(* Title: HOL/Tools/simpdata.ML Author: Tobias Nipkow Copyright 1991 University of Cambridge Instantiation of the generic simplifier for HOL. *) (** tools setup **) structure Quantifier1 = Quantifier1 ( (*abstract syntax*) fun dest_eq (Const(\<^const_name>\HOL.eq\,_) $ s $ t) = SOME (s, t) | dest_eq _ = NONE; fun dest_conj (Const(\<^const_name>\HOL.conj\,_) $ s $ t) = SOME (s, t) | dest_conj _ = NONE; fun dest_imp (Const(\<^const_name>\HOL.implies\,_) $ s $ t) = SOME (s, t) | dest_imp _ = NONE; val conj = HOLogic.conj val imp = HOLogic.imp (*rules*) val iff_reflection = @{thm eq_reflection} val iffI = @{thm iffI} val iff_trans = @{thm trans} val conjI= @{thm conjI} val conjE= @{thm conjE} val impI = @{thm impI} val mp = @{thm mp} val uncurry = @{thm uncurry} val exI = @{thm exI} val exE = @{thm exE} val iff_allI = @{thm iff_allI} val iff_exI = @{thm iff_exI} val all_comm = @{thm all_comm} val ex_comm = @{thm ex_comm} ); structure Simpdata = struct fun mk_meta_eq r = r RS @{thm eq_reflection}; fun safe_mk_meta_eq r = mk_meta_eq r handle Thm.THM _ => r; fun mk_eq th = (case Thm.concl_of th of (*expects Trueprop if not == *) Const (\<^const_name>\Pure.eq\,_) $ _ $ _ => th | _ $ (Const (\<^const_name>\HOL.eq\, _) $ _ $ _) => mk_meta_eq th | _ $ (Const (\<^const_name>\Not\, _) $ _) => th RS @{thm Eq_FalseI} | _ => th RS @{thm Eq_TrueI}) fun mk_eq_True (_: Proof.context) r = SOME (HOLogic.mk_obj_eq r RS @{thm Eq_TrueI}) handle Thm.THM _ => NONE; (* Produce theorems of the form (P1 =simp=> ... =simp=> Pn => x == y) ==> (P1 =simp=> ... =simp=> Pn => x = y) *) fun lift_meta_eq_to_obj_eq ctxt i st = let fun count_imp (Const (\<^const_name>\HOL.simp_implies\, _) $ _ $ P) = 1 + count_imp P | count_imp _ = 0; val j = count_imp (Logic.strip_assums_concl (Thm.term_of (Thm.cprem_of st i))) in if j = 0 then @{thm meta_eq_to_obj_eq} else let val Ps = map (fn k => Free ("P" ^ string_of_int k, propT)) (1 upto j); val mk_simp_implies = fold_rev (fn R => fn S => Const (\<^const_name>\HOL.simp_implies\, propT --> propT --> propT) $ R $ S) Ps; in Goal.prove_global (Proof_Context.theory_of ctxt) [] [mk_simp_implies \<^prop>\(x::'a) == y\] (mk_simp_implies \<^prop>\(x::'a) = y\) (fn {context = ctxt, prems} => EVERY [rewrite_goals_tac ctxt @{thms simp_implies_def}, REPEAT (assume_tac ctxt 1 ORELSE resolve_tac ctxt (@{thm meta_eq_to_obj_eq} :: map (rewrite_rule ctxt @{thms simp_implies_def}) prems) 1)]) end end; (*Congruence rules for = (instead of ==)*) fun mk_meta_cong ctxt rl = let val rl' = Seq.hd (TRYALL (fn i => fn st => resolve_tac ctxt [lift_meta_eq_to_obj_eq ctxt i st] i st) rl) in mk_meta_eq rl' handle THM _ => if can Logic.dest_equals (Thm.concl_of rl') then rl' else error "Conclusion of congruence rules must be =-equality" end |> zero_var_indexes; fun mk_atomize ctxt pairs = let fun atoms thm = let fun res th = map (fn rl => th RS rl); (*exception THM*) val thm_ctxt = Variable.declare_thm thm ctxt; fun res_fixed rls = if Thm.maxidx_of (Thm.adjust_maxidx_thm ~1 thm) = ~1 then res thm rls else Variable.trade (K (fn [thm'] => res thm' rls)) thm_ctxt [thm]; in case Thm.concl_of thm of Const (\<^const_name>\Trueprop\, _) $ p => (case head_of p of Const (a, _) => (case AList.lookup (op =) pairs a of SOME rls => (maps atoms (res_fixed rls) handle THM _ => [thm]) | NONE => [thm]) | _ => [thm]) | _ => [thm] end; in atoms end; fun mksimps pairs ctxt = map_filter (try mk_eq) o mk_atomize ctxt pairs o Variable.gen_all ctxt; fun unsafe_solver_tac ctxt = let val sol_thms = reflexive_thm :: @{thm TrueI} :: @{thm refl} :: Simplifier.prems_of ctxt; fun sol_tac i = FIRST [resolve_tac ctxt sol_thms i, assume_tac ctxt i, eresolve_tac ctxt @{thms FalseE} i] ORELSE (match_tac ctxt [@{thm conjI}] THEN_ALL_NEW sol_tac) i in (fn i => REPEAT_DETERM (match_tac ctxt @{thms simp_impliesI} i)) THEN' sol_tac end; val unsafe_solver = mk_solver "HOL unsafe" unsafe_solver_tac; (*No premature instantiation of variables during simplification*) fun safe_solver_tac ctxt = (fn i => REPEAT_DETERM (match_tac ctxt @{thms simp_impliesI} i)) THEN' FIRST' [match_tac ctxt (reflexive_thm :: @{thm TrueI} :: @{thm refl} :: Simplifier.prems_of ctxt), eq_assume_tac, ematch_tac ctxt @{thms FalseE}]; val safe_solver = mk_solver "HOL safe" safe_solver_tac; structure Splitter = Splitter ( val context = \<^context> val mk_eq = mk_eq val meta_eq_to_iff = @{thm meta_eq_to_obj_eq} val iffD = @{thm iffD2} val disjE = @{thm disjE} val conjE = @{thm conjE} val exE = @{thm exE} val contrapos = @{thm contrapos_nn} val contrapos2 = @{thm contrapos_pp} val notnotD = @{thm notnotD} val safe_tac = Classical.safe_tac ); val split_tac = Splitter.split_tac; val split_inside_tac = Splitter.split_inside_tac; (* integration of simplifier with classical reasoner *) structure Clasimp = Clasimp ( structure Simplifier = Simplifier and Splitter = Splitter and Classical = Classical and Blast = Blast val iffD1 = @{thm iffD1} val iffD2 = @{thm iffD2} val notE = @{thm notE} ); open Clasimp; val mksimps_pairs = [(\<^const_name>\HOL.implies\, [@{thm mp}]), (\<^const_name>\HOL.conj\, [@{thm conjunct1}, @{thm conjunct2}]), (\<^const_name>\All\, [@{thm spec}]), (\<^const_name>\True\, []), (\<^const_name>\False\, []), (\<^const_name>\If\, [@{thm if_bool_eq_conj} RS @{thm iffD1}])]; val HOL_basic_ss = empty_simpset \<^context> setSSolver safe_solver setSolver unsafe_solver |> Simplifier.set_subgoaler asm_simp_tac |> Simplifier.set_mksimps (mksimps mksimps_pairs) |> Simplifier.set_mkeqTrue mk_eq_True |> Simplifier.set_mkcong mk_meta_cong |> simpset_of; fun hol_simplify ctxt rews = Simplifier.full_simplify (put_simpset HOL_basic_ss ctxt addsimps rews); fun unfold_tac ctxt ths = ALLGOALS (full_simp_tac (clear_simpset (put_simpset HOL_basic_ss ctxt) addsimps ths)); end; structure Splitter = Simpdata.Splitter; structure Clasimp = Simpdata.Clasimp;