_mono_strong0 = unfold_thms_tac ctxt [pred_rel] THEN HEADGOAL (etac ctxt rel_mono_strong0 THEN_ALL_NEW etac ctxt @{thm eq_onp_mono0}); fun mk_pred_mono_tac ctxt rel_eq_onp rel_mono = unfold_thms_tac ctxt (map mk_sym [@{thm eq_onp_mono_iff}, rel_eq_onp]) THEN HEADGOAL (rtac ctxt rel_mono THEN_ALL_NEW assume_tac ctxt); fun mk_pred_transfer_tac ctxt n in_rel pred_map pred_cong = HEADGOAL (EVERY' [REPEAT_DETERM_N (n + 1) o rtac ctxt rel_funI, dtac ctxt (in_rel RS iffD1), REPEAT_DETERM o eresolve_tac ctxt @{thms exE conjE CollectE}, hyp_subst_tac ctxt, rtac ctxt (box_equals OF [@{thm _}, pred_map RS sym, pred_map RS sym]), rtac ctxt (refl RS pred_cong), REPEAT_DETERM_N n o (etac ctxt @{thm rel_fun_Collect_case_prodD[where B="(=)"]} THEN_ALL_NEW assume_tac ctxt)]); end;