(* Title: HOL/Proofs/Lambda/ListBeta.thy Author: Tobias Nipkow Copyright 1998 TU Muenchen *) section \Lifting beta-reduction to lists\ theory ListBeta imports ListApplication ListOrder begin text \ Lifting beta-reduction to lists of terms, reducing exactly one element. \ abbreviation list_beta :: "dB list => dB list => bool" (infixl "=>" 50) where "rs => ss == step1 beta rs ss" lemma head_Var_reduction: "Var n \\ rs \\<^sub>\ v \ \ss. rs => ss \ v = Var n \\ ss" apply (induct u == "Var n \\ rs" v arbitrary: rs set: beta) apply simp apply (rule_tac xs = rs in rev_exhaust) apply simp apply (atomize, force intro: append_step1I) apply (rule_tac xs = rs in rev_exhaust) apply simp apply (auto 0 3 intro: disjI2 [THEN append_step1I]) done lemma apps_betasE [elim!]: assumes major: "r \\ rs \\<^sub>\ s" and cases: "!!r'. [| r \\<^sub>\ r'; s = r' \\ rs |] ==> R" "!!rs'. [| rs => rs'; s = r \\ rs' |] ==> R" "!!t u us. [| r = Abs t; rs = u # us; s = t[u/0] \\ us |] ==> R" shows R proof - from major have "(\r'. r \\<^sub>\ r' \ s = r' \\ rs) \ (\rs'. rs => rs' \ s = r \\ rs') \ (\t u us. r = Abs t \ rs = u # us \ s = t[u/0] \\ us)" apply (induct u == "r \\ rs" s arbitrary: r rs set: beta) apply (case_tac r) apply simp apply (simp add: App_eq_foldl_conv) apply (split if_split_asm) apply simp apply blast apply simp apply (simp add: App_eq_foldl_conv) apply (split if_split_asm) apply simp apply simp apply (drule App_eq_foldl_conv [THEN iffD1]) apply (split if_split_asm) apply simp apply blast apply (force intro!: disjI1 [THEN append_step1I]) apply (drule App_eq_foldl_conv [THEN iffD1]) apply (split if_split_asm) apply simp apply blast apply (clarify, auto 0 3 intro!: exI intro: append_step1I) done with cases show ?thesis by blast qed lemma apps_preserves_beta [simp]: "r \\<^sub>\ s ==> r \\ ss \\<^sub>\ s \\ ss" by (induct ss rule: rev_induct) auto lemma apps_preserves_beta2 [simp]: "r \\<^sub>\\<^sup>* s ==> r \\ ss \\<^sub>\\<^sup>* s \\ ss" apply (induct set: rtranclp) apply blast apply (blast intro: apps_preserves_beta rtranclp.rtrancl_into_rtrancl) done lemma apps_preserves_betas [simp]: "rs => ss \ r \\ rs \\<^sub>\ r \\ ss" apply (induct rs arbitrary: ss rule: rev_induct) apply simp apply simp apply (rule_tac xs = ss in rev_exhaust) apply simp apply simp apply (drule Snoc_step1_SnocD) apply blast done end