(* Title: ZF/int_arith.ML Author: Larry Paulson Simprocs for linear arithmetic. *) signature INT_NUMERAL_SIMPROCS = sig val cancel_numerals: simproc list val combine_numerals: simproc val combine_numerals_prod: simproc end structure Int_Numeral_Simprocs: INT_NUMERAL_SIMPROCS = struct (* abstract syntax operations *) fun mk_bit 0 = \<^term>\0\ | mk_bit 1 = \<^term>\succ(0)\ | mk_bit _ = raise TERM ("mk_bit", []); fun dest_bit \<^term>\0\ = 0 | dest_bit \<^term>\succ(0)\ = 1 | dest_bit t = raise TERM ("dest_bit", [t]); fun mk_bin i = let fun term_of [] = \<^term>\Pls\ | term_of [~1] = \<^term>\Min\ | term_of (b :: bs) = \<^term>\Bit\ $ term_of bs $ mk_bit b; in term_of (Numeral_Syntax.make_binary i) end; fun dest_bin tm = let fun bin_of \<^term>\Pls\ = [] | bin_of \<^term>\Min\ = [~1] | bin_of (\<^term>\Bit\ $ bs $ b) = dest_bit b :: bin_of bs | bin_of _ = raise TERM ("dest_bin", [tm]); in Numeral_Syntax.dest_binary (bin_of tm) end; (*Utilities*) fun mk_numeral i = \<^const>\integ_of\ $ mk_bin i; fun dest_numeral (Const(\<^const_name>\integ_of\, _) $ w) = dest_bin w | dest_numeral t = raise TERM ("dest_numeral", [t]); fun find_first_numeral past (t::terms) = ((dest_numeral t, rev past @ terms) handle TERM _ => find_first_numeral (t::past) terms) | find_first_numeral past [] = raise TERM("find_first_numeral", []); val zero = mk_numeral 0; val mk_plus = FOLogic.mk_binop \<^const_name>\zadd\; (*Thus mk_sum[t] yields t+#0; longer sums don't have a trailing zero*) fun mk_sum [] = zero | mk_sum [t,u] = mk_plus (t, u) | mk_sum (t :: ts) = mk_plus (t, mk_sum ts); (*this version ALWAYS includes a trailing zero*) fun long_mk_sum [] = zero | long_mk_sum (t :: ts) = mk_plus (t, mk_sum ts); (*decompose additions AND subtractions as a sum*) fun dest_summing (pos, Const (\<^const_name>\zadd\, _) $ t $ u, ts) = dest_summing (pos, t, dest_summing (pos, u, ts)) | dest_summing (pos, Const (\<^const_name>\zdiff\, _) $ t $ u, ts) = dest_summing (pos, t, dest_summing (not pos, u, ts)) | dest_summing (pos, t, ts) = if pos then t::ts else \<^const>\zminus\ $ t :: ts; fun dest_sum t = dest_summing (true, t, []); val one = mk_numeral 1; val mk_times = FOLogic.mk_binop \<^const_name>\zmult\; fun mk_prod [] = one | mk_prod [t] = t | mk_prod (t :: ts) = if t = one then mk_prod ts else mk_times (t, mk_prod ts); val dest_times = FOLogic.dest_bin \<^const_name>\zmult\ \<^typ>\i\; fun dest_prod t = let val (t,u) = dest_times t in dest_prod t @ dest_prod u end handle TERM _ => [t]; (*DON'T do the obvious simplifications; that would create special cases*) fun mk_coeff (k, t) = mk_times (mk_numeral k, t); (*Express t as a product of (possibly) a numeral with other sorted terms*) fun dest_coeff sign (Const (\<^const_name>\zminus\, _) $ t) = dest_coeff (~sign) t | dest_coeff sign t = let val ts = sort Term_Ord.term_ord (dest_prod t) val (n, ts') = find_first_numeral [] ts handle TERM _ => (1, ts) in (sign*n, mk_prod ts') end; (*Find first coefficient-term THAT MATCHES u*) fun find_first_coeff past u [] = raise TERM("find_first_coeff", []) | find_first_coeff past u (t::terms) = let val (n,u') = dest_coeff 1 t in if u aconv u' then (n, rev past @ terms) else find_first_coeff (t::past) u terms end handle TERM _ => find_first_coeff (t::past) u terms; (*Simplify #1*n and n*#1 to n*) val add_0s = [@{thm zadd_0_intify}, @{thm zadd_0_right_intify}]; val mult_1s = [@{thm zmult_1_intify}, @{thm zmult_1_right_intify}, @{thm zmult_minus1}, @{thm zmult_minus1_right}]; val tc_rules = [@{thm integ_of_type}, @{thm intify_in_int}, @{thm int_of_type}, @{thm zadd_type}, @{thm zdiff_type}, @{thm zmult_type}] @ @{thms bin.intros}; val intifys = [@{thm intify_ident}, @{thm zadd_intify1}, @{thm zadd_intify2}, @{thm zdiff_intify1}, @{thm zdiff_intify2}, @{thm zmult_intify1}, @{thm zmult_intify2}, @{thm zless_intify1}, @{thm zless_intify2}, @{thm zle_intify1}, @{thm zle_intify2}]; (*To perform binary arithmetic*) val bin_simps = [@{thm add_integ_of_left}] @ @{thms bin_arith_simps} @ @{thms bin_rel_simps}; (*To evaluate binary negations of coefficients*) val zminus_simps = @{thms NCons_simps} @ [@{thm integ_of_minus} RS @{thm sym}, @{thm bin_minus_1}, @{thm bin_minus_0}, @{thm bin_minus_Pls}, @{thm bin_minus_Min}, @{thm bin_pred_1}, @{thm bin_pred_0}, @{thm bin_pred_Pls}, @{thm bin_pred_Min}]; (*To let us treat subtraction as addition*) val diff_simps = [@{thm zdiff_def}, @{thm zminus_zadd_distrib}, @{thm zminus_zminus}]; (*push the unary minus down*) val int_minus_mult_eq_1_to_2 = @{lemma "$- w $* z = w $* $- z" by simp}; (*to extract again any uncancelled minuses*) val int_minus_from_mult_simps = [@{thm zminus_zminus}, @{thm zmult_zminus}, @{thm zmult_zminus_right}]; (*combine unary minus with numeric literals, however nested within a product*) val int_mult_minus_simps = [@{thm zmult_assoc}, @{thm zmult_zminus} RS @{thm sym}, int_minus_mult_eq_1_to_2]; structure CancelNumeralsCommon = struct val mk_sum = (fn _ : typ => mk_sum) val dest_sum = dest_sum val mk_coeff = mk_coeff val dest_coeff = dest_coeff 1 val find_first_coeff = find_first_coeff [] fun trans_tac ctxt = ArithData.gen_trans_tac ctxt @{thm iff_trans} val norm_ss1 = simpset_of (put_simpset ZF_ss \<^context> addsimps add_0s @ mult_1s @ diff_simps @ zminus_simps @ @{thms zadd_ac}) val norm_ss2 = simpset_of (put_simpset ZF_ss \<^context> addsimps bin_simps @ int_mult_minus_simps @ intifys) val norm_ss3 = simpset_of (put_simpset ZF_ss \<^context> addsimps int_minus_from_mult_simps @ @{thms zadd_ac} @ @{thms zmult_ac} @ tc_rules @ intifys) fun norm_tac ctxt = ALLGOALS (asm_simp_tac (put_simpset norm_ss1 ctxt)) THEN ALLGOALS (asm_simp_tac (put_simpset norm_ss2 ctxt)) THEN ALLGOALS (asm_simp_tac (put_simpset norm_ss3 ctxt)) val numeral_simp_ss = simpset_of (put_simpset ZF_ss \<^context> addsimps add_0s @ bin_simps @ tc_rules @ intifys) fun numeral_simp_tac ctxt = ALLGOALS (simp_tac (put_simpset numeral_simp_ss ctxt)) THEN ALLGOALS (asm_simp_tac ctxt) val simplify_meta_eq = ArithData.simplify_meta_eq (add_0s @ mult_1s) end; structure EqCancelNumerals = CancelNumeralsFun (open CancelNumeralsCommon val prove_conv = ArithData.prove_conv "inteq_cancel_numerals" val mk_bal = FOLogic.mk_eq val dest_bal = FOLogic.dest_eq val bal_add1 = @{thm eq_add_iff1} RS @{thm iff_trans} val bal_add2 = @{thm eq_add_iff2} RS @{thm iff_trans} ); structure LessCancelNumerals = CancelNumeralsFun (open CancelNumeralsCommon val prove_conv = ArithData.prove_conv "intless_cancel_numerals" val mk_bal = FOLogic.mk_binrel \<^const_name>\zless\ val dest_bal = FOLogic.dest_bin \<^const_name>\zless\ \<^typ>\i\ val bal_add1 = @{thm less_add_iff1} RS @{thm iff_trans} val bal_add2 = @{thm less_add_iff2} RS @{thm iff_trans} ); structure LeCancelNumerals = CancelNumeralsFun (open CancelNumeralsCommon val prove_conv = ArithData.prove_conv "intle_cancel_numerals" val mk_bal = FOLogic.mk_binrel \<^const_name>\zle\ val dest_bal = FOLogic.dest_bin \<^const_name>\zle\ \<^typ>\i\ val bal_add1 = @{thm le_add_iff1} RS @{thm iff_trans} val bal_add2 = @{thm le_add_iff2} RS @{thm iff_trans} ); val cancel_numerals = [Simplifier.make_simproc \<^context> "inteq_cancel_numerals" {lhss = [\<^term>\l $+ m = n\, \<^term>\l = m $+ n\, \<^term>\l $- m = n\, \<^term>\l = m $- n\, \<^term>\l $* m = n\, \<^term>\l = m $* n\], proc = K EqCancelNumerals.proc}, Simplifier.make_simproc \<^context> "intless_cancel_numerals" {lhss = [\<^term>\l $+ m $< n\, \<^term>\l $< m $+ n\, \<^term>\l $- m $< n\, \<^term>\l $< m $- n\, \<^term>\l $* m $< n\, \<^term>\l $< m $* n\], proc = K LessCancelNumerals.proc}, Simplifier.make_simproc \<^context> "intle_cancel_numerals" {lhss = [\<^term>\l $+ m $\ n\, \<^term>\l $\ m $+ n\, \<^term>\l $- m $\ n\, \<^term>\l $\ m $- n\, \<^term>\l $* m $\ n\, \<^term>\l $\ m $* n\], proc = K LeCancelNumerals.proc}]; (*version without the hyps argument*) fun prove_conv_nohyps name tacs sg = ArithData.prove_conv name tacs sg []; structure CombineNumeralsData = struct type coeff = int val iszero = (fn x => x = 0) val add = op + val mk_sum = (fn _ : typ => long_mk_sum) (*to work for #2*x $+ #3*x *) val dest_sum = dest_sum val mk_coeff = mk_coeff val dest_coeff = dest_coeff 1 val left_distrib = @{thm left_zadd_zmult_distrib} RS @{thm trans} val prove_conv = prove_conv_nohyps "int_combine_numerals" fun trans_tac ctxt = ArithData.gen_trans_tac ctxt @{thm trans} val norm_ss1 = simpset_of (put_simpset ZF_ss \<^context> addsimps add_0s @ mult_1s @ diff_simps @ zminus_simps @ @{thms zadd_ac} @ intifys) val norm_ss2 = simpset_of (put_simpset ZF_ss \<^context> addsimps bin_simps @ int_mult_minus_simps @ intifys) val norm_ss3 = simpset_of (put_simpset ZF_ss \<^context> addsimps int_minus_from_mult_simps @ @{thms zadd_ac} @ @{thms zmult_ac} @ tc_rules @ intifys) fun norm_tac ctxt = ALLGOALS (asm_simp_tac (put_simpset norm_ss1 ctxt)) THEN ALLGOALS (asm_simp_tac (put_simpset norm_ss2 ctxt)) THEN ALLGOALS (asm_simp_tac (put_simpset norm_ss3 ctxt)) val numeral_simp_ss = simpset_of (put_simpset ZF_ss \<^context> addsimps add_0s @ bin_simps @ tc_rules @ intifys) fun numeral_simp_tac ctxt = ALLGOALS (simp_tac (put_simpset numeral_simp_ss ctxt)) val simplify_meta_eq = ArithData.simplify_meta_eq (add_0s @ mult_1s) end; structure CombineNumerals = CombineNumeralsFun(CombineNumeralsData); val combine_numerals = Simplifier.make_simproc \<^context> "int_combine_numerals" {lhss = [\<^term>\i $+ j\, \<^term>\i $- j\], proc = K CombineNumerals.proc}; (** Constant folding for integer multiplication **) (*The trick is to regard products as sums, e.g. #3 $* x $* #4 as the "sum" of #3, x, #4; the literals are then multiplied*) structure CombineNumeralsProdData = struct type coeff = int val iszero = (fn x => x = 0) val add = op * val mk_sum = (fn _ : typ => mk_prod) val dest_sum = dest_prod fun mk_coeff(k,t) = if t = one then mk_numeral k else raise TERM("mk_coeff", []) fun dest_coeff t = (dest_numeral t, one) (*We ONLY want pure numerals.*) val left_distrib = @{thm zmult_assoc} RS @{thm sym} RS @{thm trans} val prove_conv = prove_conv_nohyps "int_combine_numerals_prod" fun trans_tac ctxt = ArithData.gen_trans_tac ctxt @{thm trans} val norm_ss1 = simpset_of (put_simpset ZF_ss \<^context> addsimps mult_1s @ diff_simps @ zminus_simps) val norm_ss2 = simpset_of (put_simpset ZF_ss \<^context> addsimps [@{thm zmult_zminus_right} RS @{thm sym}] @ bin_simps @ @{thms zmult_ac} @ tc_rules @ intifys) fun norm_tac ctxt = ALLGOALS (asm_simp_tac (put_simpset norm_ss1 ctxt)) THEN ALLGOALS (asm_simp_tac (put_simpset norm_ss2 ctxt)) val numeral_simp_ss = simpset_of (put_simpset ZF_ss \<^context> addsimps bin_simps @ tc_rules @ intifys) fun numeral_simp_tac ctxt = ALLGOALS (simp_tac (put_simpset numeral_simp_ss ctxt)) val simplify_meta_eq = ArithData.simplify_meta_eq (mult_1s); end; structure CombineNumeralsProd = CombineNumeralsFun(CombineNumeralsProdData); val combine_numerals_prod = Simplifier.make_simproc \<^context> "int_combine_numerals_prod" {lhss = [\<^term>\i $* j\], proc = K CombineNumeralsProd.proc}; end; val _ = Theory.setup (Simplifier.map_theory_simpset (fn ctxt => ctxt addsimprocs (Int_Numeral_Simprocs.cancel_numerals @ [Int_Numeral_Simprocs.combine_numerals, Int_Numeral_Simprocs.combine_numerals_prod])));