(* Title: ZF/Order.thy Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1994 University of Cambridge Results from the book "Set Theory: an Introduction to Independence Proofs" by Kenneth Kunen. Chapter 1, section 6. Additional definitions and lemmas for reflexive orders. *) section\Partial and Total Orderings: Basic Definitions and Properties\ theory Order imports WF Perm begin text \We adopt the following convention: \ord\ is used for strict orders and \order\ is used for their reflexive counterparts.\ definition part_ord :: "[i,i]=>o" (*Strict partial ordering*) where "part_ord(A,r) == irrefl(A,r) & trans[A](r)" definition linear :: "[i,i]=>o" (*Strict total ordering*) where "linear(A,r) == (\x\A. \y\A. :r | x=y | :r)" definition tot_ord :: "[i,i]=>o" (*Strict total ordering*) where "tot_ord(A,r) == part_ord(A,r) & linear(A,r)" definition "preorder_on(A, r) \ refl(A, r) \ trans[A](r)" definition (*Partial ordering*) "partial_order_on(A, r) \ preorder_on(A, r) \ antisym(r)" abbreviation "Preorder(r) \ preorder_on(field(r), r)" abbreviation "Partial_order(r) \ partial_order_on(field(r), r)" definition well_ord :: "[i,i]=>o" (*Well-ordering*) where "well_ord(A,r) == tot_ord(A,r) & wf[A](r)" definition mono_map :: "[i,i,i,i]=>i" (*Order-preserving maps*) where "mono_map(A,r,B,s) == {f \ A->B. \x\A. \y\A. :r \ :s}" definition ord_iso :: "[i,i,i,i]=>i" (\(\_, _\ \/ \_, _\)\ 51) (*Order isomorphisms*) where "\A,r\ \ \B,s\ == {f \ bij(A,B). \x\A. \y\A. :r \ :s}" definition pred :: "[i,i,i]=>i" (*Set of predecessors*) where "pred(A,x,r) == {y \ A. :r}" definition ord_iso_map :: "[i,i,i,i]=>i" (*Construction for linearity theorem*) where "ord_iso_map(A,r,B,s) == \x\A. \y\B. \f \ ord_iso(pred(A,x,r), r, pred(B,y,s), s). {}" definition first :: "[i, i, i] => o" where "first(u, X, R) == u \ X & (\v\X. v\u \ \ R)" subsection\Immediate Consequences of the Definitions\ lemma part_ord_Imp_asym: "part_ord(A,r) ==> asym(r \ A*A)" by (unfold part_ord_def irrefl_def trans_on_def asym_def, blast) lemma linearE: "[| linear(A,r); x \ A; y \ A; :r ==> P; x=y ==> P; :r ==> P |] ==> P" by (simp add: linear_def, blast) (** General properties of well_ord **) lemma well_ordI: "[| wf[A](r); linear(A,r) |] ==> well_ord(A,r)" apply (simp add: irrefl_def part_ord_def tot_ord_def trans_on_def well_ord_def wf_on_not_refl) apply (fast elim: linearE wf_on_asym wf_on_chain3) done lemma well_ord_is_wf: "well_ord(A,r) ==> wf[A](r)" by (unfold well_ord_def, safe) lemma well_ord_is_trans_on: "well_ord(A,r) ==> trans[A](r)" by (unfold well_ord_def tot_ord_def part_ord_def, safe) lemma well_ord_is_linear: "well_ord(A,r) ==> linear(A,r)" by (unfold well_ord_def tot_ord_def, blast) (** Derived rules for pred(A,x,r) **) lemma pred_iff: "y \ pred(A,x,r) \ :r & y \ A" by (unfold pred_def, blast) lemmas predI = conjI [THEN pred_iff [THEN iffD2]] lemma predE: "[| y \ pred(A,x,r); [| y \ A; :r |] ==> P |] ==> P" by (simp add: pred_def) lemma pred_subset_under: "pred(A,x,r) \ r -`` {x}" by (simp add: pred_def, blast) lemma pred_subset: "pred(A,x,r) \ A" by (simp add: pred_def, blast) lemma pred_pred_eq: "pred(pred(A,x,r), y, r) = pred(A,x,r) \ pred(A,y,r)" by (simp add: pred_def, blast) lemma trans_pred_pred_eq: "[| trans[A](r); :r; x \ A; y \ A |] ==> pred(pred(A,x,r), y, r) = pred(A,y,r)" by (unfold trans_on_def pred_def, blast) subsection\Restricting an Ordering's Domain\ (** The ordering's properties hold over all subsets of its domain [including initial segments of the form pred(A,x,r) **) (*Note: a relation s such that s<=r need not be a partial ordering*) lemma part_ord_subset: "[| part_ord(A,r); B<=A |] ==> part_ord(B,r)" by (unfold part_ord_def irrefl_def trans_on_def, blast) lemma linear_subset: "[| linear(A,r); B<=A |] ==> linear(B,r)" by (unfold linear_def, blast) lemma tot_ord_subset: "[| tot_ord(A,r); B<=A |] ==> tot_ord(B,r)" apply (unfold tot_ord_def) apply (fast elim!: part_ord_subset linear_subset) done lemma well_ord_subset: "[| well_ord(A,r); B<=A |] ==> well_ord(B,r)" apply (unfold well_ord_def) apply (fast elim!: tot_ord_subset wf_on_subset_A) done (** Relations restricted to a smaller domain, by Krzysztof Grabczewski **) lemma irrefl_Int_iff: "irrefl(A,r \ A*A) \ irrefl(A,r)" by (unfold irrefl_def, blast) lemma trans_on_Int_iff: "trans[A](r \ A*A) \ trans[A](r)" by (unfold trans_on_def, blast) lemma part_ord_Int_iff: "part_ord(A,r \ A*A) \ part_ord(A,r)" apply (unfold part_ord_def) apply (simp add: irrefl_Int_iff trans_on_Int_iff) done lemma linear_Int_iff: "linear(A,r \ A*A) \ linear(A,r)" by (unfold linear_def, blast) lemma tot_ord_Int_iff: "tot_ord(A,r \ A*A) \ tot_ord(A,r)" apply (unfold tot_ord_def) apply (simp add: part_ord_Int_iff linear_Int_iff) done lemma wf_on_Int_iff: "wf[A](r \ A*A) \ wf[A](r)" apply (unfold wf_on_def wf_def, fast) (*10 times faster than blast!*) done lemma well_ord_Int_iff: "well_ord(A,r \ A*A) \ well_ord(A,r)" apply (unfold well_ord_def) apply (simp add: tot_ord_Int_iff wf_on_Int_iff) done subsection\Empty and Unit Domains\ (*The empty relation is well-founded*) lemma wf_on_any_0: "wf[A](0)" by (simp add: wf_on_def wf_def, fast) subsubsection\Relations over the Empty Set\ lemma irrefl_0: "irrefl(0,r)" by (unfold irrefl_def, blast) lemma trans_on_0: "trans[0](r)" by (unfold trans_on_def, blast) lemma part_ord_0: "part_ord(0,r)" apply (unfold part_ord_def) apply (simp add: irrefl_0 trans_on_0) done lemma linear_0: "linear(0,r)" by (unfold linear_def, blast) lemma tot_ord_0: "tot_ord(0,r)" apply (unfold tot_ord_def) apply (simp add: part_ord_0 linear_0) done lemma wf_on_0: "wf[0](r)" by (unfold wf_on_def wf_def, blast) lemma well_ord_0: "well_ord(0,r)" apply (unfold well_ord_def) apply (simp add: tot_ord_0 wf_on_0) done subsubsection\The Empty Relation Well-Orders the Unit Set\ text\by Grabczewski\ lemma tot_ord_unit: "tot_ord({a},0)" by (simp add: irrefl_def trans_on_def part_ord_def linear_def tot_ord_def) lemma well_ord_unit: "well_ord({a},0)" apply (unfold well_ord_def) apply (simp add: tot_ord_unit wf_on_any_0) done subsection\Order-Isomorphisms\ text\Suppes calls them "similarities"\ (** Order-preserving (monotone) maps **) lemma mono_map_is_fun: "f \ mono_map(A,r,B,s) ==> f \ A->B" by (simp add: mono_map_def) lemma mono_map_is_inj: "[| linear(A,r); wf[B](s); f \ mono_map(A,r,B,s) |] ==> f \ inj(A,B)" apply (unfold mono_map_def inj_def, clarify) apply (erule_tac x=w and y=x in linearE, assumption+) apply (force intro: apply_type dest: wf_on_not_refl)+ done lemma ord_isoI: "[| f \ bij(A, B); !!x y. [| x \ A; y \ A |] ==> \ r \ \ s |] ==> f \ ord_iso(A,r,B,s)" by (simp add: ord_iso_def) lemma ord_iso_is_mono_map: "f \ ord_iso(A,r,B,s) ==> f \ mono_map(A,r,B,s)" apply (simp add: ord_iso_def mono_map_def) apply (blast dest!: bij_is_fun) done lemma ord_iso_is_bij: "f \ ord_iso(A,r,B,s) ==> f \ bij(A,B)" by (simp add: ord_iso_def) (*Needed? But ord_iso_converse is!*) lemma ord_iso_apply: "[| f \ ord_iso(A,r,B,s); : r; x \ A; y \ A |] ==> \ s" by (simp add: ord_iso_def) lemma ord_iso_converse: "[| f \ ord_iso(A,r,B,s); : s; x \ B; y \ B |] ==> \ r" apply (simp add: ord_iso_def, clarify) apply (erule bspec [THEN bspec, THEN iffD2]) apply (erule asm_rl bij_converse_bij [THEN bij_is_fun, THEN apply_type])+ apply (auto simp add: right_inverse_bij) done (** Symmetry and Transitivity Rules **) (*Reflexivity of similarity*) lemma ord_iso_refl: "id(A): ord_iso(A,r,A,r)" by (rule id_bij [THEN ord_isoI], simp) (*Symmetry of similarity*) lemma ord_iso_sym: "f \ ord_iso(A,r,B,s) ==> converse(f): ord_iso(B,s,A,r)" apply (simp add: ord_iso_def) apply (auto simp add: right_inverse_bij bij_converse_bij bij_is_fun [THEN apply_funtype]) done (*Transitivity of similarity*) lemma mono_map_trans: "[| g \ mono_map(A,r,B,s); f \ mono_map(B,s,C,t) |] ==> (f O g): mono_map(A,r,C,t)" apply (unfold mono_map_def) apply (auto simp add: comp_fun) done (*Transitivity of similarity: the order-isomorphism relation*) lemma ord_iso_trans: "[| g \ ord_iso(A,r,B,s); f \ ord_iso(B,s,C,t) |] ==> (f O g): ord_iso(A,r,C,t)" apply (unfold ord_iso_def, clarify) apply (frule bij_is_fun [of f]) apply (frule bij_is_fun [of g]) apply (auto simp add: comp_bij) done (** Two monotone maps can make an order-isomorphism **) lemma mono_ord_isoI: "[| f \ mono_map(A,r,B,s); g \ mono_map(B,s,A,r); f O g = id(B); g O f = id(A) |] ==> f \ ord_iso(A,r,B,s)" apply (simp add: ord_iso_def mono_map_def, safe) apply (intro fg_imp_bijective, auto) apply (subgoal_tac " \ r") apply (simp add: comp_eq_id_iff [THEN iffD1]) apply (blast intro: apply_funtype) done lemma well_ord_mono_ord_isoI: "[| well_ord(A,r); well_ord(B,s); f \ mono_map(A,r,B,s); converse(f): mono_map(B,s,A,r) |] ==> f \ ord_iso(A,r,B,s)" apply (intro mono_ord_isoI, auto) apply (frule mono_map_is_fun [THEN fun_is_rel]) apply (erule converse_converse [THEN subst], rule left_comp_inverse) apply (blast intro: left_comp_inverse mono_map_is_inj well_ord_is_linear well_ord_is_wf)+ done (** Order-isomorphisms preserve the ordering's properties **) lemma part_ord_ord_iso: "[| part_ord(B,s); f \ ord_iso(A,r,B,s) |] ==> part_ord(A,r)" apply (simp add: part_ord_def irrefl_def trans_on_def ord_iso_def) apply (fast intro: bij_is_fun [THEN apply_type]) done lemma linear_ord_iso: "[| linear(B,s); f \ ord_iso(A,r,B,s) |] ==> linear(A,r)" apply (simp add: linear_def ord_iso_def, safe) apply (drule_tac x1 = "f`x" and x = "f`y" in bspec [THEN bspec]) apply (safe elim!: bij_is_fun [THEN apply_type]) apply (drule_tac t = "(`) (converse (f))" in subst_context) apply (simp add: left_inverse_bij) done lemma wf_on_ord_iso: "[| wf[B](s); f \ ord_iso(A,r,B,s) |] ==> wf[A](r)" apply (simp add: wf_on_def wf_def ord_iso_def, safe) apply (drule_tac x = "{f`z. z \ Z \ A}" in spec) apply (safe intro!: equalityI) apply (blast dest!: equalityD1 intro: bij_is_fun [THEN apply_type])+ done lemma well_ord_ord_iso: "[| well_ord(B,s); f \ ord_iso(A,r,B,s) |] ==> well_ord(A,r)" apply (unfold well_ord_def tot_ord_def) apply (fast elim!: part_ord_ord_iso linear_ord_iso wf_on_ord_iso) done subsection\Main results of Kunen, Chapter 1 section 6\ (*Inductive argument for Kunen's Lemma 6.1, etc. Simple proof from Halmos, page 72*) lemma well_ord_iso_subset_lemma: "[| well_ord(A,r); f \ ord_iso(A,r, A',r); A'<= A; y \ A |] ==> ~ : r" apply (simp add: well_ord_def ord_iso_def) apply (elim conjE CollectE) apply (rule_tac a=y in wf_on_induct, assumption+) apply (blast dest: bij_is_fun [THEN apply_type]) done (*Kunen's Lemma 6.1 \ there's no order-isomorphism to an initial segment of a well-ordering*) lemma well_ord_iso_predE: "[| well_ord(A,r); f \ ord_iso(A, r, pred(A,x,r), r); x \ A |] ==> P" apply (insert well_ord_iso_subset_lemma [of A r f "pred(A,x,r)" x]) apply (simp add: pred_subset) (*Now we know f`x < x *) apply (drule ord_iso_is_bij [THEN bij_is_fun, THEN apply_type], assumption) (*Now we also know @{term"f`x \ pred(A,x,r)"}: contradiction! *) apply (simp add: well_ord_def pred_def) done (*Simple consequence of Lemma 6.1*) lemma well_ord_iso_pred_eq: "[| well_ord(A,r); f \ ord_iso(pred(A,a,r), r, pred(A,c,r), r); a \ A; c \ A |] ==> a=c" apply (frule well_ord_is_trans_on) apply (frule well_ord_is_linear) apply (erule_tac x=a and y=c in linearE, assumption+) apply (drule ord_iso_sym) (*two symmetric cases*) apply (auto elim!: well_ord_subset [OF _ pred_subset, THEN well_ord_iso_predE] intro!: predI simp add: trans_pred_pred_eq) done (*Does not assume r is a wellordering!*) lemma ord_iso_image_pred: "[|f \ ord_iso(A,r,B,s); a \ A|] ==> f `` pred(A,a,r) = pred(B, f`a, s)" apply (unfold ord_iso_def pred_def) apply (erule CollectE) apply (simp (no_asm_simp) add: image_fun [OF bij_is_fun Collect_subset]) apply (rule equalityI) apply (safe elim!: bij_is_fun [THEN apply_type]) apply (rule RepFun_eqI) apply (blast intro!: right_inverse_bij [symmetric]) apply (auto simp add: right_inverse_bij bij_is_fun [THEN apply_funtype]) done lemma ord_iso_restrict_image: "[| f \ ord_iso(A,r,B,s); C<=A |] ==> restrict(f,C) \ ord_iso(C, r, f``C, s)" apply (simp add: ord_iso_def) apply (blast intro: bij_is_inj restrict_bij) done (*But in use, A and B may themselves be initial segments. Then use trans_pred_pred_eq to simplify the pred(pred...) terms. See just below.*) lemma ord_iso_restrict_pred: "[| f \ ord_iso(A,r,B,s); a \ A |] ==> restrict(f, pred(A,a,r)) \ ord_iso(pred(A,a,r), r, pred(B, f`a, s), s)" apply (simp add: ord_iso_image_pred [symmetric]) apply (blast intro: ord_iso_restrict_image elim: predE) done (*Tricky; a lot of forward proof!*) lemma well_ord_iso_preserving: "[| well_ord(A,r); well_ord(B,s); : r; f \ ord_iso(pred(A,a,r), r, pred(B,b,s), s); g \ ord_iso(pred(A,c,r), r, pred(B,d,s), s); a \ A; c \ A; b \ B; d \ B |] ==> : s" apply (frule ord_iso_is_bij [THEN bij_is_fun, THEN apply_type], (erule asm_rl predI predE)+) apply (subgoal_tac "b = g`a") apply (simp (no_asm_simp)) apply (rule well_ord_iso_pred_eq, auto) apply (frule ord_iso_restrict_pred, (erule asm_rl predI)+) apply (simp add: well_ord_is_trans_on trans_pred_pred_eq) apply (erule ord_iso_sym [THEN ord_iso_trans], assumption) done (*See Halmos, page 72*) lemma well_ord_iso_unique_lemma: "[| well_ord(A,r); f \ ord_iso(A,r, B,s); g \ ord_iso(A,r, B,s); y \ A |] ==> ~ \ s" apply (frule well_ord_iso_subset_lemma) apply (rule_tac f = "converse (f) " and g = g in ord_iso_trans) apply auto apply (blast intro: ord_iso_sym) apply (frule ord_iso_is_bij [of f]) apply (frule ord_iso_is_bij [of g]) apply (frule ord_iso_converse) apply (blast intro!: bij_converse_bij intro: bij_is_fun apply_funtype)+ apply (erule notE) apply (simp add: left_inverse_bij bij_is_fun comp_fun_apply [of _ A B]) done (*Kunen's Lemma 6.2: Order-isomorphisms between well-orderings are unique*) lemma well_ord_iso_unique: "[| well_ord(A,r); f \ ord_iso(A,r, B,s); g \ ord_iso(A,r, B,s) |] ==> f = g" apply (rule fun_extension) apply (erule ord_iso_is_bij [THEN bij_is_fun])+ apply (subgoal_tac "f`x \ B & g`x \ B & linear(B,s)") apply (simp add: linear_def) apply (blast dest: well_ord_iso_unique_lemma) apply (blast intro: ord_iso_is_bij bij_is_fun apply_funtype well_ord_is_linear well_ord_ord_iso ord_iso_sym) done subsection\Towards Kunen's Theorem 6.3: Linearity of the Similarity Relation\ lemma ord_iso_map_subset: "ord_iso_map(A,r,B,s) \ A*B" by (unfold ord_iso_map_def, blast) lemma domain_ord_iso_map: "domain(ord_iso_map(A,r,B,s)) \ A" by (unfold ord_iso_map_def, blast) lemma range_ord_iso_map: "range(ord_iso_map(A,r,B,s)) \ B" by (unfold ord_iso_map_def, blast) lemma converse_ord_iso_map: "converse(ord_iso_map(A,r,B,s)) = ord_iso_map(B,s,A,r)" apply (unfold ord_iso_map_def) apply (blast intro: ord_iso_sym) done lemma function_ord_iso_map: "well_ord(B,s) ==> function(ord_iso_map(A,r,B,s))" apply (unfold ord_iso_map_def function_def) apply (blast intro: well_ord_iso_pred_eq ord_iso_sym ord_iso_trans) done lemma ord_iso_map_fun: "well_ord(B,s) ==> ord_iso_map(A,r,B,s) \ domain(ord_iso_map(A,r,B,s)) -> range(ord_iso_map(A,r,B,s))" by (simp add: Pi_iff function_ord_iso_map ord_iso_map_subset [THEN domain_times_range]) lemma ord_iso_map_mono_map: "[| well_ord(A,r); well_ord(B,s) |] ==> ord_iso_map(A,r,B,s) \ mono_map(domain(ord_iso_map(A,r,B,s)), r, range(ord_iso_map(A,r,B,s)), s)" apply (unfold mono_map_def) apply (simp (no_asm_simp) add: ord_iso_map_fun) apply safe apply (subgoal_tac "x \ A & ya:A & y \ B & yb:B") apply (simp add: apply_equality [OF _ ord_iso_map_fun]) apply (unfold ord_iso_map_def) apply (blast intro: well_ord_iso_preserving, blast) done lemma ord_iso_map_ord_iso: "[| well_ord(A,r); well_ord(B,s) |] ==> ord_iso_map(A,r,B,s) \ ord_iso(domain(ord_iso_map(A,r,B,s)), r, range(ord_iso_map(A,r,B,s)), s)" apply (rule well_ord_mono_ord_isoI) prefer 4 apply (rule converse_ord_iso_map [THEN subst]) apply (simp add: ord_iso_map_mono_map ord_iso_map_subset [THEN converse_converse]) apply (blast intro!: domain_ord_iso_map range_ord_iso_map intro: well_ord_subset ord_iso_map_mono_map)+ done (*One way of saying that domain(ord_iso_map(A,r,B,s)) is downwards-closed*) lemma domain_ord_iso_map_subset: "[| well_ord(A,r); well_ord(B,s); a \ A; a \ domain(ord_iso_map(A,r,B,s)) |] ==> domain(ord_iso_map(A,r,B,s)) \ pred(A, a, r)" apply (unfold ord_iso_map_def) apply (safe intro!: predI) (*Case analysis on xa vs a in r *) apply (simp (no_asm_simp)) apply (frule_tac A = A in well_ord_is_linear) apply (rename_tac b y f) apply (erule_tac x=b and y=a in linearE, assumption+) (*Trivial case: b=a*) apply clarify apply blast (*Harder case: : r*) apply (frule ord_iso_is_bij [THEN bij_is_fun, THEN apply_type], (erule asm_rl predI predE)+) apply (frule ord_iso_restrict_pred) apply (simp add: pred_iff) apply (simp split: split_if_asm add: well_ord_is_trans_on trans_pred_pred_eq domain_UN domain_Union, blast) done (*For the 4-way case analysis in the main result*) lemma domain_ord_iso_map_cases: "[| well_ord(A,r); well_ord(B,s) |] ==> domain(ord_iso_map(A,r,B,s)) = A | (\x\A. domain(ord_iso_map(A,r,B,s)) = pred(A,x,r))" apply (frule well_ord_is_wf) apply (unfold wf_on_def wf_def) apply (drule_tac x = "A-domain (ord_iso_map (A,r,B,s))" in spec) apply safe (*The first case: the domain equals A*) apply (rule domain_ord_iso_map [THEN equalityI]) apply (erule Diff_eq_0_iff [THEN iffD1]) (*The other case: the domain equals an initial segment*) apply (blast del: domainI subsetI elim!: predE intro!: domain_ord_iso_map_subset intro: subsetI)+ done (*As above, by duality*) lemma range_ord_iso_map_cases: "[| well_ord(A,r); well_ord(B,s) |] ==> range(ord_iso_map(A,r,B,s)) = B | (\y\B. range(ord_iso_map(A,r,B,s)) = pred(B,y,s))" apply (rule converse_ord_iso_map [THEN subst]) apply (simp add: domain_ord_iso_map_cases) done text\Kunen's Theorem 6.3: Fundamental Theorem for Well-Ordered Sets\ theorem well_ord_trichotomy: "[| well_ord(A,r); well_ord(B,s) |] ==> ord_iso_map(A,r,B,s) \ ord_iso(A, r, B, s) | (\x\A. ord_iso_map(A,r,B,s) \ ord_iso(pred(A,x,r), r, B, s)) | (\y\B. ord_iso_map(A,r,B,s) \ ord_iso(A, r, pred(B,y,s), s))" apply (frule_tac B = B in domain_ord_iso_map_cases, assumption) apply (frule_tac B = B in range_ord_iso_map_cases, assumption) apply (drule ord_iso_map_ord_iso, assumption) apply (elim disjE bexE) apply (simp_all add: bexI) apply (rule wf_on_not_refl [THEN notE]) apply (erule well_ord_is_wf) apply assumption apply (subgoal_tac ": ord_iso_map (A,r,B,s) ") apply (drule rangeI) apply (simp add: pred_def) apply (unfold ord_iso_map_def, blast) done subsection\Miscellaneous Results by Krzysztof Grabczewski\ (** Properties of converse(r) **) lemma irrefl_converse: "irrefl(A,r) ==> irrefl(A,converse(r))" by (unfold irrefl_def, blast) lemma trans_on_converse: "trans[A](r) ==> trans[A](converse(r))" by (unfold trans_on_def, blast) lemma part_ord_converse: "part_ord(A,r) ==> part_ord(A,converse(r))" apply (unfold part_ord_def) apply (blast intro!: irrefl_converse trans_on_converse) done lemma linear_converse: "linear(A,r) ==> linear(A,converse(r))" by (unfold linear_def, blast) lemma tot_ord_converse: "tot_ord(A,r) ==> tot_ord(A,converse(r))" apply (unfold tot_ord_def) apply (blast intro!: part_ord_converse linear_converse) done (** By Krzysztof Grabczewski. Lemmas involving the first element of a well ordered set **) lemma first_is_elem: "first(b,B,r) ==> b \ B" by (unfold first_def, blast) lemma well_ord_imp_ex1_first: "[| well_ord(A,r); B<=A; B\0 |] ==> (\!b. first(b,B,r))" apply (unfold well_ord_def wf_on_def wf_def first_def) apply (elim conjE allE disjE, blast) apply (erule bexE) apply (rule_tac a = x in ex1I, auto) apply (unfold tot_ord_def linear_def, blast) done lemma the_first_in: "[| well_ord(A,r); B<=A; B\0 |] ==> (THE b. first(b,B,r)) \ B" apply (drule well_ord_imp_ex1_first, assumption+) apply (rule first_is_elem) apply (erule theI) done subsection \Lemmas for the Reflexive Orders\ lemma subset_vimage_vimage_iff: "[| Preorder(r); A \ field(r); B \ field(r) |] ==> r -`` A \ r -`` B \ (\a\A. \b\B. \ r)" apply (auto simp: subset_def preorder_on_def refl_def vimage_def image_def) apply blast unfolding trans_on_def apply (erule_tac P = "(\x. \y\field(r). \z\field(r). \x, y\ \ r \ \y, z\ \ r \ \x, z\ \ r)" for r in rev_ballE) (* instance obtained from proof term generated by best *) apply best apply blast done lemma subset_vimage1_vimage1_iff: "[| Preorder(r); a \ field(r); b \ field(r) |] ==> r -`` {a} \ r -`` {b} \ \ r" by (simp add: subset_vimage_vimage_iff) lemma Refl_antisym_eq_Image1_Image1_iff: "[| refl(field(r), r); antisym(r); a \ field(r); b \ field(r) |] ==> r `` {a} = r `` {b} \ a = b" apply rule apply (frule equality_iffD) apply (drule equality_iffD) apply (simp add: antisym_def refl_def) apply best apply (simp add: antisym_def refl_def) done lemma Partial_order_eq_Image1_Image1_iff: "[| Partial_order(r); a \ field(r); b \ field(r) |] ==> r `` {a} = r `` {b} \ a = b" by (simp add: partial_order_on_def preorder_on_def Refl_antisym_eq_Image1_Image1_iff) lemma Refl_antisym_eq_vimage1_vimage1_iff: "[| refl(field(r), r); antisym(r); a \ field(r); b \ field(r) |] ==> r -`` {a} = r -`` {b} \ a = b" apply rule apply (frule equality_iffD) apply (drule equality_iffD) apply (simp add: antisym_def refl_def) apply best apply (simp add: antisym_def refl_def) done lemma Partial_order_eq_vimage1_vimage1_iff: "[| Partial_order(r); a \ field(r); b \ field(r) |] ==> r -`` {a} = r -`` {b} \ a = b" by (simp add: partial_order_on_def preorder_on_def Refl_antisym_eq_vimage1_vimage1_iff) end