(* Title: Tools/IsaPlanner/zipper.ML Author: Lucas Dixon, University of Edinburgh A notion roughly based on Huet's Zippers for Isabelle terms. *) (* abstract term for no more than pattern matching *) signature ABSTRACT_TRM = sig type typ (* types *) type aname (* abstraction names *) type fname (* parameter/free variable names *) type cname (* constant names *) type vname (* meta variable names *) type bname (* bound var name *) datatype term = Const of cname * typ | Abs of aname * typ * term | Free of fname * typ | Var of vname * typ | Bound of bname | $ of term * term; type T = term; end; structure IsabelleTrmWrap : ABSTRACT_TRM= struct open Term; type typ = Term.typ; (* types *) type aname = string; (* abstraction names *) type fname = string; (* parameter/free variable names *) type cname = string; (* constant names *) type vname = string * int; (* meta variable names *) type bname = int; (* bound var name *) type T = term; end; (* Concrete version for the Trm structure *) signature TRM_CTXT_DATA = sig structure Trm : ABSTRACT_TRM datatype dtrm = Abs of Trm.aname * Trm.typ | AppL of Trm.T | AppR of Trm.T; val apply : dtrm -> Trm.T -> Trm.T val eq_pos : dtrm * dtrm -> bool end; (* A trm context = list of derivatives *) signature TRM_CTXT = sig structure D : TRM_CTXT_DATA type T = D.dtrm list; val empty : T; val is_empty : T -> bool; val add_abs : D.Trm.aname * D.Trm.typ -> T -> T; val add_appl : D.Trm.T -> T -> T; val add_appr : D.Trm.T -> T -> T; val add_dtrm : D.dtrm -> T -> T; val eq_path : T * T -> bool val add_outerctxt : T -> T -> T val apply : T -> D.Trm.T -> D.Trm.T val nty_ctxt : T -> (D.Trm.aname * D.Trm.typ) list; val ty_ctxt : T -> D.Trm.typ list; val depth : T -> int; val map : (D.dtrm -> D.dtrm) -> T -> T val fold_up : (D.dtrm -> 'a -> 'a) -> T -> 'a -> 'a val fold_down : (D.dtrm -> 'a -> 'a) -> T -> 'a -> 'a end; (* A zipper = a term looked at, at a particular point in the term *) signature ZIPPER = sig structure C : TRM_CTXT type T val mktop : C.D.Trm.T -> T val mk : (C.D.Trm.T * C.T) -> T val goto_top : T -> T val at_top : T -> bool val split : T -> T * C.T val add_outerctxt : C.T -> T -> T val set_trm : C.D.Trm.T -> T -> T val set_ctxt : C.T -> T -> T val ctxt : T -> C.T val trm : T -> C.D.Trm.T val top_trm : T -> C.D.Trm.T val zipto : C.T -> T -> T (* follow context down *) val nty_ctxt : T -> (C.D.Trm.aname * C.D.Trm.typ) list; val ty_ctxt : T -> C.D.Trm.typ list; val depth_of_ctxt : T -> int; val map_on_ctxt : (C.D.dtrm -> C.D.dtrm) -> T -> T val fold_up_ctxt : (C.D.dtrm -> 'a -> 'a) -> T -> 'a -> 'a val fold_down_ctxt : (C.D.dtrm -> 'a -> 'a) -> T -> 'a -> 'a (* searching through a zipper *) datatype zsearch = Here of T | LookIn of T; (* lazily search through the zipper *) val lzy_search : (T -> zsearch list) -> T -> T Seq.seq (* lazy search with folded data *) val pf_lzy_search : ('a -> T -> ('a * zsearch list)) -> 'a -> T -> T Seq.seq (* zsearch list is or-choices *) val searchfold : ('a -> T -> (('a * zsearch) list)) -> 'a -> T -> ('a * T) Seq.seq (* limit function to the current focus of the zipper, but give function the zipper's context *) val limit_pcapply : (C.T -> T -> ('a * T) Seq.seq) -> T -> ('a * T) Seq.seq val limit_apply : (T -> T Seq.seq) -> T -> T Seq.seq val limit_capply : (C.T -> T -> T Seq.seq) -> T -> T Seq.seq (* moving around zippers with option types *) val omove_up : T -> T option val omove_up_abs : T -> T option val omove_up_app : T -> T option val omove_up_left : T -> T option val omove_up_right : T -> T option val omove_up_left_or_abs : T -> T option val omove_up_right_or_abs : T -> T option val omove_down_abs : T -> T option val omove_down_left : T -> T option val omove_down_right : T -> T option val omove_down_app : T -> (T * T) option (* moving around zippers, raising exceptions *) exception move of string * T val move_up : T -> T val move_up_abs : T -> T val move_up_app : T -> T val move_up_left : T -> T val move_up_right : T -> T val move_up_left_or_abs : T -> T val move_up_right_or_abs : T -> T val move_down_abs : T -> T val move_down_left : T -> T val move_down_right : T -> T val move_down_app : T -> T * T end; (* Zipper data for an generic trm *) functor TrmCtxtDataFUN(Trm : ABSTRACT_TRM) : TRM_CTXT_DATA = struct structure Trm = Trm; (* a dtrm is, in McBridge-speak, a differentiated term. It represents the different ways a term can occur within its datatype constructors *) datatype dtrm = Abs of Trm.aname * Trm.typ | AppL of Trm.T | AppR of Trm.T; (* apply a dtrm to a term, ie put the dtrm above it, building context *) fun apply (Abs (s,ty)) t = Trm.Abs (s,ty,t) | apply (AppL tl) tr = Trm.$ (tl, tr) | apply (AppR tr) tl = Trm.$ (tl, tr); fun eq_pos (Abs _, Abs _) = true | eq_pos (AppL _, AppL _) = true | eq_pos (AppR _, AppR _) = true | eq_pos _ = false; end; (* functor for making term contexts given term data *) functor TrmCtxtFUN(D : TRM_CTXT_DATA) : TRM_CTXT = struct structure D = D; type T = D.dtrm list; val empty = []; val is_empty = List.null; fun add_abs d l = (D.Abs d) :: l; fun add_appl d l = (D.AppL d) :: l; fun add_appr d l = (D.AppR d) :: l; fun add_dtrm d l = d::l; fun eq_path ([], []) = true | eq_path ([], _::_) = false | eq_path ( _::_, []) = false | eq_path (h::t, h2::t2) = D.eq_pos(h,h2) andalso eq_path (t, t2); (* add context to outside of existing context *) fun add_outerctxt ctop cbottom = cbottom @ ctop; (* mkterm : zipper -> trm -> trm *) val apply = Basics.fold D.apply; (* named type context *) val nty_ctxt = List.foldr (fn (D.Abs nty,ntys) => nty::ntys | (_,ntys) => ntys) []; (* type context *) val ty_ctxt = List.foldr (fn (D.Abs (_,ty),tys) => ty::tys | (_,tys) => tys) []; val depth = length : T -> int; val map = List.map : (D.dtrm -> D.dtrm) -> T -> T val fold_up = Basics.fold : (D.dtrm -> 'a -> 'a) -> T -> 'a -> 'a; val fold_down = Basics.fold_rev : (D.dtrm -> 'a -> 'a) -> T -> 'a -> 'a; end; (* zippers in terms of term contexts *) functor ZipperFUN(C : TRM_CTXT) : ZIPPER = struct structure C = C; structure D = C.D; structure Trm = D.Trm; type T = C.D.Trm.T * C.T; fun mktop t = (t, C.empty) : T val mk = I; fun set_trm x = apfst (K x); fun set_ctxt x = apsnd (K x); fun goto_top (z as (t,c)) = if C.is_empty c then z else (C.apply c t, C.empty); fun at_top (_,c) = C.is_empty c; fun split (t,c) = ((t,C.empty) : T, c : C.T) fun add_outerctxt c (t,c2) = (t, C.add_outerctxt c c2) : T val ctxt = snd; val trm = fst; val top_trm = trm o goto_top; fun nty_ctxt x = C.nty_ctxt (ctxt x); fun ty_ctxt x = C.ty_ctxt (ctxt x); fun depth_of_ctxt x = C.depth (ctxt x); fun map_on_ctxt x = apsnd (C.map x); fun fold_up_ctxt f = C.fold_up f o ctxt; fun fold_down_ctxt f = C.fold_down f o ctxt; fun omove_up (t,(d::c)) = SOME (D.apply d t, c) | omove_up (z as (_,[])) = NONE; fun omove_up_abs (t,((D.Abs(n,ty))::c)) = SOME (Trm.Abs(n,ty,t), c) | omove_up_abs z = NONE; fun omove_up_app (t,(D.AppL tl)::c) = SOME(Trm.$(tl,t), c) | omove_up_app (t,(D.AppR tr)::c) = SOME(Trm.$(t,tr), c) | omove_up_app z = NONE; fun omove_up_left (t,(D.AppL tl)::c) = SOME(Trm.$(tl,t), c) | omove_up_left z = NONE; fun omove_up_right (t,(D.AppR tr)::c) = SOME(Trm.$(t,tr), c) | omove_up_right _ = NONE; fun omove_up_left_or_abs (t,(D.AppL tl)::c) = SOME (Trm.$(tl,t), c) | omove_up_left_or_abs (t,(D.Abs (n,ty))::c) = SOME (Trm.Abs(n,ty,t), c) | omove_up_left_or_abs z = NONE; fun omove_up_right_or_abs (t,(D.Abs (n,ty))::c) = SOME (Trm.Abs(n,ty,t), c) | omove_up_right_or_abs (t,(D.AppR tr)::c) = SOME (Trm.$(t,tr), c) | omove_up_right_or_abs _ = NONE; fun omove_down_abs (Trm.Abs(s,ty,t),c) = SOME (t,(D.Abs(s,ty))::c) | omove_down_abs _ = NONE; fun omove_down_left (Trm.$(l,r),c) = SOME (l,(D.AppR r)::c) | omove_down_left _ = NONE; fun omove_down_right (Trm.$(l,r),c) = SOME (r,(D.AppL l)::c) | omove_down_right _ = NONE; fun omove_down_app (Trm.$(l,r),c) = SOME ((l,(D.AppR r)::c),(r,(D.AppL l)::c)) | omove_down_app _ = NONE; exception move of string * T fun move_up (t,(d::c)) = (D.apply d t, c) | move_up (z as (_,[])) = raise move ("move_up",z); fun move_up_abs (t,((D.Abs(n,ty))::c)) = (Trm.Abs(n,ty,t), c) | move_up_abs z = raise move ("move_up_abs",z); fun move_up_app (t,(D.AppL tl)::c) = (Trm.$(tl,t), c) | move_up_app (t,(D.AppR tr)::c) = (Trm.$(t,tr), c) | move_up_app z = raise move ("move_up_app",z); fun move_up_left (t,((D.AppL tl)::c)) = (Trm.$(tl,t), c) | move_up_left z = raise move ("move_up_left",z); fun move_up_right (t,(D.AppR tr)::c) = (Trm.$(t,tr), c) | move_up_right z = raise move ("move_up_right",z); fun move_up_left_or_abs (t,(D.AppL tl)::c) = (Trm.$(tl,t), c) | move_up_left_or_abs (t,(D.Abs (n,ty))::c) = (Trm.Abs(n,ty,t), c) | move_up_left_or_abs z = raise move ("move_up_left_or_abs",z); fun move_up_right_or_abs (t,(D.Abs (n,ty))::c) = (Trm.Abs(n,ty,t), c) | move_up_right_or_abs (t,(D.AppR tr)::c) = (Trm.$(t,tr), c) | move_up_right_or_abs z = raise move ("move_up_right_or_abs",z); fun move_down_abs (Trm.Abs(s,ty,t),c) = (t,(D.Abs(s,ty))::c) | move_down_abs z = raise move ("move_down_abs",z); fun move_down_left (Trm.$(l,r),c) = (l,(D.AppR r)::c) | move_down_left z = raise move ("move_down_left",z); fun move_down_right (Trm.$(l,r),c) = (r,(D.AppL l)::c) | move_down_right z = raise move ("move_down_right",z); fun move_down_app (Trm.$(l,r),c) = ((l,(D.AppR r)::c),(r,(D.AppL l)::c)) | move_down_app z = raise move ("move_down_app",z); (* follow the given path down the given zipper *) (* implicit arguments: C.D.dtrm list, then T *) val zipto = C.fold_down (fn C.D.Abs _ => move_down_abs | C.D.AppL _ => move_down_right | C.D.AppR _ => move_down_left); (* Note: interpretted as being examined depth first *) datatype zsearch = Here of T | LookIn of T; (* lazy search *) fun lzy_search fsearch = let fun lzyl [] () = NONE | lzyl ((Here z) :: more) () = SOME(z, Seq.make (lzyl more)) | lzyl ((LookIn z) :: more) () = (case lzy z of NONE => NONE | SOME (hz,mz) => SOME (hz, Seq.append mz (Seq.make (lzyl more)))) and lzy z = lzyl (fsearch z) () in Seq.make o lzyl o fsearch end; (* path folded lazy search - the search list is defined in terms of the path passed through: the data a is updated with every zipper considered *) fun pf_lzy_search fsearch a0 z = let fun lzyl a [] () = NONE | lzyl a ((Here z) :: more) () = SOME(z, Seq.make (lzyl a more)) | lzyl a ((LookIn z) :: more) () = (case lzy a z of NONE => lzyl a more () | SOME(hz,mz) => SOME(hz,Seq.append mz (Seq.make(lzyl a more)))) and lzy a z = let val (a2, slist) = (fsearch a z) in lzyl a2 slist () end val (a,slist) = fsearch a0 z in Seq.make (lzyl a slist) end; (* Note: depth first over zsearch results *) fun searchfold fsearch a0 z = let fun lzyl [] () = NONE | lzyl ((a, Here z) :: more) () = SOME((a,z), Seq.make (lzyl more)) | lzyl ((a, LookIn z) :: more) () = (case lzyl (fsearch a z) () of NONE => lzyl more () | SOME (z,mz) => SOME (z,Seq.append mz (Seq.make (lzyl more)))) in Seq.make (lzyl (fsearch a0 z)) end; fun limit_pcapply f z = let val (z2,c) = split z in Seq.map (apsnd (add_outerctxt c)) (f c z2) end; fun limit_capply (f : C.T -> T -> T Seq.seq) (z : T) = let val ((z2 : T),(c : C.T)) = split z in Seq.map (add_outerctxt c) (f c z2) end val limit_apply = limit_capply o K; end; (* now build these for Isabelle terms *) structure TrmCtxtData = TrmCtxtDataFUN(IsabelleTrmWrap); structure TrmCtxt = TrmCtxtFUN(TrmCtxtData); structure Zipper = ZipperFUN(TrmCtxt); (* For searching through Zippers below the current focus... KEY for naming scheme: td = starting at the top down lr = going from left to right rl = going from right to left bl = starting at the bottom left br = starting at the bottom right ul = going up then left ur = going up then right ru = going right then up lu = going left then up *) signature ZIPPER_SEARCH = sig structure Z : ZIPPER; val leaves_lr : Z.T -> Z.T Seq.seq val leaves_rl : Z.T -> Z.T Seq.seq val all_bl_ru : Z.T -> Z.T Seq.seq val all_bl_ur : Z.T -> Z.T Seq.seq val all_td_lr : Z.T -> Z.T Seq.seq val all_td_rl : Z.T -> Z.T Seq.seq end; functor ZipperSearchFUN(Zipper : ZIPPER) : ZIPPER_SEARCH = struct structure Z = Zipper; structure C = Z.C; structure D = C.D; structure Trm = D.Trm; fun sf_leaves_lr z = case Z.trm z of Trm.$ _ => [Z.LookIn (Z.move_down_left z), Z.LookIn (Z.move_down_right z)] | Trm.Abs _ => [Z.LookIn (Z.move_down_abs z)] | _ => [Z.Here z]; fun sf_leaves_rl z = case Z.trm z of Trm.$ _ => [Z.LookIn (Z.move_down_right z), Z.LookIn (Z.move_down_left z)] | Trm.Abs _ => [Z.LookIn (Z.move_down_abs z)] | _ => [Z.Here z]; val leaves_lr = Z.lzy_search sf_leaves_lr; val leaves_rl = Z.lzy_search sf_leaves_rl; fun sf_all_td_lr z = case Z.trm z of Trm.$ _ => [Z.Here z, Z.LookIn (Z.move_down_left z), Z.LookIn (Z.move_down_right z)] | Trm.Abs _ => [Z.Here z, Z.LookIn (Z.move_down_abs z)] | _ => [Z.Here z]; fun sf_all_td_rl z = case Z.trm z of Trm.$ _ => [Z.Here z, Z.LookIn (Z.move_down_right z), Z.LookIn (Z.move_down_left z)] | Trm.Abs _ => [Z.Here z, Z.LookIn (Z.move_down_abs z)] | _ => [Z.Here z]; fun sf_all_bl_ur z = case Z.trm z of Trm.$ _ => [Z.LookIn (Z.move_down_left z), Z.Here z, Z.LookIn (Z.move_down_right z)] | Trm.Abs _ => [Z.LookIn (Z.move_down_abs z), Z.Here z] | _ => [Z.Here z]; fun sf_all_bl_ru z = case Z.trm z of Trm.$ _ => [Z.LookIn (Z.move_down_left z), Z.LookIn (Z.move_down_right z), Z.Here z] | Trm.Abs _ => [Z.LookIn (Z.move_down_abs z), Z.Here z] | _ => [Z.Here z]; val all_td_lr = Z.lzy_search sf_all_td_lr; val all_td_rl = Z.lzy_search sf_all_td_rl; val all_bl_ur = Z.lzy_search sf_all_bl_ru; val all_bl_ru = Z.lzy_search sf_all_bl_ur; end; structure ZipperSearch = ZipperSearchFUN(Zipper);