(* Title: Pure/axclass.ML Author: Markus Wenzel, TU Muenchen Type classes defined as predicates, associated with a record of parameters. Proven class relations and type arities. *) signature AXCLASS = sig type info = {def: thm, intro: thm, axioms: thm list, params: (string * typ) list} val get_info: theory -> class -> info val class_of_param: theory -> string -> class option val instance_name: string * class -> string val param_of_inst: theory -> string * string -> string val inst_of_param: theory -> string -> (string * string) option val unoverload: Proof.context -> thm -> thm val overload: Proof.context -> thm -> thm val unoverload_conv: Proof.context -> conv val overload_conv: Proof.context -> conv val lookup_inst_param: Consts.T -> ((string * string) * 'a) list -> string * typ -> 'a option val unoverload_const: theory -> string * typ -> string val cert_classrel: theory -> class * class -> class * class val read_classrel: theory -> xstring * xstring -> class * class val declare_overloaded: string * typ -> theory -> term * theory val define_overloaded: binding -> string * term -> theory -> thm * theory val add_classrel: thm -> theory -> theory val add_arity: thm -> theory -> theory val prove_classrel: class * class -> (Proof.context -> tactic) -> theory -> theory val prove_arity: string * sort list * sort -> (Proof.context -> tactic) -> theory -> theory val define_class: binding * class list -> string list -> (Thm.binding * term list) list -> theory -> class * theory val classrel_axiomatization: (class * class) list -> theory -> theory val arity_axiomatization: arity -> theory -> theory val class_axiomatization: binding * class list -> theory -> theory end; structure Axclass: AXCLASS = struct (** theory data **) (* axclass info *) type info = {def: thm, intro: thm, axioms: thm list, params: (string * typ) list}; fun make_axclass (def, intro, axioms, params): info = {def = def, intro = intro, axioms = axioms, params = params}; (* class parameters (canonical order) *) type param = string * class; fun add_param ctxt ((x, c): param) params = (case AList.lookup (op =) params x of NONE => (x, c) :: params | SOME c' => error ("Duplicate class parameter " ^ quote x ^ " for " ^ Syntax.string_of_sort ctxt [c] ^ (if c = c' then "" else " and " ^ Syntax.string_of_sort ctxt [c']))); (* setup data *) datatype data = Data of {axclasses: info Symtab.table, params: param list, (*arity theorems with theory name*) inst_params: (string * thm) Symtab.table Symtab.table * (*constant name ~> type constructor ~> (constant name, equation)*) (string * string) Symtab.table (*constant name ~> (constant name, type constructor)*)}; fun make_data (axclasses, params, inst_params) = Data {axclasses = axclasses, params = params, inst_params = inst_params}; structure Data = Theory_Data' ( type T = data; val empty = make_data (Symtab.empty, [], (Symtab.empty, Symtab.empty)); val extend = I; fun merge old_thys (Data {axclasses = axclasses1, params = params1, inst_params = inst_params1}, Data {axclasses = axclasses2, params = params2, inst_params = inst_params2}) = let val old_ctxt = Syntax.init_pretty_global (fst old_thys); val axclasses' = Symtab.merge (K true) (axclasses1, axclasses2); val params' = if null params1 then params2 else fold_rev (fn p => if member (op =) params1 p then I else add_param old_ctxt p) params2 params1; val inst_params' = (Symtab.join (K (Symtab.merge (K true))) (#1 inst_params1, #1 inst_params2), Symtab.merge (K true) (#2 inst_params1, #2 inst_params2)); in make_data (axclasses', params', inst_params') end; ); fun map_data f = Data.map (fn Data {axclasses, params, inst_params} => make_data (f (axclasses, params, inst_params))); fun map_axclasses f = map_data (fn (axclasses, params, inst_params) => (f axclasses, params, inst_params)); fun map_params f = map_data (fn (axclasses, params, inst_params) => (axclasses, f params, inst_params)); fun map_inst_params f = map_data (fn (axclasses, params, inst_params) => (axclasses, params, f inst_params)); val rep_data = Data.get #> (fn Data args => args); val axclasses_of = #axclasses o rep_data; val params_of = #params o rep_data; val inst_params_of = #inst_params o rep_data; (* axclasses with parameters *) fun get_info thy c = (case Symtab.lookup (axclasses_of thy) c of SOME {def, intro, axioms, params} => {def = Thm.transfer thy def, intro = Thm.transfer thy intro, axioms = map (Thm.transfer thy) axioms, params = params} | NONE => error ("No such axclass: " ^ quote c)); fun all_params_of thy S = let val params = params_of thy; in fold (fn (x, c) => if Sign.subsort thy (S, [c]) then cons x else I) params [] end; fun class_of_param thy = AList.lookup (op =) (params_of thy); (* maintain instance parameters *) fun get_inst_param thy (c, tyco) = (case Symtab.lookup (the_default Symtab.empty (Symtab.lookup (#1 (inst_params_of thy)) c)) tyco of SOME (a, th) => (a, Thm.transfer thy th) | NONE => error ("No instance parameter for constant " ^ quote c ^ " on type " ^ quote tyco)); fun add_inst_param (c, tyco) (a, th) = (map_inst_params o apfst o Symtab.map_default (c, Symtab.empty)) (Symtab.update_new (tyco, (a, Thm.trim_context th))) #> (map_inst_params o apsnd) (Symtab.update_new (a, (c, tyco))); val inst_of_param = Symtab.lookup o #2 o inst_params_of; val param_of_inst = #1 oo get_inst_param; fun inst_thms ctxt = Symtab.fold (Symtab.fold (cons o #2 o #2) o #2) (#1 (inst_params_of (Proof_Context.theory_of ctxt))) []; fun get_inst_tyco consts = try (#1 o dest_Type o the_single o Consts.typargs consts); fun unoverload ctxt = rewrite_rule ctxt (inst_thms ctxt); fun overload ctxt = rewrite_rule ctxt (map Thm.symmetric (inst_thms ctxt)); fun unoverload_conv ctxt = Raw_Simplifier.rewrite ctxt true (inst_thms ctxt); fun overload_conv ctxt = Raw_Simplifier.rewrite ctxt true (map Thm.symmetric (inst_thms ctxt)); fun lookup_inst_param consts params (c, T) = (case get_inst_tyco consts (c, T) of SOME tyco => AList.lookup (op =) params (c, tyco) | NONE => NONE); fun unoverload_const thy (c_ty as (c, _)) = if is_some (class_of_param thy c) then (case get_inst_tyco (Sign.consts_of thy) c_ty of SOME tyco => try (param_of_inst thy) (c, tyco) |> the_default c | NONE => c) else c; (** instances **) val classrel_prefix = "classrel_"; val arity_prefix = "arity_"; fun instance_name (a, c) = Long_Name.base_name c ^ "_" ^ Long_Name.base_name a; (* class relations *) fun cert_classrel thy raw_rel = let val string_of_sort = Syntax.string_of_sort_global thy; val (c1, c2) = apply2 (Sign.certify_class thy) raw_rel; val _ = Sign.primitive_classrel (c1, c2) thy; val _ = (case subtract (op =) (all_params_of thy [c1]) (all_params_of thy [c2]) of [] => () | xs => raise TYPE ("Class " ^ string_of_sort [c1] ^ " lacks parameter(s) " ^ commas_quote xs ^ " of " ^ string_of_sort [c2], [], [])); in (c1, c2) end; fun read_classrel thy raw_rel = cert_classrel thy (apply2 (Proof_Context.read_class (Proof_Context.init_global thy)) raw_rel) handle TYPE (msg, _, _) => error msg; (* declaration and definition of instances of overloaded constants *) fun inst_tyco_of thy (c, T) = (case get_inst_tyco (Sign.consts_of thy) (c, T) of SOME tyco => tyco | NONE => error ("Illegal type for instantiation of class parameter: " ^ quote (c ^ " :: " ^ Syntax.string_of_typ_global thy T))); fun declare_overloaded (c, T) thy = let val class = (case class_of_param thy c of SOME class => class | NONE => error ("Not a class parameter: " ^ quote c)); val tyco = inst_tyco_of thy (c, T); val name_inst = instance_name (tyco, class) ^ "_inst"; val c' = instance_name (tyco, c); val T' = Type.strip_sorts T; in thy |> Sign.qualified_path true (Binding.name name_inst) |> Sign.declare_const_global ((Binding.name c', T'), NoSyn) |-> (fn const' as Const (c'', _) => Thm.add_def_global false true (Binding.name (Thm.def_name c'), Logic.mk_equals (Const (c, T'), const')) #>> apsnd Thm.varifyT_global #-> (fn (_, thm) => add_inst_param (c, tyco) (c'', thm) #> Global_Theory.add_thm ((Binding.concealed (Binding.name c'), thm), []) #> #2 #> pair (Const (c, T)))) ||> Sign.restore_naming thy end; fun define_overloaded b (c, t) thy = let val T = Term.fastype_of t; val tyco = inst_tyco_of thy (c, T); val (c', eq) = get_inst_param thy (c, tyco); val prop = Logic.mk_equals (Const (c', T), t); val b' = Thm.def_binding_optional (Binding.name (instance_name (tyco, c))) b; in thy |> Thm.add_def_global false false (b', prop) |>> (fn (_, thm) => Drule.transitive_thm OF [eq, thm]) end; (* primitive rules *) fun add_classrel raw_th thy = let val th = Thm.strip_shyps (Thm.transfer thy raw_th); val prop = Thm.plain_prop_of th; fun err () = raise THM ("add_classrel: malformed class relation", 0, [th]); val rel = Logic.dest_classrel prop handle TERM _ => err (); val (c1, c2) = cert_classrel thy rel handle TYPE _ => err (); val binding = Binding.concealed (Binding.name (prefix classrel_prefix (Logic.name_classrel (c1, c2)))); in thy |> Global_Theory.store_thm (binding, th) |-> Thm.add_classrel end; fun add_arity raw_th thy = let val th = Thm.strip_shyps (Thm.transfer thy raw_th); val prop = Thm.plain_prop_of th; fun err () = raise THM ("add_arity: malformed type arity", 0, [th]); val arity as (t, Ss, c) = Logic.dest_arity prop handle TERM _ => err (); val binding = Binding.concealed (Binding.name (prefix arity_prefix (Logic.name_arity arity))); val args = Name.invent_names Name.context Name.aT Ss; val missing_params = Sign.complete_sort thy [c] |> maps (these o Option.map #params o try (get_info thy)) |> filter_out (fn (const, _) => can (get_inst_param thy) (const, t)) |> (map o apsnd o map_atyps) (K (Type (t, map TFree args))); in thy |> Global_Theory.store_thm (binding, th) |-> Thm.add_arity |> fold (#2 oo declare_overloaded) missing_params end; (* tactical proofs *) fun prove_classrel raw_rel tac thy = let val ctxt = Proof_Context.init_global thy; val (c1, c2) = cert_classrel thy raw_rel; val th = Goal.prove ctxt [] [] (Logic.mk_classrel (c1, c2)) (fn {context, ...} => tac context) handle ERROR msg => cat_error msg ("The error(s) above occurred while trying to prove class relation " ^ quote (Syntax.string_of_classrel ctxt [c1, c2])); in thy |> add_classrel th end; fun prove_arity raw_arity tac thy = let val ctxt = Proof_Context.init_global thy; val arity = Proof_Context.cert_arity ctxt raw_arity; val props = Logic.mk_arities arity; val ths = Goal.prove_common ctxt NONE [] [] props (fn {context, ...} => Goal.precise_conjunction_tac (length props) 1 THEN tac context) handle ERROR msg => cat_error msg ("The error(s) above occurred while trying to prove type arity " ^ quote (Syntax.string_of_arity ctxt arity)); in thy |> fold add_arity ths end; (** class definitions **) fun split_defined n eq = let val intro = (eq RS Drule.equal_elim_rule2) |> Conjunction.curry_balanced n |> n = 0 ? Thm.eq_assumption 1; val dests = if n = 0 then [] else (eq RS Drule.equal_elim_rule1) |> Balanced_Tree.dest (fn th => (th RS Conjunction.conjunctionD1, th RS Conjunction.conjunctionD2)) n; in (intro, dests) end; fun define_class (bclass, raw_super) raw_params raw_specs thy = let val ctxt = Syntax.init_pretty_global thy; (* class *) val bconst = Binding.map_name Logic.const_of_class bclass; val class = Sign.full_name thy bclass; val super = Sign.minimize_sort thy (Sign.certify_sort thy raw_super); fun check_constraint (a, S) = if Sign.subsort thy (super, S) then () else error ("Sort constraint of type variable " ^ Syntax.string_of_typ (Config.put show_sorts true ctxt) (TFree (a, S)) ^ " needs to be weaker than " ^ Syntax.string_of_sort ctxt super); (* params *) val params = raw_params |> map (fn p => let val T = Sign.the_const_type thy p; val _ = (case Term.add_tvarsT T [] of [((a, _), S)] => check_constraint (a, S) | _ => error ("Exactly one type variable expected in class parameter " ^ quote p)); val T' = Term.map_type_tvar (K (Term.aT [class])) T; in (p, T') end); (* axioms *) fun prep_axiom t = (case Term.add_tfrees t [] of [(a, S)] => check_constraint (a, S) | [] => () | _ => error ("Multiple type variables in class axiom:\n" ^ Syntax.string_of_term ctxt t); t |> Term.map_types (Term.map_atyps (fn TFree _ => Term.aT [] | U => U)) |> Logic.close_form); val axiomss = map (map (prep_axiom o Sign.cert_prop thy) o snd) raw_specs; val name_atts = map fst raw_specs; (* definition *) val conjs = Logic.mk_of_sort (Term.aT [], super) @ flat axiomss; val class_eq = Logic.mk_equals (Logic.mk_of_class (Term.aT [], class), Logic.mk_conjunction_balanced conjs); val ([def], def_thy) = thy |> Sign.primitive_class (bclass, super) |> Global_Theory.add_defs false [((Thm.def_binding bconst, class_eq), [])]; val (raw_intro, (raw_classrel, raw_axioms)) = split_defined (length conjs) def ||> chop (length super); (* facts *) val class_triv = Thm.class_triv def_thy class; val ([(_, [intro]), (_, classrel), (_, axioms)], facts_thy) = def_thy |> Sign.qualified_path true bconst |> Global_Theory.note_thmss "" [((Binding.name "intro", []), [([Drule.export_without_context raw_intro], [])]), ((Binding.name "super", []), [(map Drule.export_without_context raw_classrel, [])]), ((Binding.name "axioms", []), [(map (fn th => Drule.export_without_context (class_triv RS th)) raw_axioms, [])])] ||> Sign.restore_naming def_thy; (* result *) val axclass = make_axclass (Thm.trim_context def, Thm.trim_context intro, map Thm.trim_context axioms, params); val result_thy = facts_thy |> fold (fn th => Thm.add_classrel (class_triv RS th)) classrel |> Sign.qualified_path false bconst |> Global_Theory.note_thmss "" (name_atts ~~ map Thm.simple_fact (unflat axiomss axioms)) |> #2 |> Sign.restore_naming facts_thy |> map_axclasses (Symtab.update (class, axclass)) |> map_params (fold (fn (x, _) => add_param ctxt (x, class)) params); in (class, result_thy) end; (** axiomatizations **) local (*old-style axioms*) fun add_axioms prep mk name add raw_args thy = let val args = prep thy raw_args; val specs = mk args; val names = name args; in thy |> fold_map Thm.add_axiom_global (map Binding.name names ~~ specs) |-> fold (add o Drule.export_without_context o snd) end; fun class_const_dep c = ((Defs.Const, Logic.const_of_class c), [Term.aT []]); in val classrel_axiomatization = add_axioms (map o cert_classrel) (map Logic.mk_classrel) (map (prefix classrel_prefix o Logic.name_classrel)) add_classrel; val arity_axiomatization = add_axioms (Proof_Context.cert_arity o Proof_Context.init_global) Logic.mk_arities (map (prefix arity_prefix) o Logic.name_arities) add_arity; fun class_axiomatization (bclass, raw_super) thy = let val class = Sign.full_name thy bclass; val super = map (Sign.certify_class thy) raw_super |> Sign.minimize_sort thy; in thy |> Sign.primitive_class (bclass, super) |> classrel_axiomatization (map (fn c => (class, c)) super) |> Theory.add_deps_global "" (class_const_dep class) (map class_const_dep super) end; end; end;