(* Title: HOL/Matrix_LP/SparseMatrix.thy Author: Steven Obua *) theory SparseMatrix imports Matrix begin type_synonym 'a spvec = "(nat * 'a) list" type_synonym 'a spmat = "'a spvec spvec" definition sparse_row_vector :: "('a::ab_group_add) spvec \ 'a matrix" where "sparse_row_vector arr = foldl (% m x. m + (singleton_matrix 0 (fst x) (snd x))) 0 arr" definition sparse_row_matrix :: "('a::ab_group_add) spmat \ 'a matrix" where "sparse_row_matrix arr = foldl (% m r. m + (move_matrix (sparse_row_vector (snd r)) (int (fst r)) 0)) 0 arr" code_datatype sparse_row_vector sparse_row_matrix lemma sparse_row_vector_empty [simp]: "sparse_row_vector [] = 0" by (simp add: sparse_row_vector_def) lemma sparse_row_matrix_empty [simp]: "sparse_row_matrix [] = 0" by (simp add: sparse_row_matrix_def) lemmas [code] = sparse_row_vector_empty [symmetric] lemma foldl_distrstart: "\a x y. (f (g x y) a = g x (f y a)) \ (foldl f (g x y) l = g x (foldl f y l))" by (induct l arbitrary: x y, auto) lemma sparse_row_vector_cons[simp]: "sparse_row_vector (a # arr) = (singleton_matrix 0 (fst a) (snd a)) + (sparse_row_vector arr)" apply (induct arr) apply (auto simp add: sparse_row_vector_def) apply (simp add: foldl_distrstart [of "\m x. m + singleton_matrix 0 (fst x) (snd x)" "\x m. singleton_matrix 0 (fst x) (snd x) + m"]) done lemma sparse_row_vector_append[simp]: "sparse_row_vector (a @ b) = (sparse_row_vector a) + (sparse_row_vector b)" by (induct a) auto lemma nrows_spvec[simp]: "nrows (sparse_row_vector x) <= (Suc 0)" apply (induct x) apply (simp_all add: add_nrows) done lemma sparse_row_matrix_cons: "sparse_row_matrix (a#arr) = ((move_matrix (sparse_row_vector (snd a)) (int (fst a)) 0)) + sparse_row_matrix arr" apply (induct arr) apply (auto simp add: sparse_row_matrix_def) apply (simp add: foldl_distrstart[of "\m x. m + (move_matrix (sparse_row_vector (snd x)) (int (fst x)) 0)" "% a m. (move_matrix (sparse_row_vector (snd a)) (int (fst a)) 0) + m"]) done lemma sparse_row_matrix_append: "sparse_row_matrix (arr@brr) = (sparse_row_matrix arr) + (sparse_row_matrix brr)" apply (induct arr) apply (auto simp add: sparse_row_matrix_cons) done primrec sorted_spvec :: "'a spvec \ bool" where "sorted_spvec [] = True" | sorted_spvec_step: "sorted_spvec (a#as) = (case as of [] \ True | b#bs \ ((fst a < fst b) & (sorted_spvec as)))" primrec sorted_spmat :: "'a spmat \ bool" where "sorted_spmat [] = True" | "sorted_spmat (a#as) = ((sorted_spvec (snd a)) & (sorted_spmat as))" declare sorted_spvec.simps [simp del] lemma sorted_spvec_empty[simp]: "sorted_spvec [] = True" by (simp add: sorted_spvec.simps) lemma sorted_spvec_cons1: "sorted_spvec (a#as) \ sorted_spvec as" apply (induct as) apply (auto simp add: sorted_spvec.simps) done lemma sorted_spvec_cons2: "sorted_spvec (a#b#t) \ sorted_spvec (a#t)" apply (induct t) apply (auto simp add: sorted_spvec.simps) done lemma sorted_spvec_cons3: "sorted_spvec(a#b#t) \ fst a < fst b" apply (auto simp add: sorted_spvec.simps) done lemma sorted_sparse_row_vector_zero[rule_format]: "m <= n \ sorted_spvec ((n,a)#arr) \ Rep_matrix (sparse_row_vector arr) j m = 0" apply (induct arr) apply (auto) apply (frule sorted_spvec_cons2,simp)+ apply (frule sorted_spvec_cons3, simp) done lemma sorted_sparse_row_matrix_zero[rule_format]: "m <= n \ sorted_spvec ((n,a)#arr) \ Rep_matrix (sparse_row_matrix arr) m j = 0" apply (induct arr) apply (auto) apply (frule sorted_spvec_cons2, simp) apply (frule sorted_spvec_cons3, simp) apply (simp add: sparse_row_matrix_cons) done primrec minus_spvec :: "('a::ab_group_add) spvec \ 'a spvec" where "minus_spvec [] = []" | "minus_spvec (a#as) = (fst a, -(snd a))#(minus_spvec as)" primrec abs_spvec :: "('a::lattice_ab_group_add_abs) spvec \ 'a spvec" where "abs_spvec [] = []" | "abs_spvec (a#as) = (fst a, \snd a\)#(abs_spvec as)" lemma sparse_row_vector_minus: "sparse_row_vector (minus_spvec v) = - (sparse_row_vector v)" apply (induct v) apply (simp_all add: sparse_row_vector_cons) apply (simp add: Rep_matrix_inject[symmetric]) apply (rule ext)+ apply simp done instance matrix :: (lattice_ab_group_add_abs) lattice_ab_group_add_abs apply standard unfolding abs_matrix_def apply rule done (*FIXME move*) lemma sparse_row_vector_abs: "sorted_spvec (v :: 'a::lattice_ring spvec) \ sparse_row_vector (abs_spvec v) = \sparse_row_vector v\" apply (induct v) apply simp_all apply (frule_tac sorted_spvec_cons1, simp) apply (simp only: Rep_matrix_inject[symmetric]) apply (rule ext)+ apply auto apply (subgoal_tac "Rep_matrix (sparse_row_vector v) 0 a = 0") apply (simp) apply (rule sorted_sparse_row_vector_zero) apply auto done lemma sorted_spvec_minus_spvec: "sorted_spvec v \ sorted_spvec (minus_spvec v)" apply (induct v) apply (simp) apply (frule sorted_spvec_cons1, simp) apply (simp add: sorted_spvec.simps split:list.split_asm) done lemma sorted_spvec_abs_spvec: "sorted_spvec v \ sorted_spvec (abs_spvec v)" apply (induct v) apply (simp) apply (frule sorted_spvec_cons1, simp) apply (simp add: sorted_spvec.simps split:list.split_asm) done definition "smult_spvec y = map (% a. (fst a, y * snd a))" lemma smult_spvec_empty[simp]: "smult_spvec y [] = []" by (simp add: smult_spvec_def) lemma smult_spvec_cons: "smult_spvec y (a#arr) = (fst a, y * (snd a)) # (smult_spvec y arr)" by (simp add: smult_spvec_def) fun addmult_spvec :: "('a::ring) \ 'a spvec \ 'a spvec \ 'a spvec" where "addmult_spvec y arr [] = arr" | "addmult_spvec y [] brr = smult_spvec y brr" | "addmult_spvec y ((i,a)#arr) ((j,b)#brr) = ( if i < j then ((i,a)#(addmult_spvec y arr ((j,b)#brr))) else (if (j < i) then ((j, y * b)#(addmult_spvec y ((i,a)#arr) brr)) else ((i, a + y*b)#(addmult_spvec y arr brr))))" (* Steven used termination "measure (% (y, a, b). length a + (length b))" *) lemma addmult_spvec_empty1[simp]: "addmult_spvec y [] a = smult_spvec y a" by (induct a) auto lemma addmult_spvec_empty2[simp]: "addmult_spvec y a [] = a" by (induct a) auto lemma sparse_row_vector_map: "(\x y. f (x+y) = (f x) + (f y)) \ (f::'a\('a::lattice_ring)) 0 = 0 \ sparse_row_vector (map (% x. (fst x, f (snd x))) a) = apply_matrix f (sparse_row_vector a)" apply (induct a) apply (simp_all add: apply_matrix_add) done lemma sparse_row_vector_smult: "sparse_row_vector (smult_spvec y a) = scalar_mult y (sparse_row_vector a)" apply (induct a) apply (simp_all add: smult_spvec_cons scalar_mult_add) done lemma sparse_row_vector_addmult_spvec: "sparse_row_vector (addmult_spvec (y::'a::lattice_ring) a b) = (sparse_row_vector a) + (scalar_mult y (sparse_row_vector b))" apply (induct y a b rule: addmult_spvec.induct) apply (simp add: scalar_mult_add smult_spvec_cons sparse_row_vector_smult singleton_matrix_add)+ done lemma sorted_smult_spvec: "sorted_spvec a \ sorted_spvec (smult_spvec y a)" apply (auto simp add: smult_spvec_def) apply (induct a) apply (auto simp add: sorted_spvec.simps split:list.split_asm) done lemma sorted_spvec_addmult_spvec_helper: "\sorted_spvec (addmult_spvec y ((a, b) # arr) brr); aa < a; sorted_spvec ((a, b) # arr); sorted_spvec ((aa, ba) # brr)\ \ sorted_spvec ((aa, y * ba) # addmult_spvec y ((a, b) # arr) brr)" apply (induct brr) apply (auto simp add: sorted_spvec.simps) done lemma sorted_spvec_addmult_spvec_helper2: "\sorted_spvec (addmult_spvec y arr ((aa, ba) # brr)); a < aa; sorted_spvec ((a, b) # arr); sorted_spvec ((aa, ba) # brr)\ \ sorted_spvec ((a, b) # addmult_spvec y arr ((aa, ba) # brr))" apply (induct arr) apply (auto simp add: smult_spvec_def sorted_spvec.simps) done lemma sorted_spvec_addmult_spvec_helper3[rule_format]: "sorted_spvec (addmult_spvec y arr brr) \ sorted_spvec ((aa, b) # arr) \ sorted_spvec ((aa, ba) # brr) \ sorted_spvec ((aa, b + y * ba) # (addmult_spvec y arr brr))" apply (induct y arr brr rule: addmult_spvec.induct) apply (simp_all add: sorted_spvec.simps smult_spvec_def split:list.split) done lemma sorted_addmult_spvec: "sorted_spvec a \ sorted_spvec b \ sorted_spvec (addmult_spvec y a b)" apply (induct y a b rule: addmult_spvec.induct) apply (simp_all add: sorted_smult_spvec) apply (rule conjI, intro strip) apply (case_tac "~(i < j)") apply (simp_all) apply (frule_tac as=brr in sorted_spvec_cons1) apply (simp add: sorted_spvec_addmult_spvec_helper) apply (intro strip | rule conjI)+ apply (frule_tac as=arr in sorted_spvec_cons1) apply (simp add: sorted_spvec_addmult_spvec_helper2) apply (intro strip) apply (frule_tac as=arr in sorted_spvec_cons1) apply (frule_tac as=brr in sorted_spvec_cons1) apply (simp) apply (simp_all add: sorted_spvec_addmult_spvec_helper3) done fun mult_spvec_spmat :: "('a::lattice_ring) spvec \ 'a spvec \ 'a spmat \ 'a spvec" where "mult_spvec_spmat c [] brr = c" | "mult_spvec_spmat c arr [] = c" | "mult_spvec_spmat c ((i,a)#arr) ((j,b)#brr) = ( if (i < j) then mult_spvec_spmat c arr ((j,b)#brr) else if (j < i) then mult_spvec_spmat c ((i,a)#arr) brr else mult_spvec_spmat (addmult_spvec a c b) arr brr)" lemma sparse_row_mult_spvec_spmat[rule_format]: "sorted_spvec (a::('a::lattice_ring) spvec) \ sorted_spvec B \ sparse_row_vector (mult_spvec_spmat c a B) = (sparse_row_vector c) + (sparse_row_vector a) * (sparse_row_matrix B)" proof - have comp_1: "!! a b. a < b \ Suc 0 <= nat ((int b)-(int a))" by arith have not_iff: "!! a b. a = b \ (~ a) = (~ b)" by simp have max_helper: "!! a b. ~ (a <= max (Suc a) b) \ False" by arith { fix a fix v assume a:"a < nrows(sparse_row_vector v)" have b:"nrows(sparse_row_vector v) <= 1" by simp note dummy = less_le_trans[of a "nrows (sparse_row_vector v)" 1, OF a b] then have "a = 0" by simp } note nrows_helper = this show ?thesis apply (induct c a B rule: mult_spvec_spmat.induct) apply simp+ apply (rule conjI) apply (intro strip) apply (frule_tac as=brr in sorted_spvec_cons1) apply (simp add: algebra_simps sparse_row_matrix_cons) apply (simplesubst Rep_matrix_zero_imp_mult_zero) apply (simp) apply (rule disjI2) apply (intro strip) apply (subst nrows) apply (rule order_trans[of _ 1]) apply (simp add: comp_1)+ apply (subst Rep_matrix_zero_imp_mult_zero) apply (intro strip) apply (case_tac "k <= j") apply (rule_tac m1 = k and n1 = i and a1 = a in ssubst[OF sorted_sparse_row_vector_zero]) apply (simp_all) apply (rule disjI2) apply (rule nrows) apply (rule order_trans[of _ 1]) apply (simp_all add: comp_1) apply (intro strip | rule conjI)+ apply (frule_tac as=arr in sorted_spvec_cons1) apply (simp add: algebra_simps) apply (subst Rep_matrix_zero_imp_mult_zero) apply (simp) apply (rule disjI2) apply (intro strip) apply (simp add: sparse_row_matrix_cons) apply (case_tac "i <= j") apply (erule sorted_sparse_row_matrix_zero) apply (simp_all) apply (intro strip) apply (case_tac "i=j") apply (simp_all) apply (frule_tac as=arr in sorted_spvec_cons1) apply (frule_tac as=brr in sorted_spvec_cons1) apply (simp add: sparse_row_matrix_cons algebra_simps sparse_row_vector_addmult_spvec) apply (rule_tac B1 = "sparse_row_matrix brr" in ssubst[OF Rep_matrix_zero_imp_mult_zero]) apply (auto) apply (rule sorted_sparse_row_matrix_zero) apply (simp_all) apply (rule_tac A1 = "sparse_row_vector arr" in ssubst[OF Rep_matrix_zero_imp_mult_zero]) apply (auto) apply (rule_tac m=k and n = j and a = a and arr=arr in sorted_sparse_row_vector_zero) apply (simp_all) apply (drule nrows_notzero) apply (drule nrows_helper) apply (arith) apply (subst Rep_matrix_inject[symmetric]) apply (rule ext)+ apply (simp) apply (subst Rep_matrix_mult) apply (rule_tac j1=j in ssubst[OF foldseq_almostzero]) apply (simp_all) apply (intro strip, rule conjI) apply (intro strip) apply (drule_tac max_helper) apply (simp) apply (auto) apply (rule zero_imp_mult_zero) apply (rule disjI2) apply (rule nrows) apply (rule order_trans[of _ 1]) apply (simp) apply (simp) done qed lemma sorted_mult_spvec_spmat[rule_format]: "sorted_spvec (c::('a::lattice_ring) spvec) \ sorted_spmat B \ sorted_spvec (mult_spvec_spmat c a B)" apply (induct c a B rule: mult_spvec_spmat.induct) apply (simp_all add: sorted_addmult_spvec) done primrec mult_spmat :: "('a::lattice_ring) spmat \ 'a spmat \ 'a spmat" where "mult_spmat [] A = []" | "mult_spmat (a#as) A = (fst a, mult_spvec_spmat [] (snd a) A)#(mult_spmat as A)" lemma sparse_row_mult_spmat: "sorted_spmat A \ sorted_spvec B \ sparse_row_matrix (mult_spmat A B) = (sparse_row_matrix A) * (sparse_row_matrix B)" apply (induct A) apply (auto simp add: sparse_row_matrix_cons sparse_row_mult_spvec_spmat algebra_simps move_matrix_mult) done lemma sorted_spvec_mult_spmat[rule_format]: "sorted_spvec (A::('a::lattice_ring) spmat) \ sorted_spvec (mult_spmat A B)" apply (induct A) apply (auto) apply (drule sorted_spvec_cons1, simp) apply (case_tac A) apply (auto simp add: sorted_spvec.simps) done lemma sorted_spmat_mult_spmat: "sorted_spmat (B::('a::lattice_ring) spmat) \ sorted_spmat (mult_spmat A B)" apply (induct A) apply (auto simp add: sorted_mult_spvec_spmat) done fun add_spvec :: "('a::lattice_ab_group_add) spvec \ 'a spvec \ 'a spvec" where (* "measure (% (a, b). length a + (length b))" *) "add_spvec arr [] = arr" | "add_spvec [] brr = brr" | "add_spvec ((i,a)#arr) ((j,b)#brr) = ( if i < j then (i,a)#(add_spvec arr ((j,b)#brr)) else if (j < i) then (j,b) # add_spvec ((i,a)#arr) brr else (i, a+b) # add_spvec arr brr)" lemma add_spvec_empty1[simp]: "add_spvec [] a = a" by (cases a, auto) lemma sparse_row_vector_add: "sparse_row_vector (add_spvec a b) = (sparse_row_vector a) + (sparse_row_vector b)" apply (induct a b rule: add_spvec.induct) apply (simp_all add: singleton_matrix_add) done fun add_spmat :: "('a::lattice_ab_group_add) spmat \ 'a spmat \ 'a spmat" where (* "measure (% (A,B). (length A)+(length B))" *) "add_spmat [] bs = bs" | "add_spmat as [] = as" | "add_spmat ((i,a)#as) ((j,b)#bs) = ( if i < j then (i,a) # add_spmat as ((j,b)#bs) else if j < i then (j,b) # add_spmat ((i,a)#as) bs else (i, add_spvec a b) # add_spmat as bs)" lemma add_spmat_Nil2[simp]: "add_spmat as [] = as" by(cases as) auto lemma sparse_row_add_spmat: "sparse_row_matrix (add_spmat A B) = (sparse_row_matrix A) + (sparse_row_matrix B)" apply (induct A B rule: add_spmat.induct) apply (auto simp add: sparse_row_matrix_cons sparse_row_vector_add move_matrix_add) done lemmas [code] = sparse_row_add_spmat [symmetric] lemmas [code] = sparse_row_vector_add [symmetric] lemma sorted_add_spvec_helper1[rule_format]: "add_spvec ((a,b)#arr) brr = (ab, bb) # list \ (ab = a | (brr \ [] & ab = fst (hd brr)))" proof - have "(\x ab a. x = (a,b)#arr \ add_spvec x brr = (ab, bb) # list \ (ab = a | (ab = fst (hd brr))))" by (induct brr rule: add_spvec.induct) (auto split:if_splits) then show ?thesis by (case_tac brr, auto) qed lemma sorted_add_spmat_helper1[rule_format]: "add_spmat ((a,b)#arr) brr = (ab, bb) # list \ (ab = a | (brr \ [] & ab = fst (hd brr)))" proof - have "(\x ab a. x = (a,b)#arr \ add_spmat x brr = (ab, bb) # list \ (ab = a | (ab = fst (hd brr))))" by (rule add_spmat.induct) (auto split:if_splits) then show ?thesis by (case_tac brr, auto) qed lemma sorted_add_spvec_helper: "add_spvec arr brr = (ab, bb) # list \ ((arr \ [] & ab = fst (hd arr)) | (brr \ [] & ab = fst (hd brr)))" apply (induct arr brr rule: add_spvec.induct) apply (auto split:if_splits) done lemma sorted_add_spmat_helper: "add_spmat arr brr = (ab, bb) # list \ ((arr \ [] & ab = fst (hd arr)) | (brr \ [] & ab = fst (hd brr)))" apply (induct arr brr rule: add_spmat.induct) apply (auto split:if_splits) done lemma add_spvec_commute: "add_spvec a b = add_spvec b a" by (induct a b rule: add_spvec.induct) auto lemma add_spmat_commute: "add_spmat a b = add_spmat b a" apply (induct a b rule: add_spmat.induct) apply (simp_all add: add_spvec_commute) done lemma sorted_add_spvec_helper2: "add_spvec ((a,b)#arr) brr = (ab, bb) # list \ aa < a \ sorted_spvec ((aa, ba) # brr) \ aa < ab" apply (drule sorted_add_spvec_helper1) apply (auto) apply (case_tac brr) apply (simp_all) apply (drule_tac sorted_spvec_cons3) apply (simp) done lemma sorted_add_spmat_helper2: "add_spmat ((a,b)#arr) brr = (ab, bb) # list \ aa < a \ sorted_spvec ((aa, ba) # brr) \ aa < ab" apply (drule sorted_add_spmat_helper1) apply (auto) apply (case_tac brr) apply (simp_all) apply (drule_tac sorted_spvec_cons3) apply (simp) done lemma sorted_spvec_add_spvec[rule_format]: "sorted_spvec a \ sorted_spvec b \ sorted_spvec (add_spvec a b)" apply (induct a b rule: add_spvec.induct) apply (simp_all) apply (rule conjI) apply (clarsimp) apply (frule_tac as=brr in sorted_spvec_cons1) apply (simp) apply (subst sorted_spvec_step) apply (clarsimp simp: sorted_add_spvec_helper2 split: list.split) apply (clarify) apply (rule conjI) apply (clarify) apply (frule_tac as=arr in sorted_spvec_cons1, simp) apply (subst sorted_spvec_step) apply (clarsimp simp: sorted_add_spvec_helper2 add_spvec_commute split: list.split) apply (clarify) apply (frule_tac as=arr in sorted_spvec_cons1) apply (frule_tac as=brr in sorted_spvec_cons1) apply (simp) apply (subst sorted_spvec_step) apply (simp split: list.split) apply (clarsimp) apply (drule_tac sorted_add_spvec_helper) apply (auto simp: neq_Nil_conv) apply (drule sorted_spvec_cons3) apply (simp) apply (drule sorted_spvec_cons3) apply (simp) done lemma sorted_spvec_add_spmat[rule_format]: "sorted_spvec A \ sorted_spvec B \ sorted_spvec (add_spmat A B)" apply (induct A B rule: add_spmat.induct) apply (simp_all) apply (rule conjI) apply (intro strip) apply (simp) apply (frule_tac as=bs in sorted_spvec_cons1) apply (simp) apply (subst sorted_spvec_step) apply (simp split: list.split) apply (clarify, simp) apply (simp add: sorted_add_spmat_helper2) apply (clarify) apply (rule conjI) apply (clarify) apply (frule_tac as=as in sorted_spvec_cons1, simp) apply (subst sorted_spvec_step) apply (clarsimp simp: sorted_add_spmat_helper2 add_spmat_commute split: list.split) apply (clarsimp) apply (frule_tac as=as in sorted_spvec_cons1) apply (frule_tac as=bs in sorted_spvec_cons1) apply (simp) apply (subst sorted_spvec_step) apply (simp split: list.split) apply (clarify, simp) apply (drule_tac sorted_add_spmat_helper) apply (auto simp:neq_Nil_conv) apply (drule sorted_spvec_cons3) apply (simp) apply (drule sorted_spvec_cons3) apply (simp) done lemma sorted_spmat_add_spmat[rule_format]: "sorted_spmat A \ sorted_spmat B \ sorted_spmat (add_spmat A B)" apply (induct A B rule: add_spmat.induct) apply (simp_all add: sorted_spvec_add_spvec) done fun le_spvec :: "('a::lattice_ab_group_add) spvec \ 'a spvec \ bool" where (* "measure (% (a,b). (length a) + (length b))" *) "le_spvec [] [] = True" | "le_spvec ((_,a)#as) [] = (a <= 0 & le_spvec as [])" | "le_spvec [] ((_,b)#bs) = (0 <= b & le_spvec [] bs)" | "le_spvec ((i,a)#as) ((j,b)#bs) = ( if (i < j) then a <= 0 & le_spvec as ((j,b)#bs) else if (j < i) then 0 <= b & le_spvec ((i,a)#as) bs else a <= b & le_spvec as bs)" fun le_spmat :: "('a::lattice_ab_group_add) spmat \ 'a spmat \ bool" where (* "measure (% (a,b). (length a) + (length b))" *) "le_spmat [] [] = True" | "le_spmat ((i,a)#as) [] = (le_spvec a [] & le_spmat as [])" | "le_spmat [] ((j,b)#bs) = (le_spvec [] b & le_spmat [] bs)" | "le_spmat ((i,a)#as) ((j,b)#bs) = ( if i < j then (le_spvec a [] & le_spmat as ((j,b)#bs)) else if j < i then (le_spvec [] b & le_spmat ((i,a)#as) bs) else (le_spvec a b & le_spmat as bs))" definition disj_matrices :: "('a::zero) matrix \ 'a matrix \ bool" where "disj_matrices A B \ (\j i. (Rep_matrix A j i \ 0) \ (Rep_matrix B j i = 0)) & (\j i. (Rep_matrix B j i \ 0) \ (Rep_matrix A j i = 0))" declare [[simp_depth_limit = 6]] lemma disj_matrices_contr1: "disj_matrices A B \ Rep_matrix A j i \ 0 \ Rep_matrix B j i = 0" by (simp add: disj_matrices_def) lemma disj_matrices_contr2: "disj_matrices A B \ Rep_matrix B j i \ 0 \ Rep_matrix A j i = 0" by (simp add: disj_matrices_def) lemma disj_matrices_add: "disj_matrices A B \ disj_matrices C D \ disj_matrices A D \ disj_matrices B C \ (A + B <= C + D) = (A <= C & B <= (D::('a::lattice_ab_group_add) matrix))" apply (auto) apply (simp (no_asm_use) only: le_matrix_def disj_matrices_def) apply (intro strip) apply (erule conjE)+ apply (drule_tac j=j and i=i in spec2)+ apply (case_tac "Rep_matrix B j i = 0") apply (case_tac "Rep_matrix D j i = 0") apply (simp_all) apply (simp (no_asm_use) only: le_matrix_def disj_matrices_def) apply (intro strip) apply (erule conjE)+ apply (drule_tac j=j and i=i in spec2)+ apply (case_tac "Rep_matrix A j i = 0") apply (case_tac "Rep_matrix C j i = 0") apply (simp_all) apply (erule add_mono) apply (assumption) done lemma disj_matrices_zero1[simp]: "disj_matrices 0 B" by (simp add: disj_matrices_def) lemma disj_matrices_zero2[simp]: "disj_matrices A 0" by (simp add: disj_matrices_def) lemma disj_matrices_commute: "disj_matrices A B = disj_matrices B A" by (auto simp add: disj_matrices_def) lemma disj_matrices_add_le_zero: "disj_matrices A B \ (A + B <= 0) = (A <= 0 & (B::('a::lattice_ab_group_add) matrix) <= 0)" by (rule disj_matrices_add[of A B 0 0, simplified]) lemma disj_matrices_add_zero_le: "disj_matrices A B \ (0 <= A + B) = (0 <= A & 0 <= (B::('a::lattice_ab_group_add) matrix))" by (rule disj_matrices_add[of 0 0 A B, simplified]) lemma disj_matrices_add_x_le: "disj_matrices A B \ disj_matrices B C \ (A <= B + C) = (A <= C & 0 <= (B::('a::lattice_ab_group_add) matrix))" by (auto simp add: disj_matrices_add[of 0 A B C, simplified]) lemma disj_matrices_add_le_x: "disj_matrices A B \ disj_matrices B C \ (B + A <= C) = (A <= C & (B::('a::lattice_ab_group_add) matrix) <= 0)" by (auto simp add: disj_matrices_add[of B A 0 C,simplified] disj_matrices_commute) lemma disj_sparse_row_singleton: "i <= j \ sorted_spvec((j,y)#v) \ disj_matrices (sparse_row_vector v) (singleton_matrix 0 i x)" apply (simp add: disj_matrices_def) apply (rule conjI) apply (rule neg_imp) apply (simp) apply (intro strip) apply (rule sorted_sparse_row_vector_zero) apply (simp_all) apply (intro strip) apply (rule sorted_sparse_row_vector_zero) apply (simp_all) done lemma disj_matrices_x_add: "disj_matrices A B \ disj_matrices A C \ disj_matrices (A::('a::lattice_ab_group_add) matrix) (B+C)" apply (simp add: disj_matrices_def) apply (auto) apply (drule_tac j=j and i=i in spec2)+ apply (case_tac "Rep_matrix B j i = 0") apply (case_tac "Rep_matrix C j i = 0") apply (simp_all) done lemma disj_matrices_add_x: "disj_matrices A B \ disj_matrices A C \ disj_matrices (B+C) (A::('a::lattice_ab_group_add) matrix)" by (simp add: disj_matrices_x_add disj_matrices_commute) lemma disj_singleton_matrices[simp]: "disj_matrices (singleton_matrix j i x) (singleton_matrix u v y) = (j \ u | i \ v | x = 0 | y = 0)" by (auto simp add: disj_matrices_def) lemma disj_move_sparse_vec_mat[simplified disj_matrices_commute]: "j <= a \ sorted_spvec((a,c)#as) \ disj_matrices (move_matrix (sparse_row_vector b) (int j) i) (sparse_row_matrix as)" apply (auto simp add: disj_matrices_def) apply (drule nrows_notzero) apply (drule less_le_trans[OF _ nrows_spvec]) apply (subgoal_tac "ja = j") apply (simp add: sorted_sparse_row_matrix_zero) apply (arith) apply (rule nrows) apply (rule order_trans[of _ 1 _]) apply (simp) apply (case_tac "nat (int ja - int j) = 0") apply (case_tac "ja = j") apply (simp add: sorted_sparse_row_matrix_zero) apply arith+ done lemma disj_move_sparse_row_vector_twice: "j \ u \ disj_matrices (move_matrix (sparse_row_vector a) j i) (move_matrix (sparse_row_vector b) u v)" apply (auto simp add: disj_matrices_def) apply (rule nrows, rule order_trans[of _ 1], simp, drule nrows_notzero, drule less_le_trans[OF _ nrows_spvec], arith)+ done lemma le_spvec_iff_sparse_row_le[rule_format]: "(sorted_spvec a) \ (sorted_spvec b) \ (le_spvec a b) = (sparse_row_vector a <= sparse_row_vector b)" apply (induct a b rule: le_spvec.induct) apply (simp_all add: sorted_spvec_cons1 disj_matrices_add_le_zero disj_matrices_add_zero_le disj_sparse_row_singleton[OF order_refl] disj_matrices_commute) apply (rule conjI, intro strip) apply (simp add: sorted_spvec_cons1) apply (subst disj_matrices_add_x_le) apply (simp add: disj_sparse_row_singleton[OF less_imp_le] disj_matrices_x_add disj_matrices_commute) apply (simp add: disj_sparse_row_singleton[OF order_refl] disj_matrices_commute) apply (simp, blast) apply (intro strip, rule conjI, intro strip) apply (simp add: sorted_spvec_cons1) apply (subst disj_matrices_add_le_x) apply (simp_all add: disj_sparse_row_singleton[OF order_refl] disj_sparse_row_singleton[OF less_imp_le] disj_matrices_commute disj_matrices_x_add) apply (blast) apply (intro strip) apply (simp add: sorted_spvec_cons1) apply (case_tac "a=b", simp_all) apply (subst disj_matrices_add) apply (simp_all add: disj_sparse_row_singleton[OF order_refl] disj_matrices_commute) done lemma le_spvec_empty2_sparse_row[rule_format]: "sorted_spvec b \ le_spvec b [] = (sparse_row_vector b <= 0)" apply (induct b) apply (simp_all add: sorted_spvec_cons1) apply (intro strip) apply (subst disj_matrices_add_le_zero) apply (auto simp add: disj_matrices_commute disj_sparse_row_singleton[OF order_refl] sorted_spvec_cons1) done lemma le_spvec_empty1_sparse_row[rule_format]: "(sorted_spvec b) \ (le_spvec [] b = (0 <= sparse_row_vector b))" apply (induct b) apply (simp_all add: sorted_spvec_cons1) apply (intro strip) apply (subst disj_matrices_add_zero_le) apply (auto simp add: disj_matrices_commute disj_sparse_row_singleton[OF order_refl] sorted_spvec_cons1) done lemma le_spmat_iff_sparse_row_le[rule_format]: "(sorted_spvec A) \ (sorted_spmat A) \ (sorted_spvec B) \ (sorted_spmat B) \ le_spmat A B = (sparse_row_matrix A <= sparse_row_matrix B)" apply (induct A B rule: le_spmat.induct) apply (simp add: sparse_row_matrix_cons disj_matrices_add_le_zero disj_matrices_add_zero_le disj_move_sparse_vec_mat[OF order_refl] disj_matrices_commute sorted_spvec_cons1 le_spvec_empty2_sparse_row le_spvec_empty1_sparse_row)+ apply (rule conjI, intro strip) apply (simp add: sorted_spvec_cons1) apply (subst disj_matrices_add_x_le) apply (rule disj_matrices_add_x) apply (simp add: disj_move_sparse_row_vector_twice) apply (simp add: disj_move_sparse_vec_mat[OF less_imp_le] disj_matrices_commute) apply (simp add: disj_move_sparse_vec_mat[OF order_refl] disj_matrices_commute) apply (simp, blast) apply (intro strip, rule conjI, intro strip) apply (simp add: sorted_spvec_cons1) apply (subst disj_matrices_add_le_x) apply (simp add: disj_move_sparse_vec_mat[OF order_refl]) apply (rule disj_matrices_x_add) apply (simp add: disj_move_sparse_row_vector_twice) apply (simp add: disj_move_sparse_vec_mat[OF less_imp_le] disj_matrices_commute) apply (simp, blast) apply (intro strip) apply (case_tac "i=j") apply (simp_all) apply (subst disj_matrices_add) apply (simp_all add: disj_matrices_commute disj_move_sparse_vec_mat[OF order_refl]) apply (simp add: sorted_spvec_cons1 le_spvec_iff_sparse_row_le) done declare [[simp_depth_limit = 999]] primrec abs_spmat :: "('a::lattice_ring) spmat \ 'a spmat" where "abs_spmat [] = []" | "abs_spmat (a#as) = (fst a, abs_spvec (snd a))#(abs_spmat as)" primrec minus_spmat :: "('a::lattice_ring) spmat \ 'a spmat" where "minus_spmat [] = []" | "minus_spmat (a#as) = (fst a, minus_spvec (snd a))#(minus_spmat as)" lemma sparse_row_matrix_minus: "sparse_row_matrix (minus_spmat A) = - (sparse_row_matrix A)" apply (induct A) apply (simp_all add: sparse_row_vector_minus sparse_row_matrix_cons) apply (subst Rep_matrix_inject[symmetric]) apply (rule ext)+ apply simp done lemma Rep_sparse_row_vector_zero: "x \ 0 \ Rep_matrix (sparse_row_vector v) x y = 0" proof - assume x:"x \ 0" have r:"nrows (sparse_row_vector v) <= Suc 0" by (rule nrows_spvec) show ?thesis apply (rule nrows) apply (subgoal_tac "Suc 0 <= x") apply (insert r) apply (simp only:) apply (insert x) apply arith done qed lemma sparse_row_matrix_abs: "sorted_spvec A \ sorted_spmat A \ sparse_row_matrix (abs_spmat A) = \sparse_row_matrix A\" apply (induct A) apply (simp_all add: sparse_row_vector_abs sparse_row_matrix_cons) apply (frule_tac sorted_spvec_cons1, simp) apply (simplesubst Rep_matrix_inject[symmetric]) apply (rule ext)+ apply auto apply (case_tac "x=a") apply (simp) apply (simplesubst sorted_sparse_row_matrix_zero) apply auto apply (simplesubst Rep_sparse_row_vector_zero) apply simp_all done lemma sorted_spvec_minus_spmat: "sorted_spvec A \ sorted_spvec (minus_spmat A)" apply (induct A) apply (simp) apply (frule sorted_spvec_cons1, simp) apply (simp add: sorted_spvec.simps split:list.split_asm) done lemma sorted_spvec_abs_spmat: "sorted_spvec A \ sorted_spvec (abs_spmat A)" apply (induct A) apply (simp) apply (frule sorted_spvec_cons1, simp) apply (simp add: sorted_spvec.simps split:list.split_asm) done lemma sorted_spmat_minus_spmat: "sorted_spmat A \ sorted_spmat (minus_spmat A)" apply (induct A) apply (simp_all add: sorted_spvec_minus_spvec) done lemma sorted_spmat_abs_spmat: "sorted_spmat A \ sorted_spmat (abs_spmat A)" apply (induct A) apply (simp_all add: sorted_spvec_abs_spvec) done definition diff_spmat :: "('a::lattice_ring) spmat \ 'a spmat \ 'a spmat" where "diff_spmat A B = add_spmat A (minus_spmat B)" lemma sorted_spmat_diff_spmat: "sorted_spmat A \ sorted_spmat B \ sorted_spmat (diff_spmat A B)" by (simp add: diff_spmat_def sorted_spmat_minus_spmat sorted_spmat_add_spmat) lemma sorted_spvec_diff_spmat: "sorted_spvec A \ sorted_spvec B \ sorted_spvec (diff_spmat A B)" by (simp add: diff_spmat_def sorted_spvec_minus_spmat sorted_spvec_add_spmat) lemma sparse_row_diff_spmat: "sparse_row_matrix (diff_spmat A B ) = (sparse_row_matrix A) - (sparse_row_matrix B)" by (simp add: diff_spmat_def sparse_row_add_spmat sparse_row_matrix_minus) definition sorted_sparse_matrix :: "'a spmat \ bool" where "sorted_sparse_matrix A \ sorted_spvec A & sorted_spmat A" lemma sorted_sparse_matrix_imp_spvec: "sorted_sparse_matrix A \ sorted_spvec A" by (simp add: sorted_sparse_matrix_def) lemma sorted_sparse_matrix_imp_spmat: "sorted_sparse_matrix A \ sorted_spmat A" by (simp add: sorted_sparse_matrix_def) lemmas sorted_sp_simps = sorted_spvec.simps sorted_spmat.simps sorted_sparse_matrix_def lemma bool1: "(\ True) = False" by blast lemma bool2: "(\ False) = True" by blast lemma bool3: "((P::bool) \ True) = P" by blast lemma bool4: "(True \ (P::bool)) = P" by blast lemma bool5: "((P::bool) \ False) = False" by blast lemma bool6: "(False \ (P::bool)) = False" by blast lemma bool7: "((P::bool) \ True) = True" by blast lemma bool8: "(True \ (P::bool)) = True" by blast lemma bool9: "((P::bool) \ False) = P" by blast lemma bool10: "(False \ (P::bool)) = P" by blast lemmas boolarith = bool1 bool2 bool3 bool4 bool5 bool6 bool7 bool8 bool9 bool10 lemma if_case_eq: "(if b then x else y) = (case b of True => x | False => y)" by simp primrec pprt_spvec :: "('a::{lattice_ab_group_add}) spvec \ 'a spvec" where "pprt_spvec [] = []" | "pprt_spvec (a#as) = (fst a, pprt (snd a)) # (pprt_spvec as)" primrec nprt_spvec :: "('a::{lattice_ab_group_add}) spvec \ 'a spvec" where "nprt_spvec [] = []" | "nprt_spvec (a#as) = (fst a, nprt (snd a)) # (nprt_spvec as)" primrec pprt_spmat :: "('a::{lattice_ab_group_add}) spmat \ 'a spmat" where "pprt_spmat [] = []" | "pprt_spmat (a#as) = (fst a, pprt_spvec (snd a))#(pprt_spmat as)" primrec nprt_spmat :: "('a::{lattice_ab_group_add}) spmat \ 'a spmat" where "nprt_spmat [] = []" | "nprt_spmat (a#as) = (fst a, nprt_spvec (snd a))#(nprt_spmat as)" lemma pprt_add: "disj_matrices A (B::(_::lattice_ring) matrix) \ pprt (A+B) = pprt A + pprt B" apply (simp add: pprt_def sup_matrix_def) apply (simp add: Rep_matrix_inject[symmetric]) apply (rule ext)+ apply simp apply (case_tac "Rep_matrix A x xa \ 0") apply (simp_all add: disj_matrices_contr1) done lemma nprt_add: "disj_matrices A (B::(_::lattice_ring) matrix) \ nprt (A+B) = nprt A + nprt B" apply (simp add: nprt_def inf_matrix_def) apply (simp add: Rep_matrix_inject[symmetric]) apply (rule ext)+ apply simp apply (case_tac "Rep_matrix A x xa \ 0") apply (simp_all add: disj_matrices_contr1) done lemma pprt_singleton[simp]: "pprt (singleton_matrix j i (x::_::lattice_ring)) = singleton_matrix j i (pprt x)" apply (simp add: pprt_def sup_matrix_def) apply (simp add: Rep_matrix_inject[symmetric]) apply (rule ext)+ apply simp done lemma nprt_singleton[simp]: "nprt (singleton_matrix j i (x::_::lattice_ring)) = singleton_matrix j i (nprt x)" apply (simp add: nprt_def inf_matrix_def) apply (simp add: Rep_matrix_inject[symmetric]) apply (rule ext)+ apply simp done lemma less_imp_le: "a < b \ a <= (b::_::order)" by (simp add: less_def) lemma sparse_row_vector_pprt: "sorted_spvec (v :: 'a::lattice_ring spvec) \ sparse_row_vector (pprt_spvec v) = pprt (sparse_row_vector v)" apply (induct v) apply (simp_all) apply (frule sorted_spvec_cons1, auto) apply (subst pprt_add) apply (subst disj_matrices_commute) apply (rule disj_sparse_row_singleton) apply auto done lemma sparse_row_vector_nprt: "sorted_spvec (v :: 'a::lattice_ring spvec) \ sparse_row_vector (nprt_spvec v) = nprt (sparse_row_vector v)" apply (induct v) apply (simp_all) apply (frule sorted_spvec_cons1, auto) apply (subst nprt_add) apply (subst disj_matrices_commute) apply (rule disj_sparse_row_singleton) apply auto done lemma pprt_move_matrix: "pprt (move_matrix (A::('a::lattice_ring) matrix) j i) = move_matrix (pprt A) j i" apply (simp add: pprt_def) apply (simp add: sup_matrix_def) apply (simp add: Rep_matrix_inject[symmetric]) apply (rule ext)+ apply (simp) done lemma nprt_move_matrix: "nprt (move_matrix (A::('a::lattice_ring) matrix) j i) = move_matrix (nprt A) j i" apply (simp add: nprt_def) apply (simp add: inf_matrix_def) apply (simp add: Rep_matrix_inject[symmetric]) apply (rule ext)+ apply (simp) done lemma sparse_row_matrix_pprt: "sorted_spvec (m :: 'a::lattice_ring spmat) \ sorted_spmat m \ sparse_row_matrix (pprt_spmat m) = pprt (sparse_row_matrix m)" apply (induct m) apply simp apply simp apply (frule sorted_spvec_cons1) apply (simp add: sparse_row_matrix_cons sparse_row_vector_pprt) apply (subst pprt_add) apply (subst disj_matrices_commute) apply (rule disj_move_sparse_vec_mat) apply auto apply (simp add: sorted_spvec.simps) apply (simp split: list.split) apply auto apply (simp add: pprt_move_matrix) done lemma sparse_row_matrix_nprt: "sorted_spvec (m :: 'a::lattice_ring spmat) \ sorted_spmat m \ sparse_row_matrix (nprt_spmat m) = nprt (sparse_row_matrix m)" apply (induct m) apply simp apply simp apply (frule sorted_spvec_cons1) apply (simp add: sparse_row_matrix_cons sparse_row_vector_nprt) apply (subst nprt_add) apply (subst disj_matrices_commute) apply (rule disj_move_sparse_vec_mat) apply auto apply (simp add: sorted_spvec.simps) apply (simp split: list.split) apply auto apply (simp add: nprt_move_matrix) done lemma sorted_pprt_spvec: "sorted_spvec v \ sorted_spvec (pprt_spvec v)" apply (induct v) apply (simp) apply (frule sorted_spvec_cons1) apply simp apply (simp add: sorted_spvec.simps split:list.split_asm) done lemma sorted_nprt_spvec: "sorted_spvec v \ sorted_spvec (nprt_spvec v)" apply (induct v) apply (simp) apply (frule sorted_spvec_cons1) apply simp apply (simp add: sorted_spvec.simps split:list.split_asm) done lemma sorted_spvec_pprt_spmat: "sorted_spvec m \ sorted_spvec (pprt_spmat m)" apply (induct m) apply (simp) apply (frule sorted_spvec_cons1) apply simp apply (simp add: sorted_spvec.simps split:list.split_asm) done lemma sorted_spvec_nprt_spmat: "sorted_spvec m \ sorted_spvec (nprt_spmat m)" apply (induct m) apply (simp) apply (frule sorted_spvec_cons1) apply simp apply (simp add: sorted_spvec.simps split:list.split_asm) done lemma sorted_spmat_pprt_spmat: "sorted_spmat m \ sorted_spmat (pprt_spmat m)" apply (induct m) apply (simp_all add: sorted_pprt_spvec) done lemma sorted_spmat_nprt_spmat: "sorted_spmat m \ sorted_spmat (nprt_spmat m)" apply (induct m) apply (simp_all add: sorted_nprt_spvec) done definition mult_est_spmat :: "('a::lattice_ring) spmat \ 'a spmat \ 'a spmat \ 'a spmat \ 'a spmat" where "mult_est_spmat r1 r2 s1 s2 = add_spmat (mult_spmat (pprt_spmat s2) (pprt_spmat r2)) (add_spmat (mult_spmat (pprt_spmat s1) (nprt_spmat r2)) (add_spmat (mult_spmat (nprt_spmat s2) (pprt_spmat r1)) (mult_spmat (nprt_spmat s1) (nprt_spmat r1))))" lemmas sparse_row_matrix_op_simps = sorted_sparse_matrix_imp_spmat sorted_sparse_matrix_imp_spvec sparse_row_add_spmat sorted_spvec_add_spmat sorted_spmat_add_spmat sparse_row_diff_spmat sorted_spvec_diff_spmat sorted_spmat_diff_spmat sparse_row_matrix_minus sorted_spvec_minus_spmat sorted_spmat_minus_spmat sparse_row_mult_spmat sorted_spvec_mult_spmat sorted_spmat_mult_spmat sparse_row_matrix_abs sorted_spvec_abs_spmat sorted_spmat_abs_spmat le_spmat_iff_sparse_row_le sparse_row_matrix_pprt sorted_spvec_pprt_spmat sorted_spmat_pprt_spmat sparse_row_matrix_nprt sorted_spvec_nprt_spmat sorted_spmat_nprt_spmat lemmas sparse_row_matrix_arith_simps = mult_spmat.simps mult_spvec_spmat.simps addmult_spvec.simps smult_spvec_empty smult_spvec_cons add_spmat.simps add_spvec.simps minus_spmat.simps minus_spvec.simps abs_spmat.simps abs_spvec.simps diff_spmat_def le_spmat.simps le_spvec.simps pprt_spmat.simps pprt_spvec.simps nprt_spmat.simps nprt_spvec.simps mult_est_spmat_def (*lemma spm_linprog_dual_estimate_1: assumes "sorted_sparse_matrix A1" "sorted_sparse_matrix A2" "sorted_sparse_matrix c1" "sorted_sparse_matrix c2" "sorted_sparse_matrix y" "sorted_spvec b" "sorted_spvec r" "le_spmat ([], y)" "A * x \ sparse_row_matrix (b::('a::lattice_ring) spmat)" "sparse_row_matrix A1 <= A" "A <= sparse_row_matrix A2" "sparse_row_matrix c1 <= c" "c <= sparse_row_matrix c2" "\x\ \ sparse_row_matrix r" shows "c * x \ sparse_row_matrix (add_spmat (mult_spmat y b, mult_spmat (add_spmat (add_spmat (mult_spmat y (diff_spmat A2 A1), abs_spmat (diff_spmat (mult_spmat y A1) c1)), diff_spmat c2 c1)) r))" by (insert prems, simp add: sparse_row_matrix_op_simps linprog_dual_estimate_1[where A=A]) *) end