(* Title: ZF/Zorn.thy Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1994 University of Cambridge *) section\Zorn's Lemma\ theory Zorn imports OrderArith AC Inductive begin text\Based upon the unpublished article ``Towards the Mechanization of the Proofs of Some Classical Theorems of Set Theory,'' by Abrial and Laffitte.\ definition Subset_rel :: "i=>i" where "Subset_rel(A) == {z \ A*A . \x y. z= & x<=y & x\y}" definition chain :: "i=>i" where "chain(A) == {F \ Pow(A). \X\F. \Y\F. X<=Y | Y<=X}" definition super :: "[i,i]=>i" where "super(A,c) == {d \ chain(A). c<=d & c\d}" definition maxchain :: "i=>i" where "maxchain(A) == {c \ chain(A). super(A,c)=0}" definition increasing :: "i=>i" where "increasing(A) == {f \ Pow(A)->Pow(A). \x. x<=A \ x<=f`x}" text\Lemma for the inductive definition below\ lemma Union_in_Pow: "Y \ Pow(Pow(A)) ==> \(Y) \ Pow(A)" by blast text\We could make the inductive definition conditional on \<^term>\next \ increasing(S)\ but instead we make this a side-condition of an introduction rule. Thus the induction rule lets us assume that condition! Many inductive proofs are therefore unconditional.\ consts "TFin" :: "[i,i]=>i" inductive domains "TFin(S,next)" \ "Pow(S)" intros nextI: "[| x \ TFin(S,next); next \ increasing(S) |] ==> next`x \ TFin(S,next)" Pow_UnionI: "Y \ Pow(TFin(S,next)) ==> \(Y) \ TFin(S,next)" monos Pow_mono con_defs increasing_def type_intros CollectD1 [THEN apply_funtype] Union_in_Pow subsection\Mathematical Preamble\ lemma Union_lemma0: "(\x\C. x<=A | B<=x) ==> \(C)<=A | B<=\(C)" by blast lemma Inter_lemma0: "[| c \ C; \x\C. A<=x | x<=B |] ==> A \ \(C) | \(C) \ B" by blast subsection\The Transfinite Construction\ lemma increasingD1: "f \ increasing(A) ==> f \ Pow(A)->Pow(A)" apply (unfold increasing_def) apply (erule CollectD1) done lemma increasingD2: "[| f \ increasing(A); x<=A |] ==> x \ f`x" by (unfold increasing_def, blast) lemmas TFin_UnionI = PowI [THEN TFin.Pow_UnionI] lemmas TFin_is_subset = TFin.dom_subset [THEN subsetD, THEN PowD] text\Structural induction on \<^term>\TFin(S,next)\\ lemma TFin_induct: "[| n \ TFin(S,next); !!x. [| x \ TFin(S,next); P(x); next \ increasing(S) |] ==> P(next`x); !!Y. [| Y \ TFin(S,next); \y\Y. P(y) |] ==> P(\(Y)) |] ==> P(n)" by (erule TFin.induct, blast+) subsection\Some Properties of the Transfinite Construction\ lemmas increasing_trans = subset_trans [OF _ increasingD2, OF _ _ TFin_is_subset] text\Lemma 1 of section 3.1\ lemma TFin_linear_lemma1: "[| n \ TFin(S,next); m \ TFin(S,next); \x \ TFin(S,next) . x<=m \ x=m | next`x<=m |] ==> n<=m | next`m<=n" apply (erule TFin_induct) apply (erule_tac [2] Union_lemma0) (*or just Blast_tac*) (*downgrade subsetI from intro! to intro*) apply (blast dest: increasing_trans) done text\Lemma 2 of section 3.2. Interesting in its own right! Requires \<^term>\next \ increasing(S)\ in the second induction step.\ lemma TFin_linear_lemma2: "[| m \ TFin(S,next); next \ increasing(S) |] ==> \n \ TFin(S,next). n<=m \ n=m | next`n \ m" apply (erule TFin_induct) apply (rule impI [THEN ballI]) txt\case split using \TFin_linear_lemma1\\ apply (rule_tac n1 = n and m1 = x in TFin_linear_lemma1 [THEN disjE], assumption+) apply (blast del: subsetI intro: increasing_trans subsetI, blast) txt\second induction step\ apply (rule impI [THEN ballI]) apply (rule Union_lemma0 [THEN disjE]) apply (erule_tac [3] disjI2) prefer 2 apply blast apply (rule ballI) apply (drule bspec, assumption) apply (drule subsetD, assumption) apply (rule_tac n1 = n and m1 = x in TFin_linear_lemma1 [THEN disjE], assumption+, blast) apply (erule increasingD2 [THEN subset_trans, THEN disjI1]) apply (blast dest: TFin_is_subset)+ done text\a more convenient form for Lemma 2\ lemma TFin_subsetD: "[| n<=m; m \ TFin(S,next); n \ TFin(S,next); next \ increasing(S) |] ==> n=m | next`n \ m" by (blast dest: TFin_linear_lemma2 [rule_format]) text\Consequences from section 3.3 -- Property 3.2, the ordering is total\ lemma TFin_subset_linear: "[| m \ TFin(S,next); n \ TFin(S,next); next \ increasing(S) |] ==> n \ m | m<=n" apply (rule disjE) apply (rule TFin_linear_lemma1 [OF _ _TFin_linear_lemma2]) apply (assumption+, erule disjI2) apply (blast del: subsetI intro: subsetI increasingD2 [THEN subset_trans] TFin_is_subset) done text\Lemma 3 of section 3.3\ lemma equal_next_upper: "[| n \ TFin(S,next); m \ TFin(S,next); m = next`m |] ==> n \ m" apply (erule TFin_induct) apply (drule TFin_subsetD) apply (assumption+, force, blast) done text\Property 3.3 of section 3.3\ lemma equal_next_Union: "[| m \ TFin(S,next); next \ increasing(S) |] ==> m = next`m <-> m = \(TFin(S,next))" apply (rule iffI) apply (rule Union_upper [THEN equalityI]) apply (rule_tac [2] equal_next_upper [THEN Union_least]) apply (assumption+) apply (erule ssubst) apply (rule increasingD2 [THEN equalityI], assumption) apply (blast del: subsetI intro: subsetI TFin_UnionI TFin.nextI TFin_is_subset)+ done subsection\Hausdorff's Theorem: Every Set Contains a Maximal Chain\ text\NOTE: We assume the partial ordering is \\\, the subset relation!\ text\* Defining the "next" operation for Hausdorff's Theorem *\ lemma chain_subset_Pow: "chain(A) \ Pow(A)" apply (unfold chain_def) apply (rule Collect_subset) done lemma super_subset_chain: "super(A,c) \ chain(A)" apply (unfold super_def) apply (rule Collect_subset) done lemma maxchain_subset_chain: "maxchain(A) \ chain(A)" apply (unfold maxchain_def) apply (rule Collect_subset) done lemma choice_super: "[| ch \ (\X \ Pow(chain(S)) - {0}. X); X \ chain(S); X \ maxchain(S) |] ==> ch ` super(S,X) \ super(S,X)" apply (erule apply_type) apply (unfold super_def maxchain_def, blast) done lemma choice_not_equals: "[| ch \ (\X \ Pow(chain(S)) - {0}. X); X \ chain(S); X \ maxchain(S) |] ==> ch ` super(S,X) \ X" apply (rule notI) apply (drule choice_super, assumption, assumption) apply (simp add: super_def) done text\This justifies Definition 4.4\ lemma Hausdorff_next_exists: "ch \ (\X \ Pow(chain(S))-{0}. X) ==> \next \ increasing(S). \X \ Pow(S). next`X = if(X \ chain(S)-maxchain(S), ch`super(S,X), X)" apply (rule_tac x="\X\Pow(S). if X \ chain(S) - maxchain(S) then ch ` super(S, X) else X" in bexI) apply force apply (unfold increasing_def) apply (rule CollectI) apply (rule lam_type) apply (simp (no_asm_simp)) apply (blast dest: super_subset_chain [THEN subsetD] chain_subset_Pow [THEN subsetD] choice_super) txt\Now, verify that it increases\ apply (simp (no_asm_simp) add: Pow_iff subset_refl) apply safe apply (drule choice_super) apply (assumption+) apply (simp add: super_def, blast) done text\Lemma 4\ lemma TFin_chain_lemma4: "[| c \ TFin(S,next); ch \ (\X \ Pow(chain(S))-{0}. X); next \ increasing(S); \X \ Pow(S). next`X = if(X \ chain(S)-maxchain(S), ch`super(S,X), X) |] ==> c \ chain(S)" apply (erule TFin_induct) apply (simp (no_asm_simp) add: chain_subset_Pow [THEN subsetD, THEN PowD] choice_super [THEN super_subset_chain [THEN subsetD]]) apply (unfold chain_def) apply (rule CollectI, blast, safe) apply (rule_tac m1=B and n1=Ba in TFin_subset_linear [THEN disjE], fast+) txt\\Blast_tac's\ slow\ done theorem Hausdorff: "\c. c \ maxchain(S)" apply (rule AC_Pi_Pow [THEN exE]) apply (rule Hausdorff_next_exists [THEN bexE], assumption) apply (rename_tac ch "next") apply (subgoal_tac "\(TFin (S,next)) \ chain (S) ") prefer 2 apply (blast intro!: TFin_chain_lemma4 subset_refl [THEN TFin_UnionI]) apply (rule_tac x = "\(TFin (S,next))" in exI) apply (rule classical) apply (subgoal_tac "next ` Union(TFin (S,next)) = \(TFin (S,next))") apply (rule_tac [2] equal_next_Union [THEN iffD2, symmetric]) apply (rule_tac [2] subset_refl [THEN TFin_UnionI]) prefer 2 apply assumption apply (rule_tac [2] refl) apply (simp add: subset_refl [THEN TFin_UnionI, THEN TFin.dom_subset [THEN subsetD, THEN PowD]]) apply (erule choice_not_equals [THEN notE]) apply (assumption+) done subsection\Zorn's Lemma: If All Chains in S Have Upper Bounds In S, then S contains a Maximal Element\ text\Used in the proof of Zorn's Lemma\ lemma chain_extend: "[| c \ chain(A); z \ A; \x \ c. x<=z |] ==> cons(z,c) \ chain(A)" by (unfold chain_def, blast) lemma Zorn: "\c \ chain(S). \(c) \ S ==> \y \ S. \z \ S. y<=z \ y=z" apply (rule Hausdorff [THEN exE]) apply (simp add: maxchain_def) apply (rename_tac c) apply (rule_tac x = "\(c)" in bexI) prefer 2 apply blast apply safe apply (rename_tac z) apply (rule classical) apply (subgoal_tac "cons (z,c) \ super (S,c) ") apply (blast elim: equalityE) apply (unfold super_def, safe) apply (fast elim: chain_extend) apply (fast elim: equalityE) done text \Alternative version of Zorn's Lemma\ theorem Zorn2: "\c \ chain(S). \y \ S. \x \ c. x \ y ==> \y \ S. \z \ S. y<=z \ y=z" apply (cut_tac Hausdorff maxchain_subset_chain) apply (erule exE) apply (drule subsetD, assumption) apply (drule bspec, assumption, erule bexE) apply (rule_tac x = y in bexI) prefer 2 apply assumption apply clarify apply rule apply assumption apply rule apply (rule ccontr) apply (frule_tac z=z in chain_extend) apply (assumption, blast) apply (unfold maxchain_def super_def) apply (blast elim!: equalityCE) done subsection\Zermelo's Theorem: Every Set can be Well-Ordered\ text\Lemma 5\ lemma TFin_well_lemma5: "[| n \ TFin(S,next); Z \ TFin(S,next); z:Z; ~ \(Z) \ Z |] ==> \m \ Z. n \ m" apply (erule TFin_induct) prefer 2 apply blast txt\second induction step is easy\ apply (rule ballI) apply (rule bspec [THEN TFin_subsetD, THEN disjE], auto) apply (subgoal_tac "m = \(Z) ") apply blast+ done text\Well-ordering of \<^term>\TFin(S,next)\\ lemma well_ord_TFin_lemma: "[| Z \ TFin(S,next); z \ Z |] ==> \(Z) \ Z" apply (rule classical) apply (subgoal_tac "Z = {\(TFin (S,next))}") apply (simp (no_asm_simp) add: Inter_singleton) apply (erule equal_singleton) apply (rule Union_upper [THEN equalityI]) apply (rule_tac [2] subset_refl [THEN TFin_UnionI, THEN TFin_well_lemma5, THEN bspec], blast+) done text\This theorem just packages the previous result\ lemma well_ord_TFin: "next \ increasing(S) ==> well_ord(TFin(S,next), Subset_rel(TFin(S,next)))" apply (rule well_ordI) apply (unfold Subset_rel_def linear_def) txt\Prove the well-foundedness goal\ apply (rule wf_onI) apply (frule well_ord_TFin_lemma, assumption) apply (drule_tac x = "\(Z) " in bspec, assumption) apply blast txt\Now prove the linearity goal\ apply (intro ballI) apply (case_tac "x=y") apply blast txt\The \<^term>\x\y\ case remains\ apply (rule_tac n1=x and m1=y in TFin_subset_linear [THEN disjE], assumption+, blast+) done text\* Defining the "next" operation for Zermelo's Theorem *\ lemma choice_Diff: "[| ch \ (\X \ Pow(S) - {0}. X); X \ S; X\S |] ==> ch ` (S-X) \ S-X" apply (erule apply_type) apply (blast elim!: equalityE) done text\This justifies Definition 6.1\ lemma Zermelo_next_exists: "ch \ (\X \ Pow(S)-{0}. X) ==> \next \ increasing(S). \X \ Pow(S). next`X = (if X=S then S else cons(ch`(S-X), X))" apply (rule_tac x="\X\Pow(S). if X=S then S else cons(ch`(S-X), X)" in bexI) apply force apply (unfold increasing_def) apply (rule CollectI) apply (rule lam_type) txt\Type checking is surprisingly hard!\ apply (simp (no_asm_simp) add: Pow_iff cons_subset_iff subset_refl) apply (blast intro!: choice_Diff [THEN DiffD1]) txt\Verify that it increases\ apply (intro allI impI) apply (simp add: Pow_iff subset_consI subset_refl) done text\The construction of the injection\ lemma choice_imp_injection: "[| ch \ (\X \ Pow(S)-{0}. X); next \ increasing(S); \X \ Pow(S). next`X = if(X=S, S, cons(ch`(S-X), X)) |] ==> (\ x \ S. \({y \ TFin(S,next). x \ y})) \ inj(S, TFin(S,next) - {S})" apply (rule_tac d = "%y. ch` (S-y) " in lam_injective) apply (rule DiffI) apply (rule Collect_subset [THEN TFin_UnionI]) apply (blast intro!: Collect_subset [THEN TFin_UnionI] elim: equalityE) apply (subgoal_tac "x \ \({y \ TFin (S,next) . x \ y}) ") prefer 2 apply (blast elim: equalityE) apply (subgoal_tac "\({y \ TFin (S,next) . x \ y}) \ S") prefer 2 apply (blast elim: equalityE) txt\For proving \x \ next`\(...)\. Abrial and Laffitte's justification appears to be faulty.\ apply (subgoal_tac "~ next ` Union({y \ TFin (S,next) . x \ y}) \ \({y \ TFin (S,next) . x \ y}) ") prefer 2 apply (simp del: Union_iff add: Collect_subset [THEN TFin_UnionI, THEN TFin_is_subset] Pow_iff cons_subset_iff subset_refl choice_Diff [THEN DiffD2]) apply (subgoal_tac "x \ next ` Union({y \ TFin (S,next) . x \ y}) ") prefer 2 apply (blast intro!: Collect_subset [THEN TFin_UnionI] TFin.nextI) txt\End of the lemmas!\ apply (simp add: Collect_subset [THEN TFin_UnionI, THEN TFin_is_subset]) done text\The wellordering theorem\ theorem AC_well_ord: "\r. well_ord(S,r)" apply (rule AC_Pi_Pow [THEN exE]) apply (rule Zermelo_next_exists [THEN bexE], assumption) apply (rule exI) apply (rule well_ord_rvimage) apply (erule_tac [2] well_ord_TFin) apply (rule choice_imp_injection [THEN inj_weaken_type], blast+) done subsection \Zorn's Lemma for Partial Orders\ text \Reimported from HOL by Clemens Ballarin.\ definition Chain :: "i => i" where "Chain(r) = {A \ Pow(field(r)). \a\A. \b\A. \ r | \ r}" lemma mono_Chain: "r \ s ==> Chain(r) \ Chain(s)" unfolding Chain_def by blast theorem Zorn_po: assumes po: "Partial_order(r)" and u: "\C\Chain(r). \u\field(r). \a\C. \ r" shows "\m\field(r). \a\field(r). \ r \ a = m" proof - have "Preorder(r)" using po by (simp add: partial_order_on_def) \ \Mirror r in the set of subsets below (wrt r) elements of A (?).\ let ?B = "\x\field(r). r -`` {x}" let ?S = "?B `` field(r)" have "\C\chain(?S). \U\?S. \A\C. A \ U" proof (clarsimp simp: chain_def Subset_rel_def bex_image_simp) fix C assume 1: "C \ ?S" and 2: "\A\C. \B\C. A \ B | B \ A" let ?A = "{x \ field(r). \M\C. M = ?B`x}" have "C = ?B `` ?A" using 1 apply (auto simp: image_def) apply rule apply rule apply (drule subsetD) apply assumption apply (erule CollectE) apply rule apply assumption apply (erule bexE) apply rule prefer 2 apply assumption apply rule apply (erule lamE) apply simp apply assumption apply (thin_tac "C \ X" for X) apply (fast elim: lamE) done have "?A \ Chain(r)" proof (simp add: Chain_def subsetI, intro conjI ballI impI) fix a b assume "a \ field(r)" "r -`` {a} \ C" "b \ field(r)" "r -`` {b} \ C" hence "r -`` {a} \ r -`` {b} | r -`` {b} \ r -`` {a}" using 2 by auto then show " \ r | \ r" using \Preorder(r)\ \a \ field(r)\ \b \ field(r)\ by (simp add: subset_vimage1_vimage1_iff) qed then obtain u where uA: "u \ field(r)" "\a\?A. \ r" using u apply auto apply (drule bspec) apply assumption apply auto done have "\A\C. A \ r -`` {u}" proof (auto intro!: vimageI) fix a B assume aB: "B \ C" "a \ B" with 1 obtain x where "x \ field(r)" "B = r -`` {x}" apply - apply (drule subsetD) apply assumption apply (erule imageE) apply (erule lamE) apply simp done then show " \ r" using uA aB \Preorder(r)\ by (auto simp: preorder_on_def refl_def) (blast dest: trans_onD)+ qed then show "\U\field(r). \A\C. A \ r -`` {U}" using \u \ field(r)\ .. qed from Zorn2 [OF this] obtain m B where "m \ field(r)" "B = r -`` {m}" "\x\field(r). B \ r -`` {x} \ B = r -`` {x}" by (auto elim!: lamE simp: ball_image_simp) then have "\a\field(r). \ r \ a = m" using po \Preorder(r)\ \m \ field(r)\ by (auto simp: subset_vimage1_vimage1_iff Partial_order_eq_vimage1_vimage1_iff) then show ?thesis using \m \ field(r)\ by blast qed end