(* Title: HOL/Modules.thy Author: Amine Chaieb, University of Cambridge Author: Jose Divasón Author: Jesús Aransay Author: Johannes Hölzl, VU Amsterdam Author: Fabian Immler, TUM *) section \Modules\ text \Bases of a linear algebra based on modules (i.e. vector spaces of rings). \ theory Modules imports Hull begin subsection \Locale for additive functions\ locale additive = fixes f :: "'a::ab_group_add \ 'b::ab_group_add" assumes add: "f (x + y) = f x + f y" begin lemma zero: "f 0 = 0" proof - have "f 0 = f (0 + 0)" by simp also have "\ = f 0 + f 0" by (rule add) finally show "f 0 = 0" by simp qed lemma minus: "f (- x) = - f x" proof - have "f (- x) + f x = f (- x + x)" by (rule add [symmetric]) also have "\ = - f x + f x" by (simp add: zero) finally show "f (- x) = - f x" by (rule add_right_imp_eq) qed lemma diff: "f (x - y) = f x - f y" using add [of x "- y"] by (simp add: minus) lemma sum: "f (sum g A) = (\x\A. f (g x))" by (induct A rule: infinite_finite_induct) (simp_all add: zero add) end text \Modules form the central spaces in linear algebra. They are a generalization from vector spaces by replacing the scalar field by a scalar ring.\ locale module = fixes scale :: "'a::comm_ring_1 \ 'b::ab_group_add \ 'b" (infixr "*s" 75) assumes scale_right_distrib [algebra_simps, algebra_split_simps]: "a *s (x + y) = a *s x + a *s y" and scale_left_distrib [algebra_simps, algebra_split_simps]: "(a + b) *s x = a *s x + b *s x" and scale_scale [simp]: "a *s (b *s x) = (a * b) *s x" and scale_one [simp]: "1 *s x = x" begin lemma scale_left_commute: "a *s (b *s x) = b *s (a *s x)" by (simp add: mult.commute) lemma scale_zero_left [simp]: "0 *s x = 0" and scale_minus_left [simp]: "(- a) *s x = - (a *s x)" and scale_left_diff_distrib [algebra_simps, algebra_split_simps]: "(a - b) *s x = a *s x - b *s x" and scale_sum_left: "(sum f A) *s x = (\a\A. (f a) *s x)" proof - interpret s: additive "\a. a *s x" by standard (rule scale_left_distrib) show "0 *s x = 0" by (rule s.zero) show "(- a) *s x = - (a *s x)" by (rule s.minus) show "(a - b) *s x = a *s x - b *s x" by (rule s.diff) show "(sum f A) *s x = (\a\A. (f a) *s x)" by (rule s.sum) qed lemma scale_zero_right [simp]: "a *s 0 = 0" and scale_minus_right [simp]: "a *s (- x) = - (a *s x)" and scale_right_diff_distrib [algebra_simps, algebra_split_simps]: "a *s (x - y) = a *s x - a *s y" and scale_sum_right: "a *s (sum f A) = (\x\A. a *s (f x))" proof - interpret s: additive "\x. a *s x" by standard (rule scale_right_distrib) show "a *s 0 = 0" by (rule s.zero) show "a *s (- x) = - (a *s x)" by (rule s.minus) show "a *s (x - y) = a *s x - a *s y" by (rule s.diff) show "a *s (sum f A) = (\x\A. a *s (f x))" by (rule s.sum) qed lemma sum_constant_scale: "(\x\A. y) = scale (of_nat (card A)) y" by (induct A rule: infinite_finite_induct) (simp_all add: algebra_simps) end setup \Sign.add_const_constraint (\<^const_name>\divide\, SOME \<^typ>\'a \ 'a \ 'a\)\ context module begin lemma [field_simps, field_split_simps]: shows scale_left_distrib_NO_MATCH: "NO_MATCH (x div y) c \ (a + b) *s x = a *s x + b *s x" and scale_right_distrib_NO_MATCH: "NO_MATCH (x div y) a \ a *s (x + y) = a *s x + a *s y" and scale_left_diff_distrib_NO_MATCH: "NO_MATCH (x div y) c \ (a - b) *s x = a *s x - b *s x" and scale_right_diff_distrib_NO_MATCH: "NO_MATCH (x div y) a \ a *s (x - y) = a *s x - a *s y" by (rule scale_left_distrib scale_right_distrib scale_left_diff_distrib scale_right_diff_distrib)+ end setup \Sign.add_const_constraint (\<^const_name>\divide\, SOME \<^typ>\'a::divide \ 'a \ 'a\)\ section \Subspace\ context module begin definition subspace :: "'b set \ bool" where "subspace S \ 0 \ S \ (\x\S. \y\S. x + y \ S) \ (\c. \x\S. c *s x \ S)" lemma subspaceI: "0 \ S \ (\x y. x \ S \ y \ S \ x + y \ S) \ (\c x. x \ S \ c *s x \ S) \ subspace S" by (auto simp: subspace_def) lemma subspace_UNIV[simp]: "subspace UNIV" by (simp add: subspace_def) lemma subspace_single_0[simp]: "subspace {0}" by (simp add: subspace_def) lemma subspace_0: "subspace S \ 0 \ S" by (metis subspace_def) lemma subspace_add: "subspace S \ x \ S \ y \ S \ x + y \ S" by (metis subspace_def) lemma subspace_scale: "subspace S \ x \ S \ c *s x \ S" by (metis subspace_def) lemma subspace_neg: "subspace S \ x \ S \ - x \ S" by (metis scale_minus_left scale_one subspace_scale) lemma subspace_diff: "subspace S \ x \ S \ y \ S \ x - y \ S" by (metis diff_conv_add_uminus subspace_add subspace_neg) lemma subspace_sum: "subspace A \ (\x. x \ B \ f x \ A) \ sum f B \ A" by (induct B rule: infinite_finite_induct) (auto simp add: subspace_add subspace_0) lemma subspace_Int: "(\i. i \ I \ subspace (s i)) \ subspace (\i\I. s i)" by (auto simp: subspace_def) lemma subspace_Inter: "\s \ f. subspace s \ subspace (\f)" unfolding subspace_def by auto lemma subspace_inter: "subspace A \ subspace B \ subspace (A \ B)" by (simp add: subspace_def) section \Span: subspace generated by a set\ definition span :: "'b set \ 'b set" where span_explicit: "span b = {(\a\t. r a *s a) | t r. finite t \ t \ b}" lemma span_explicit': "span b = {(\v | f v \ 0. f v *s v) | f. finite {v. f v \ 0} \ (\v. f v \ 0 \ v \ b)}" unfolding span_explicit proof safe fix t r assume "finite t" "t \ b" then show "\f. (\a\t. r a *s a) = (\v | f v \ 0. f v *s v) \ finite {v. f v \ 0} \ (\v. f v \ 0 \ v \ b)" by (intro exI[of _ "\v. if v \ t then r v else 0"]) (auto intro!: sum.mono_neutral_cong_right) next fix f :: "'b \ 'a" assume "finite {v. f v \ 0}" "(\v. f v \ 0 \ v \ b)" then show "\t r. (\v | f v \ 0. f v *s v) = (\a\t. r a *s a) \ finite t \ t \ b" by (intro exI[of _ "{v. f v \ 0}"] exI[of _ f]) auto qed lemma span_alt: "span B = {(\x | f x \ 0. f x *s x) | f. {x. f x \ 0} \ B \ finite {x. f x \ 0}}" unfolding span_explicit' by auto lemma span_finite: assumes fS: "finite S" shows "span S = range (\u. \v\S. u v *s v)" unfolding span_explicit proof safe fix t r assume "t \ S" then show "(\a\t. r a *s a) \ range (\u. \v\S. u v *s v)" by (intro image_eqI[of _ _ "\a. if a \ t then r a else 0"]) (auto simp: if_distrib[of "\r. r *s a" for a] sum.If_cases fS Int_absorb1) next show "\t r. (\v\S. u v *s v) = (\a\t. r a *s a) \ finite t \ t \ S" for u by (intro exI[of _ u] exI[of _ S]) (auto intro: fS) qed lemma span_induct_alt [consumes 1, case_names base step, induct set: span]: assumes x: "x \ span S" assumes h0: "h 0" and hS: "\c x y. x \ S \ h y \ h (c *s x + y)" shows "h x" using x unfolding span_explicit proof safe fix t r assume "finite t" "t \ S" then show "h (\a\t. r a *s a)" by (induction t) (auto intro!: hS h0) qed lemma span_mono: "A \ B \ span A \ span B" by (auto simp: span_explicit) lemma span_base: "a \ S \ a \ span S" by (auto simp: span_explicit intro!: exI[of _ "{a}"] exI[of _ "\_. 1"]) lemma span_superset: "S \ span S" by (auto simp: span_base) lemma span_zero: "0 \ span S" by (auto simp: span_explicit intro!: exI[of _ "{}"]) lemma span_UNIV[simp]: "span UNIV = UNIV" by (auto intro: span_base) lemma span_add: "x \ span S \ y \ span S \ x + y \ span S" unfolding span_explicit proof safe fix tx ty rx ry assume *: "finite tx" "finite ty" "tx \ S" "ty \ S" have [simp]: "(tx \ ty) \ tx = tx" "(tx \ ty) \ ty = ty" by auto show "\t r. (\a\tx. rx a *s a) + (\a\ty. ry a *s a) = (\a\t. r a *s a) \ finite t \ t \ S" apply (intro exI[of _ "tx \ ty"]) apply (intro exI[of _ "\a. (if a \ tx then rx a else 0) + (if a \ ty then ry a else 0)"]) apply (auto simp: * scale_left_distrib sum.distrib if_distrib[of "\r. r *s a" for a] sum.If_cases) done qed lemma span_scale: "x \ span S \ c *s x \ span S" unfolding span_explicit proof safe fix t r assume *: "finite t" "t \ S" show "\t' r'. c *s (\a\t. r a *s a) = (\a\t'. r' a *s a) \ finite t' \ t' \ S" by (intro exI[of _ t] exI[of _ "\a. c * r a"]) (auto simp: * scale_sum_right) qed lemma subspace_span [iff]: "subspace (span S)" by (auto simp: subspace_def span_zero span_add span_scale) lemma span_neg: "x \ span S \ - x \ span S" by (metis subspace_neg subspace_span) lemma span_diff: "x \ span S \ y \ span S \ x - y \ span S" by (metis subspace_span subspace_diff) lemma span_sum: "(\x. x \ A \ f x \ span S) \ sum f A \ span S" by (rule subspace_sum, rule subspace_span) lemma span_minimal: "S \ T \ subspace T \ span S \ T" by (auto simp: span_explicit intro!: subspace_sum subspace_scale) lemma span_def: "span S = subspace hull S" by (intro hull_unique[symmetric] span_superset subspace_span span_minimal) lemma span_unique: "S \ T \ subspace T \ (\T'. S \ T' \ subspace T' \ T \ T') \ span S = T" unfolding span_def by (rule hull_unique) lemma span_subspace_induct[consumes 2]: assumes x: "x \ span S" and P: "subspace P" and SP: "\x. x \ S \ x \ P" shows "x \ P" proof - from SP have SP': "S \ P" by (simp add: subset_eq) from x hull_minimal[where S=subspace, OF SP' P, unfolded span_def[symmetric]] show "x \ P" by (metis subset_eq) qed lemma (in module) span_induct[consumes 1, case_names base step, induct set: span]: assumes x: "x \ span S" and P: "subspace (Collect P)" and SP: "\x. x \ S \ P x" shows "P x" using P SP span_subspace_induct x by fastforce lemma span_empty[simp]: "span {} = {0}" by (rule span_unique) (auto simp add: subspace_def) lemma span_subspace: "A \ B \ B \ span A \ subspace B \ span A = B" by (metis order_antisym span_def hull_minimal) lemma span_span: "span (span A) = span A" unfolding span_def hull_hull .. (* TODO: proof generally for subspace: *) lemma span_add_eq: assumes x: "x \ span S" shows "x + y \ span S \ y \ span S" proof assume *: "x + y \ span S" have "(x + y) - x \ span S" using * x by (rule span_diff) then show "y \ span S" by simp qed (intro span_add x) lemma span_add_eq2: assumes y: "y \ span S" shows "x + y \ span S \ x \ span S" using span_add_eq[of y S x] y by (auto simp: ac_simps) lemma span_singleton: "span {x} = range (\k. k *s x)" by (auto simp: span_finite) lemma span_Un: "span (S \ T) = {x + y | x y. x \ span S \ y \ span T}" proof safe fix x assume "x \ span (S \ T)" then obtain t r where t: "finite t" "t \ S \ T" and x: "x = (\a\t. r a *s a)" by (auto simp: span_explicit) moreover have "t \ S \ (t - S) = t" by auto ultimately show "\xa y. x = xa + y \ xa \ span S \ y \ span T" unfolding x apply (rule_tac exI[of _ "\a\t \ S. r a *s a"]) apply (rule_tac exI[of _ "\a\t - S. r a *s a"]) apply (subst sum.union_inter_neutral[symmetric]) apply (auto intro!: span_sum span_scale intro: span_base) done next fix x y assume"x \ span S" "y \ span T" then show "x + y \ span (S \ T)" using span_mono[of S "S \ T"] span_mono[of T "S \ T"] by (auto intro!: span_add) qed lemma span_insert: "span (insert a S) = {x. \k. (x - k *s a) \ span S}" proof - have "span ({a} \ S) = {x. \k. (x - k *s a) \ span S}" unfolding span_Un span_singleton apply (auto simp add: set_eq_iff) subgoal for y k by (auto intro!: exI[of _ "k"]) subgoal for y k by (rule exI[of _ "k *s a"], rule exI[of _ "y - k *s a"]) auto done then show ?thesis by simp qed lemma span_breakdown: assumes bS: "b \ S" and aS: "a \ span S" shows "\k. a - k *s b \ span (S - {b})" using assms span_insert [of b "S - {b}"] by (simp add: insert_absorb) lemma span_breakdown_eq: "x \ span (insert a S) \ (\k. x - k *s a \ span S)" by (simp add: span_insert) lemmas span_clauses = span_base span_zero span_add span_scale lemma span_eq_iff[simp]: "span s = s \ subspace s" unfolding span_def by (rule hull_eq) (rule subspace_Inter) lemma span_eq: "span S = span T \ S \ span T \ T \ span S" by (metis span_minimal span_subspace span_superset subspace_span) lemma eq_span_insert_eq: assumes "(x - y) \ span S" shows "span(insert x S) = span(insert y S)" proof - have *: "span(insert x S) \ span(insert y S)" if "(x - y) \ span S" for x y proof - have 1: "(r *s x - r *s y) \ span S" for r by (metis scale_right_diff_distrib span_scale that) have 2: "(z - k *s y) - k *s (x - y) = z - k *s x" for z k by (simp add: scale_right_diff_distrib) show ?thesis apply (clarsimp simp add: span_breakdown_eq) by (metis 1 2 diff_add_cancel scale_right_diff_distrib span_add_eq) qed show ?thesis apply (intro subset_antisym * assms) using assms subspace_neg subspace_span minus_diff_eq by force qed section \Dependent and independent sets\ definition dependent :: "'b set \ bool" where dependent_explicit: "dependent s \ (\t u. finite t \ t \ s \ (\v\t. u v *s v) = 0 \ (\v\t. u v \ 0))" abbreviation "independent s \ \ dependent s" lemma dependent_mono: "dependent B \ B \ A \ dependent A" by (auto simp add: dependent_explicit) lemma independent_mono: "independent A \ B \ A \ independent B" by (auto intro: dependent_mono) lemma dependent_zero: "0 \ A \ dependent A" by (auto simp: dependent_explicit intro!: exI[of _ "\i. 1"] exI[of _ "{0}"]) lemma independent_empty[intro]: "independent {}" by (simp add: dependent_explicit) lemma independent_explicit_module: "independent s \ (\t u v. finite t \ t \ s \ (\v\t. u v *s v) = 0 \ v \ t \ u v = 0)" unfolding dependent_explicit by auto lemma independentD: "independent s \ finite t \ t \ s \ (\v\t. u v *s v) = 0 \ v \ t \ u v = 0" by (simp add: independent_explicit_module) lemma independent_Union_directed: assumes directed: "\c d. c \ C \ d \ C \ c \ d \ d \ c" assumes indep: "\c. c \ C \ independent c" shows "independent (\C)" proof assume "dependent (\C)" then obtain u v S where S: "finite S" "S \ \C" "v \ S" "u v \ 0" "(\v\S. u v *s v) = 0" by (auto simp: dependent_explicit) have "S \ {}" using \v \ S\ by auto have "\c\C. S \ c" using \finite S\ \S \ {}\ \S \ \C\ proof (induction rule: finite_ne_induct) case (insert i I) then obtain c d where cd: "c \ C" "d \ C" and iI: "I \ c" "i \ d" by blast from directed[OF cd] cd have "c \ d \ C" by (auto simp: sup.absorb1 sup.absorb2) with iI show ?case by (intro bexI[of _ "c \ d"]) auto qed auto then obtain c where "c \ C" "S \ c" by auto have "dependent c" unfolding dependent_explicit by (intro exI[of _ S] exI[of _ u] bexI[of _ v] conjI) fact+ with indep[OF \c \ C\] show False by auto qed lemma dependent_finite: assumes "finite S" shows "dependent S \ (\u. (\v \ S. u v \ 0) \ (\v\S. u v *s v) = 0)" (is "?lhs = ?rhs") proof assume ?lhs then obtain T u v where "finite T" "T \ S" "v\T" "u v \ 0" "(\v\T. u v *s v) = 0" by (force simp: dependent_explicit) with assms show ?rhs apply (rule_tac x="\v. if v \ T then u v else 0" in exI) apply (auto simp: sum.mono_neutral_right) done next assume ?rhs with assms show ?lhs by (fastforce simp add: dependent_explicit) qed lemma dependent_alt: "dependent B \ (\X. finite {x. X x \ 0} \ {x. X x \ 0} \ B \ (\x|X x \ 0. X x *s x) = 0 \ (\x. X x \ 0))" unfolding dependent_explicit apply safe subgoal for S u v apply (intro exI[of _ "\x. if x \ S then u x else 0"]) apply (subst sum.mono_neutral_cong_left[where T=S]) apply (auto intro!: sum.mono_neutral_cong_right cong: rev_conj_cong) done apply auto done lemma independent_alt: "independent B \ (\X. finite {x. X x \ 0} \ {x. X x \ 0} \ B \ (\x|X x \ 0. X x *s x) = 0 \ (\x. X x = 0))" unfolding dependent_alt by auto lemma independentD_alt: "independent B \ finite {x. X x \ 0} \ {x. X x \ 0} \ B \ (\x|X x \ 0. X x *s x) = 0 \ X x = 0" unfolding independent_alt by blast lemma independentD_unique: assumes B: "independent B" and X: "finite {x. X x \ 0}" "{x. X x \ 0} \ B" and Y: "finite {x. Y x \ 0}" "{x. Y x \ 0} \ B" and "(\x | X x \ 0. X x *s x) = (\x| Y x \ 0. Y x *s x)" shows "X = Y" proof - have "X x - Y x = 0" for x using B proof (rule independentD_alt) have "{x. X x - Y x \ 0} \ {x. X x \ 0} \ {x. Y x \ 0}" by auto then show "finite {x. X x - Y x \ 0}" "{x. X x - Y x \ 0} \ B" using X Y by (auto dest: finite_subset) then have "(\x | X x - Y x \ 0. (X x - Y x) *s x) = (\v\{S. X S \ 0} \ {S. Y S \ 0}. (X v - Y v) *s v)" using X Y by (intro sum.mono_neutral_cong_left) auto also have "\ = (\v\{S. X S \ 0} \ {S. Y S \ 0}. X v *s v) - (\v\{S. X S \ 0} \ {S. Y S \ 0}. Y v *s v)" by (simp add: scale_left_diff_distrib sum_subtractf assms) also have "(\v\{S. X S \ 0} \ {S. Y S \ 0}. X v *s v) = (\v\{S. X S \ 0}. X v *s v)" using X Y by (intro sum.mono_neutral_cong_right) auto also have "(\v\{S. X S \ 0} \ {S. Y S \ 0}. Y v *s v) = (\v\{S. Y S \ 0}. Y v *s v)" using X Y by (intro sum.mono_neutral_cong_right) auto finally show "(\x | X x - Y x \ 0. (X x - Y x) *s x) = 0" using assms by simp qed then show ?thesis by auto qed section \Representation of a vector on a specific basis\ definition representation :: "'b set \ 'b \ 'b \ 'a" where "representation basis v = (if independent basis \ v \ span basis then SOME f. (\v. f v \ 0 \ v \ basis) \ finite {v. f v \ 0} \ (\v\{v. f v \ 0}. f v *s v) = v else (\b. 0))" lemma unique_representation: assumes basis: "independent basis" and in_basis: "\v. f v \ 0 \ v \ basis" "\v. g v \ 0 \ v \ basis" and [simp]: "finite {v. f v \ 0}" "finite {v. g v \ 0}" and eq: "(\v\{v. f v \ 0}. f v *s v) = (\v\{v. g v \ 0}. g v *s v)" shows "f = g" proof (rule ext, rule ccontr) fix v assume ne: "f v \ g v" have "dependent basis" unfolding dependent_explicit proof (intro exI conjI) have *: "{v. f v - g v \ 0} \ {v. f v \ 0} \ {v. g v \ 0}" by auto show "finite {v. f v - g v \ 0}" by (rule finite_subset[OF *]) simp show "\v\{v. f v - g v \ 0}. f v - g v \ 0" by (rule bexI[of _ v]) (auto simp: ne) have "(\v | f v - g v \ 0. (f v - g v) *s v) = (\v\{v. f v \ 0} \ {v. g v \ 0}. (f v - g v) *s v)" by (intro sum.mono_neutral_cong_left *) auto also have "... = (\v\{v. f v \ 0} \ {v. g v \ 0}. f v *s v) - (\v\{v. f v \ 0} \ {v. g v \ 0}. g v *s v)" by (simp add: algebra_simps sum_subtractf) also have "... = (\v | f v \ 0. f v *s v) - (\v | g v \ 0. g v *s v)" by (intro arg_cong2[where f= "(-)"] sum.mono_neutral_cong_right) auto finally show "(\v | f v - g v \ 0. (f v - g v) *s v) = 0" by (simp add: eq) show "{v. f v - g v \ 0} \ basis" using in_basis * by auto qed with basis show False by auto qed lemma shows representation_ne_zero: "\b. representation basis v b \ 0 \ b \ basis" and finite_representation: "finite {b. representation basis v b \ 0}" and sum_nonzero_representation_eq: "independent basis \ v \ span basis \ (\b | representation basis v b \ 0. representation basis v b *s b) = v" proof - { assume basis: "independent basis" and v: "v \ span basis" define p where "p f \ (\v. f v \ 0 \ v \ basis) \ finite {v. f v \ 0} \ (\v\{v. f v \ 0}. f v *s v) = v" for f obtain t r where *: "finite t" "t \ basis" "(\b\t. r b *s b) = v" using \v \ span basis\ by (auto simp: span_explicit) define f where "f b = (if b \ t then r b else 0)" for b have "p f" using * by (auto simp: p_def f_def intro!: sum.mono_neutral_cong_left) have *: "representation basis v = Eps p" by (simp add: p_def[abs_def] representation_def basis v) from someI[of p f, OF \p f\] have "p (representation basis v)" unfolding * . } note * = this show "representation basis v b \ 0 \ b \ basis" for b using * by (cases "independent basis \ v \ span basis") (auto simp: representation_def) show "finite {b. representation basis v b \ 0}" using * by (cases "independent basis \ v \ span basis") (auto simp: representation_def) show "independent basis \ v \ span basis \ (\b | representation basis v b \ 0. representation basis v b *s b) = v" using * by auto qed lemma sum_representation_eq: "(\b\B. representation basis v b *s b) = v" if "independent basis" "v \ span basis" "finite B" "basis \ B" proof - have "(\b\B. representation basis v b *s b) = (\b | representation basis v b \ 0. representation basis v b *s b)" apply (rule sum.mono_neutral_cong) apply (rule finite_representation) apply fact subgoal for b using that representation_ne_zero[of basis v b] by auto subgoal by auto subgoal by simp done also have "\ = v" by (rule sum_nonzero_representation_eq; fact) finally show ?thesis . qed lemma representation_eqI: assumes basis: "independent basis" and b: "v \ span basis" and ne_zero: "\b. f b \ 0 \ b \ basis" and finite: "finite {b. f b \ 0}" and eq: "(\b | f b \ 0. f b *s b) = v" shows "representation basis v = f" by (rule unique_representation[OF basis]) (auto simp: representation_ne_zero finite_representation sum_nonzero_representation_eq[OF basis b] ne_zero finite eq) lemma representation_basis: assumes basis: "independent basis" and b: "b \ basis" shows "representation basis b = (\v. if v = b then 1 else 0)" proof (rule unique_representation[OF basis]) show "representation basis b v \ 0 \ v \ basis" for v using representation_ne_zero . show "finite {v. representation basis b v \ 0}" using finite_representation . show "(if v = b then 1 else 0) \ 0 \ v \ basis" for v by (cases "v = b") (auto simp: b) have *: "{v. (if v = b then 1 else 0 :: 'a) \ 0} = {b}" by auto show "finite {v. (if v = b then 1 else 0) \ 0}" unfolding * by auto show "(\v | representation basis b v \ 0. representation basis b v *s v) = (\v | (if v = b then 1 else 0::'a) \ 0. (if v = b then 1 else 0) *s v)" unfolding * sum_nonzero_representation_eq[OF basis span_base[OF b]] by auto qed lemma representation_zero: "representation basis 0 = (\b. 0)" proof cases assume basis: "independent basis" show ?thesis by (rule representation_eqI[OF basis span_zero]) auto qed (simp add: representation_def) lemma representation_diff: assumes basis: "independent basis" and v: "v \ span basis" and u: "u \ span basis" shows "representation basis (u - v) = (\b. representation basis u b - representation basis v b)" proof (rule representation_eqI[OF basis span_diff[OF u v]]) let ?R = "representation basis" note finite_representation[simp] u[simp] v[simp] have *: "{b. ?R u b - ?R v b \ 0} \ {b. ?R u b \ 0} \ {b. ?R v b \ 0}" by auto then show "?R u b - ?R v b \ 0 \ b \ basis" for b by (auto dest: representation_ne_zero) show "finite {b. ?R u b - ?R v b \ 0}" by (intro finite_subset[OF *]) simp_all have "(\b | ?R u b - ?R v b \ 0. (?R u b - ?R v b) *s b) = (\b\{b. ?R u b \ 0} \ {b. ?R v b \ 0}. (?R u b - ?R v b) *s b)" by (intro sum.mono_neutral_cong_left *) auto also have "... = (\b\{b. ?R u b \ 0} \ {b. ?R v b \ 0}. ?R u b *s b) - (\b\{b. ?R u b \ 0} \ {b. ?R v b \ 0}. ?R v b *s b)" by (simp add: algebra_simps sum_subtractf) also have "... = (\b | ?R u b \ 0. ?R u b *s b) - (\b | ?R v b \ 0. ?R v b *s b)" by (intro arg_cong2[where f= "(-)"] sum.mono_neutral_cong_right) auto finally show "(\b | ?R u b - ?R v b \ 0. (?R u b - ?R v b) *s b) = u - v" by (simp add: sum_nonzero_representation_eq[OF basis]) qed lemma representation_neg: "independent basis \ v \ span basis \ representation basis (- v) = (\b. - representation basis v b)" using representation_diff[of basis v 0] by (simp add: representation_zero span_zero) lemma representation_add: "independent basis \ v \ span basis \ u \ span basis \ representation basis (u + v) = (\b. representation basis u b + representation basis v b)" using representation_diff[of basis "-v" u] by (simp add: representation_neg representation_diff span_neg) lemma representation_sum: "independent basis \ (\i. i \ I \ v i \ span basis) \ representation basis (sum v I) = (\b. \i\I. representation basis (v i) b)" by (induction I rule: infinite_finite_induct) (auto simp: representation_zero representation_add span_sum) lemma representation_scale: assumes basis: "independent basis" and v: "v \ span basis" shows "representation basis (r *s v) = (\b. r * representation basis v b)" proof (rule representation_eqI[OF basis span_scale[OF v]]) let ?R = "representation basis" note finite_representation[simp] v[simp] have *: "{b. r * ?R v b \ 0} \ {b. ?R v b \ 0}" by auto then show "r * representation basis v b \ 0 \ b \ basis" for b using representation_ne_zero by auto show "finite {b. r * ?R v b \ 0}" by (intro finite_subset[OF *]) simp_all have "(\b | r * ?R v b \ 0. (r * ?R v b) *s b) = (\b\{b. ?R v b \ 0}. (r * ?R v b) *s b)" by (intro sum.mono_neutral_cong_left *) auto also have "... = r *s (\b | ?R v b \ 0. ?R v b *s b)" by (simp add: scale_scale[symmetric] scale_sum_right del: scale_scale) finally show "(\b | r * ?R v b \ 0. (r * ?R v b) *s b) = r *s v" by (simp add: sum_nonzero_representation_eq[OF basis]) qed lemma representation_extend: assumes basis: "independent basis" and v: "v \ span basis'" and basis': "basis' \ basis" shows "representation basis v = representation basis' v" proof (rule representation_eqI[OF basis]) show v': "v \ span basis" using span_mono[OF basis'] v by auto have *: "independent basis'" using basis' basis by (auto intro: dependent_mono) show "representation basis' v b \ 0 \ b \ basis" for b using representation_ne_zero basis' by auto show "finite {b. representation basis' v b \ 0}" using finite_representation . show "(\b | representation basis' v b \ 0. representation basis' v b *s b) = v" using sum_nonzero_representation_eq[OF * v] . qed text \The set \B\ is the maximal independent set for \span B\, or \A\ is the minimal spanning set\ lemma spanning_subset_independent: assumes BA: "B \ A" and iA: "independent A" and AsB: "A \ span B" shows "A = B" proof (intro antisym[OF _ BA] subsetI) have iB: "independent B" using independent_mono [OF iA BA] . fix v assume "v \ A" with AsB have "v \ span B" by auto let ?RB = "representation B v" and ?RA = "representation A v" have "?RB v = 1" unfolding representation_extend[OF iA \v \ span B\ BA, symmetric] representation_basis[OF iA \v \ A\] by simp then show "v \ B" using representation_ne_zero[of B v v] by auto qed end (* We need to introduce more specific modules, where the ring structure gets more and more finer, i.e. Bezout rings & domains, division rings, fields *) text \A linear function is a mapping between two modules over the same ring.\ locale module_hom = m1: module s1 + m2: module s2 for s1 :: "'a::comm_ring_1 \ 'b::ab_group_add \ 'b" (infixr "*a" 75) and s2 :: "'a::comm_ring_1 \ 'c::ab_group_add \ 'c" (infixr "*b" 75) + fixes f :: "'b \ 'c" assumes add: "f (b1 + b2) = f b1 + f b2" and scale: "f (r *a b) = r *b f b" begin lemma zero[simp]: "f 0 = 0" using scale[of 0 0] by simp lemma neg: "f (- x) = - f x" using scale [where r="-1"] by (metis add add_eq_0_iff zero) lemma diff: "f (x - y) = f x - f y" by (metis diff_conv_add_uminus add neg) lemma sum: "f (sum g S) = (\a\S. f (g a))" proof (induct S rule: infinite_finite_induct) case (insert x F) have "f (sum g (insert x F)) = f (g x + sum g F)" using insert.hyps by simp also have "\ = f (g x) + f (sum g F)" using add by simp also have "\ = (\a\insert x F. f (g a))" using insert.hyps by simp finally show ?case . qed simp_all lemma inj_on_iff_eq_0: assumes s: "m1.subspace s" shows "inj_on f s \ (\x\s. f x = 0 \ x = 0)" proof - have "inj_on f s \ (\x\s. \y\s. f x - f y = 0 \ x - y = 0)" by (simp add: inj_on_def) also have "\ \ (\x\s. \y\s. f (x - y) = 0 \ x - y = 0)" by (simp add: diff) also have "\ \ (\x\s. f x = 0 \ x = 0)" (is "?l = ?r")(* TODO: sledgehammer! *) proof safe fix x assume ?l assume "x \ s" "f x = 0" with \?l\[rule_format, of x 0] s show "x = 0" by (auto simp: m1.subspace_0) next fix x y assume ?r assume "x \ s" "y \ s" "f (x - y) = 0" with \?r\[rule_format, of "x - y"] s show "x - y = 0" by (auto simp: m1.subspace_diff) qed finally show ?thesis by auto qed lemma inj_iff_eq_0: "inj f = (\x. f x = 0 \ x = 0)" by (rule inj_on_iff_eq_0[OF m1.subspace_UNIV, unfolded ball_UNIV]) lemma subspace_image: assumes S: "m1.subspace S" shows "m2.subspace (f ` S)" unfolding m2.subspace_def proof safe show "0 \ f ` S" by (rule image_eqI[of _ _ 0]) (auto simp: S m1.subspace_0) show "x \ S \ y \ S \ f x + f y \ f ` S" for x y by (rule image_eqI[of _ _ "x + y"]) (auto simp: S m1.subspace_add add) show "x \ S \ r *b f x \ f ` S" for r x by (rule image_eqI[of _ _ "r *a x"]) (auto simp: S m1.subspace_scale scale) qed lemma subspace_vimage: "m2.subspace S \ m1.subspace (f -` S)" by (simp add: vimage_def add scale m1.subspace_def m2.subspace_0 m2.subspace_add m2.subspace_scale) lemma subspace_kernel: "m1.subspace {x. f x = 0}" using subspace_vimage[OF m2.subspace_single_0] by (simp add: vimage_def) lemma span_image: "m2.span (f ` S) = f ` (m1.span S)" proof (rule m2.span_unique) show "f ` S \ f ` m1.span S" by (rule image_mono, rule m1.span_superset) show "m2.subspace (f ` m1.span S)" using m1.subspace_span by (rule subspace_image) next fix T assume "f ` S \ T" and "m2.subspace T" then show "f ` m1.span S \ T" unfolding image_subset_iff_subset_vimage by (metis subspace_vimage m1.span_minimal) qed lemma dependent_inj_imageD: assumes d: "m2.dependent (f ` s)" and i: "inj_on f (m1.span s)" shows "m1.dependent s" proof - have [intro]: "inj_on f s" using \inj_on f (m1.span s)\ m1.span_superset by (rule inj_on_subset) from d obtain s' r v where *: "finite s'" "s' \ s" "(\v\f ` s'. r v *b v) = 0" "v \ s'" "r (f v) \ 0" by (auto simp: m2.dependent_explicit subset_image_iff dest!: finite_imageD intro: inj_on_subset) have "f (\v\s'. r (f v) *a v) = (\v\s'. r (f v) *b f v)" by (simp add: sum scale) also have "... = (\v\f ` s'. r v *b v)" using \s' \ s\ by (subst sum.reindex) (auto dest!: finite_imageD intro: inj_on_subset) finally have "f (\v\s'. r (f v) *a v) = 0" by (simp add: *) with \s' \ s\ have "(\v\s'. r (f v) *a v) = 0" by (intro inj_onD[OF i] m1.span_zero m1.span_sum m1.span_scale) (auto intro: m1.span_base) then show "m1.dependent s" using \finite s'\ \s' \ s\ \v \ s'\ \r (f v) \ 0\ by (force simp add: m1.dependent_explicit) qed lemma eq_0_on_span: assumes f0: "\x. x \ b \ f x = 0" and x: "x \ m1.span b" shows "f x = 0" using m1.span_induct[OF x subspace_kernel] f0 by simp lemma independent_injective_image: "m1.independent s \ inj_on f (m1.span s) \ m2.independent (f ` s)" using dependent_inj_imageD[of s] by auto lemma inj_on_span_independent_image: assumes ifB: "m2.independent (f ` B)" and f: "inj_on f B" shows "inj_on f (m1.span B)" unfolding inj_on_iff_eq_0[OF m1.subspace_span] unfolding m1.span_explicit' proof safe fix r assume fr: "finite {v. r v \ 0}" and r: "\v. r v \ 0 \ v \ B" and eq0: "f (\v | r v \ 0. r v *a v) = 0" have "0 = (\v | r v \ 0. r v *b f v)" using eq0 by (simp add: sum scale) also have "... = (\v\f ` {v. r v \ 0}. r (the_inv_into B f v) *b v)" using r by (subst sum.reindex) (auto simp: the_inv_into_f_f[OF f] intro!: inj_on_subset[OF f] sum.cong) finally have "r v \ 0 \ r (the_inv_into B f (f v)) = 0" for v using fr r ifB[unfolded m2.independent_explicit_module, rule_format, of "f ` {v. r v \ 0}" "\v. r (the_inv_into B f v)"] by auto then have "r v = 0" for v using the_inv_into_f_f[OF f] r by auto then show "(\v | r v \ 0. r v *a v) = 0" by auto qed lemma inj_on_span_iff_independent_image: "m2.independent (f ` B) \ inj_on f (m1.span B) \ inj_on f B" using inj_on_span_independent_image[of B] inj_on_subset[OF _ m1.span_superset, of f B] by auto lemma subspace_linear_preimage: "m2.subspace S \ m1.subspace {x. f x \ S}" by (simp add: add scale m1.subspace_def m2.subspace_def) lemma spans_image: "V \ m1.span B \ f ` V \ m2.span (f ` B)" by (metis image_mono span_image) text \Relation between bases and injectivity/surjectivity of map.\ lemma spanning_surjective_image: assumes us: "UNIV \ m1.span S" and sf: "surj f" shows "UNIV \ m2.span (f ` S)" proof - have "UNIV \ f ` UNIV" using sf by (auto simp add: surj_def) also have " \ \ m2.span (f ` S)" using spans_image[OF us] . finally show ?thesis . qed lemmas independent_inj_on_image = independent_injective_image lemma independent_inj_image: "m1.independent S \ inj f \ m2.independent (f ` S)" using independent_inj_on_image[of S] by (auto simp: subset_inj_on) end lemma module_hom_iff: "module_hom s1 s2 f \ module s1 \ module s2 \ (\x y. f (x + y) = f x + f y) \ (\c x. f (s1 c x) = s2 c (f x))" by (simp add: module_hom_def module_hom_axioms_def) locale module_pair = m1: module s1 + m2: module s2 for s1 :: "'a :: comm_ring_1 \ 'b \ 'b :: ab_group_add" and s2 :: "'a :: comm_ring_1 \ 'c \ 'c :: ab_group_add" begin lemma module_hom_zero: "module_hom s1 s2 (\x. 0)" by (simp add: module_hom_iff m1.module_axioms m2.module_axioms) lemma module_hom_add: "module_hom s1 s2 f \ module_hom s1 s2 g \ module_hom s1 s2 (\x. f x + g x)" by (simp add: module_hom_iff module.scale_right_distrib) lemma module_hom_sub: "module_hom s1 s2 f \ module_hom s1 s2 g \ module_hom s1 s2 (\x. f x - g x)" by (simp add: module_hom_iff module.scale_right_diff_distrib) lemma module_hom_neg: "module_hom s1 s2 f \ module_hom s1 s2 (\x. - f x)" by (simp add: module_hom_iff module.scale_minus_right) lemma module_hom_scale: "module_hom s1 s2 f \ module_hom s1 s2 (\x. s2 c (f x))" by (simp add: module_hom_iff module.scale_scale module.scale_right_distrib ac_simps) lemma module_hom_compose_scale: "module_hom s1 s2 (\x. s2 (f x) (c))" if "module_hom s1 (*) f" proof - interpret mh: module_hom s1 "(*)" f by fact show ?thesis by unfold_locales (simp_all add: mh.add mh.scale m2.scale_left_distrib) qed lemma bij_module_hom_imp_inv_module_hom: "module_hom scale1 scale2 f \ bij f \ module_hom scale2 scale1 (inv f)" by (auto simp: module_hom_iff bij_is_surj bij_is_inj surj_f_inv_f intro!: Hilbert_Choice.inv_f_eq) lemma module_hom_sum: "(\i. i \ I \ module_hom s1 s2 (f i)) \ (I = {} \ module s1 \ module s2) \ module_hom s1 s2 (\x. \i\I. f i x)" apply (induction I rule: infinite_finite_induct) apply (auto intro!: module_hom_zero module_hom_add) using m1.module_axioms m2.module_axioms by blast lemma module_hom_eq_on_span: "f x = g x" if "module_hom s1 s2 f" "module_hom s1 s2 g" and "(\x. x \ B \ f x = g x)" "x \ m1.span B" proof - interpret module_hom s1 s2 "\x. f x - g x" by (rule module_hom_sub that)+ from eq_0_on_span[OF _ that(4)] that(3) show ?thesis by auto qed end context module begin lemma module_hom_scale_self[simp]: "module_hom scale scale (\x. scale c x)" using module_axioms module_hom_iff scale_left_commute scale_right_distrib by blast lemma module_hom_scale_left[simp]: "module_hom (*) scale (\r. scale r x)" by unfold_locales (auto simp: algebra_simps) lemma module_hom_id: "module_hom scale scale id" by (simp add: module_hom_iff module_axioms) lemma module_hom_ident: "module_hom scale scale (\x. x)" by (simp add: module_hom_iff module_axioms) lemma module_hom_uminus: "module_hom scale scale uminus" by (simp add: module_hom_iff module_axioms) end lemma module_hom_compose: "module_hom s1 s2 f \ module_hom s2 s3 g \ module_hom s1 s3 (g o f)" by (auto simp: module_hom_iff) end