(* Title: ZF/AC/WO6_WO1.thy Author: Krzysztof Grabczewski Proofs needed to state that formulations WO1,...,WO6 are all equivalent. The only hard one is WO6 ==> WO1. Every proof (except WO6 ==> WO1 and WO1 ==> WO2) are described as "clear" by Rubin & Rubin (page 2). They refer reader to a book by Gödel to see the proof WO1 ==> WO2. Fortunately order types made this proof also very easy. *) theory WO6_WO1 imports Cardinal_aux begin (* Auxiliary definitions used in proof *) definition NN :: "i => i" where "NN(y) == {m \ nat. \a. \f. Ord(a) & domain(f)=a & (\bb m)}" definition uu :: "[i, i, i, i] => i" where "uu(f, beta, gamma, delta) == (f`beta * f`gamma) \ f`delta" (** Definitions for case 1 **) definition vv1 :: "[i, i, i] => i" where "vv1(f,m,b) == let g = \ g. (\d. Ord(d) & (domain(uu(f,b,g,d)) \ 0 & domain(uu(f,b,g,d)) \ m)); d = \ d. domain(uu(f,b,g,d)) \ 0 & domain(uu(f,b,g,d)) \ m in if f`b \ 0 then domain(uu(f,b,g,d)) else 0" definition ww1 :: "[i, i, i] => i" where "ww1(f,m,b) == f`b - vv1(f,m,b)" definition gg1 :: "[i, i, i] => i" where "gg1(f,a,m) == \b \ a++a. if b i" where "vv2(f,b,g,s) == if f`g \ 0 then {uu(f, b, g, \ d. uu(f,b,g,d) \ 0)`s} else 0" definition ww2 :: "[i, i, i, i] => i" where "ww2(f,b,g,s) == f`g - vv2(f,b,g,s)" definition gg2 :: "[i, i, i, i] => i" where "gg2(f,a,b,s) == \g \ a++a. if g WO3" by (unfold WO2_def WO3_def, fast) (* ********************************************************************** *) lemma WO3_WO1: "WO3 ==> WO1" apply (unfold eqpoll_def WO1_def WO3_def) apply (intro allI) apply (drule_tac x=A in spec) apply (blast intro: bij_is_inj well_ord_rvimage well_ord_Memrel [THEN well_ord_subset]) done (* ********************************************************************** *) lemma WO1_WO2: "WO1 ==> WO2" apply (unfold eqpoll_def WO1_def WO2_def) apply (blast intro!: Ord_ordertype ordermap_bij) done (* ********************************************************************** *) lemma lam_sets: "f \ A->B ==> (\x \ A. {f`x}): A -> {{b}. b \ B}" by (fast intro!: lam_type apply_type) lemma surj_imp_eq': "f \ surj(A,B) ==> (\a \ A. {f`a}) = B" apply (unfold surj_def) apply (fast elim!: apply_type) done lemma surj_imp_eq: "[| f \ surj(A,B); Ord(A) |] ==> (\a WO4(1)" apply (unfold WO1_def WO4_def) apply (rule allI) apply (erule_tac x = A in allE) apply (erule exE) apply (intro exI conjI) apply (erule Ord_ordertype) apply (erule ordermap_bij [THEN bij_converse_bij, THEN bij_is_fun, THEN lam_sets, THEN domain_of_fun]) apply (simp_all add: singleton_eqpoll_1 eqpoll_imp_lepoll Ord_ordertype ordermap_bij [THEN bij_converse_bij, THEN bij_is_surj, THEN surj_imp_eq] ltD) done (* ********************************************************************** *) lemma WO4_mono: "[| m\n; WO4(m) |] ==> WO4(n)" apply (unfold WO4_def) apply (blast dest!: spec intro: lepoll_trans [OF _ le_imp_lepoll]) done (* ********************************************************************** *) lemma WO4_WO5: "[| m \ nat; 1\m; WO4(m) |] ==> WO5" by (unfold WO4_def WO5_def, blast) (* ********************************************************************** *) lemma WO5_WO6: "WO5 ==> WO6" by (unfold WO4_def WO5_def WO6_def, blast) (* ********************************************************************** The proof of "WO6 ==> WO1". Simplified by L C Paulson. From the book "Equivalents of the Axiom of Choice" by Rubin & Rubin, pages 2-5 ************************************************************************* *) lemma lt_oadd_odiff_disj: "[| k < i++j; Ord(i); Ord(j) |] ==> k < i | (~ k f`b" by (unfold uu_def, blast) lemma quant_domain_uu_lepoll_m: "\b m ==> \bgd m" by (blast intro: domain_uu_subset [THEN subset_imp_lepoll] lepoll_trans) lemma uu_subset1: "uu(f,b,g,d) \ f`b * f`g" by (unfold uu_def, blast) lemma uu_subset2: "uu(f,b,g,d) \ f`d" by (unfold uu_def, blast) lemma uu_lepoll_m: "[| \b m; d uu(f,b,g,d) \ m" by (blast intro: uu_subset2 [THEN subset_imp_lepoll] lepoll_trans) (* ********************************************************************** *) (* Two cases for lemma ii *) (* ********************************************************************** *) lemma cases: "\bgd m ==> (\b 0 \ (\gd 0 & u(f,b,g,d) \ m)) | (\b 0 & (\gd 0 \ u(f,b,g,d) \ m))" apply (unfold lesspoll_def) apply (blast del: equalityI) done (* ********************************************************************** *) (* Lemmas used in both cases *) (* ********************************************************************** *) lemma UN_oadd: "Ord(a) ==> (\bb C(a++b))" by (blast intro: ltI lt_oadd1 oadd_lt_mono2 dest!: lt_oadd_disj) (* ********************************************************************** *) (* Case 1: lemmas *) (* ********************************************************************** *) lemma vv1_subset: "vv1(f,m,b) \ f`b" by (simp add: vv1_def Let_def domain_uu_subset) (* ********************************************************************** *) (* Case 1: Union of images is the whole "y" *) (* ********************************************************************** *) lemma UN_gg1_eq: "[| Ord(a); m \ nat |] ==> (\bb a. \x. Ord(x) & P(a, x)) |] ==> P(Least_a, \ b. P(Least_a, b))" apply (erule ssubst) apply (rule_tac Q = "%z. P (z, \ b. P (z, b))" in LeastI2) apply (fast elim!: LeastI)+ done lemmas nested_Least_instance = nested_LeastI [of "%g d. domain(uu(f,b,g,d)) \ 0 & domain(uu(f,b,g,d)) \ m"] for f b m lemma gg1_lepoll_m: "[| Ord(a); m \ nat; \b0 \ (\gd 0 & domain(uu(f,b,g,d)) \ m); \b succ(m); b gg1(f,a,m)`b \ m" apply (simp add: gg1_def empty_lepollI) apply (safe dest!: lt_oadd_odiff_disj) (*Case b show vv1(f,m,b) \ m *) apply (simp add: vv1_def Let_def empty_lepollI) apply (fast intro: nested_Least_instance [THEN conjunct2] elim!: lt_Ord) (*Case a\b \ show ww1(f,m,b--a) \ m *) apply (simp add: ww1_def empty_lepollI) apply (case_tac "f` (b--a) = 0", simp add: empty_lepollI) apply (rule Diff_lepoll, blast) apply (rule vv1_subset) apply (drule ospec [THEN mp], assumption+) apply (elim oexE conjE) apply (simp add: vv1_def Let_def lt_Ord nested_Least_instance [THEN conjunct1]) done (* ********************************************************************** *) (* Case 2: lemmas *) (* ********************************************************************** *) (* ********************************************************************** *) (* Case 2: vv2_subset *) (* ********************************************************************** *) lemma ex_d_uu_not_empty: "[| b0; f`g\0; y*y \ y; (\b \d 0" by (unfold uu_def, blast) lemma uu_not_empty: "[| b0; f`g\0; y*y \ y; (\b uu(f,b,g,\ d. (uu(f,b,g,d) \ 0)) \ 0" apply (drule ex_d_uu_not_empty, assumption+) apply (fast elim!: LeastI lt_Ord) done lemma not_empty_rel_imp_domain: "[| r \ A*B; r\0 |] ==> domain(r)\0" by blast lemma Least_uu_not_empty_lt_a: "[| b0; f`g\0; y*y \ y; (\b (\ d. uu(f,b,g,d) \ 0) < a" apply (erule ex_d_uu_not_empty [THEN oexE], assumption+) apply (blast intro: Least_le [THEN lt_trans1] lt_Ord) done lemma subset_Diff_sing: "[| B \ A; a\B |] ==> B \ A-{a}" by blast (*Could this be proved more directly?*) lemma supset_lepoll_imp_eq: "[| A \ m; m \ B; B \ A; m \ nat |] ==> A=B" apply (erule natE) apply (fast dest!: lepoll_0_is_0 intro!: equalityI) apply (safe intro!: equalityI) apply (rule ccontr) apply (rule succ_lepoll_natE) apply (erule lepoll_trans) apply (rule lepoll_trans) apply (erule subset_Diff_sing [THEN subset_imp_lepoll], assumption) apply (rule Diff_sing_lepoll, assumption+) done lemma uu_Least_is_fun: "[| \gd0 \ domain(uu(f, b, g, d)) \ succ(m); \b succ(m); y*y \ y; (\b0; f`g\0; m \ nat; s \ f`b |] ==> uu(f, b, g, \ d. uu(f,b,g,d)\0) \ f`b -> f`g" apply (drule_tac x2=g in ospec [THEN ospec, THEN mp]) apply (rule_tac [3] not_empty_rel_imp_domain [OF uu_subset1 uu_not_empty]) apply (rule_tac [2] Least_uu_not_empty_lt_a, assumption+) apply (rule rel_is_fun) apply (erule eqpoll_sym [THEN eqpoll_imp_lepoll]) apply (erule uu_lepoll_m) apply (rule Least_uu_not_empty_lt_a, assumption+) apply (rule uu_subset1) apply (rule supset_lepoll_imp_eq [OF _ eqpoll_sym [THEN eqpoll_imp_lepoll]]) apply (fast intro!: domain_uu_subset)+ done lemma vv2_subset: "[| \gd0 \ domain(uu(f, b, g, d)) \ succ(m); \b succ(m); y*y \ y; (\b nat; s \ f`b |] ==> vv2(f,b,g,s) \ f`g" apply (simp add: vv2_def) apply (blast intro: uu_Least_is_fun [THEN apply_type]) done (* ********************************************************************** *) (* Case 2: Union of images is the whole "y" *) (* ********************************************************************** *) lemma UN_gg2_eq: "[| \gd 0 \ domain(uu(f,b,g,d)) \ succ(m); \b succ(m); y*y \ y; (\b nat; s \ f`b; b (\g nat; m\0 |] ==> vv2(f,b,g,s) \ m" apply (unfold vv2_def) apply (simp add: empty_lepollI) apply (fast dest!: le_imp_subset [THEN subset_imp_lepoll, THEN lepoll_0_is_0] intro!: singleton_eqpoll_1 [THEN eqpoll_imp_lepoll, THEN lepoll_trans] not_lt_imp_le [THEN le_imp_subset, THEN subset_imp_lepoll] nat_into_Ord nat_1I) done lemma ww2_lepoll: "[| \b succ(m); g nat; vv2(f,b,g,d) \ f`g |] ==> ww2(f,b,g,d) \ m" apply (unfold ww2_def) apply (case_tac "f`g = 0") apply (simp add: empty_lepollI) apply (drule ospec, assumption) apply (rule Diff_lepoll, assumption+) apply (simp add: vv2_def not_emptyI) done lemma gg2_lepoll_m: "[| \gd 0 \ domain(uu(f,b,g,d)) \ succ(m); \b succ(m); y*y \ y; (\b f`b; m \ nat; m\ 0; g gg2(f,a,b,s) ` g \ m" apply (simp add: gg2_def empty_lepollI) apply (safe elim!: lt_Ord2 dest!: lt_oadd_odiff_disj) apply (simp add: vv2_lepoll) apply (simp add: ww2_lepoll vv2_subset) done (* ********************************************************************** *) (* lemma ii *) (* ********************************************************************** *) lemma lemma_ii: "[| succ(m) \ NN(y); y*y \ y; m \ nat; m\0 |] ==> m \ NN(y)" apply (unfold NN_def) apply (elim CollectE exE conjE) apply (rule quant_domain_uu_lepoll_m [THEN cases, THEN disjE], assumption) (* case 1 *) apply (simp add: lesspoll_succ_iff) apply (rule_tac x = "a++a" in exI) apply (fast intro!: Ord_oadd domain_gg1 UN_gg1_eq gg1_lepoll_m) (* case 2 *) apply (elim oexE conjE) apply (rule_tac A = "f`B" for B in not_emptyE, assumption) apply (rule CollectI) apply (erule succ_natD) apply (rule_tac x = "a++a" in exI) apply (rule_tac x = "gg2 (f,a,b,x) " in exI) apply (simp add: Ord_oadd domain_gg2 UN_gg2_eq gg2_lepoll_m) done (* ********************************************************************** *) (* lemma iv - p. 4: *) (* For every set x there is a set y such that x \ (y * y) \ y *) (* ********************************************************************** *) (* The leading \-quantifier looks odd but makes the proofs shorter (used only in the following two lemmas) *) lemma z_n_subset_z_succ_n: "\n \ nat. rec(n, x, %k r. r \ r*r) \ rec(succ(n), x, %k r. r \ r*r)" by (fast intro: rec_succ [THEN ssubst]) lemma le_subsets: "[| \n \ nat. f(n)<=f(succ(n)); n\m; n \ nat; m \ nat |] ==> f(n)<=f(m)" apply (erule_tac P = "n\m" in rev_mp) apply (rule_tac P = "%z. n\z \ f (n) \ f (z) " in nat_induct) apply (auto simp add: le_iff) done lemma le_imp_rec_subset: "[| n\m; m \ nat |] ==> rec(n, x, %k r. r \ r*r) \ rec(m, x, %k r. r \ r*r)" apply (rule z_n_subset_z_succ_n [THEN le_subsets]) apply (blast intro: lt_nat_in_nat)+ done lemma lemma_iv: "\y. x \ y*y \ y" apply (rule_tac x = "\n \ nat. rec (n, x, %k r. r \ r*r) " in exI) apply safe apply (rule nat_0I [THEN UN_I], simp) apply (rule_tac a = "succ (n \ na) " in UN_I) apply (erule Un_nat_type [THEN nat_succI], assumption) apply (auto intro: le_imp_rec_subset [THEN subsetD] intro!: Un_upper1_le Un_upper2_le Un_nat_type elim!: nat_into_Ord) done (* ********************************************************************** *) (* Rubin & Rubin wrote, *) (* "It follows from (ii) and mathematical induction that if y*y \ y then *) (* y can be well-ordered" *) (* In fact we have to prove *) (* * WO6 ==> NN(y) \ 0 *) (* * reverse induction which lets us infer that 1 \ NN(y) *) (* * 1 \ NN(y) ==> y can be well-ordered *) (* ********************************************************************** *) (* ********************************************************************** *) (* WO6 ==> NN(y) \ 0 *) (* ********************************************************************** *) lemma WO6_imp_NN_not_empty: "WO6 ==> NN(y) \ 0" by (unfold WO6_def NN_def, clarify, blast) (* ********************************************************************** *) (* 1 \ NN(y) ==> y can be well-ordered *) (* ********************************************************************** *) lemma lemma1: "[| (\b y; \b 1; Ord(a) |] ==> \cb y; \b 1; Ord(a) |] ==> f` (\ i. f`i = {x}) = {x}" apply (drule lemma1, assumption+) apply (fast elim!: lt_Ord intro: LeastI) done lemma NN_imp_ex_inj: "1 \ NN(y) ==> \a f. Ord(a) & f \ inj(y, a)" apply (unfold NN_def) apply (elim CollectE exE conjE) apply (rule_tac x = a in exI) apply (rule_tac x = "\x \ y. \ i. f`i = {x}" in exI) apply (rule conjI, assumption) apply (rule_tac d = "%i. THE x. x \ f`i" in lam_injective) apply (drule lemma1, assumption+) apply (fast elim!: Least_le [THEN lt_trans1, THEN ltD] lt_Ord) apply (rule lemma2 [THEN ssubst], assumption+, blast) done lemma y_well_ord: "[| y*y \ y; 1 \ NN(y) |] ==> \r. well_ord(y, r)" apply (drule NN_imp_ex_inj) apply (fast elim!: well_ord_rvimage [OF _ well_ord_Memrel]) done (* ********************************************************************** *) (* reverse induction which lets us infer that 1 \ NN(y) *) (* ********************************************************************** *) lemma rev_induct_lemma [rule_format]: "[| n \ nat; !!m. [| m \ nat; m\0; P(succ(m)) |] ==> P(m) |] ==> n\0 \ P(n) \ P(1)" by (erule nat_induct, blast+) lemma rev_induct: "[| n \ nat; P(n); n\0; !!m. [| m \ nat; m\0; P(succ(m)) |] ==> P(m) |] ==> P(1)" by (rule rev_induct_lemma, blast+) lemma NN_into_nat: "n \ NN(y) ==> n \ nat" by (simp add: NN_def) lemma lemma3: "[| n \ NN(y); y*y \ y; n\0 |] ==> 1 \ NN(y)" apply (rule rev_induct [OF NN_into_nat], assumption+) apply (rule lemma_ii, assumption+) done (* ********************************************************************** *) (* Main theorem "WO6 ==> WO1" *) (* ********************************************************************** *) (* another helpful lemma *) lemma NN_y_0: "0 \ NN(y) ==> y=0" apply (unfold NN_def) apply (fast intro!: equalityI dest!: lepoll_0_is_0 elim: subst) done lemma WO6_imp_WO1: "WO6 ==> WO1" apply (unfold WO1_def) apply (rule allI) apply (case_tac "A=0") apply (fast intro!: well_ord_Memrel nat_0I [THEN nat_into_Ord]) apply (rule_tac x = A in lemma_iv [elim_format]) apply (erule exE) apply (drule WO6_imp_NN_not_empty) apply (erule Un_subset_iff [THEN iffD1, THEN conjE]) apply (erule_tac A = "NN (y) " in not_emptyE) apply (frule y_well_ord) apply (fast intro!: lemma3 dest!: NN_y_0 elim!: not_emptyE) apply (fast elim: well_ord_subset) done end