(* Title: HOL/Tools/sat_solver.ML Author: Tjark Weber Copyright 2004-2009 Interface to external SAT solvers, and (simple) built-in SAT solvers. Relevant Isabelle environment settings: # MiniSat 1.14 #MINISAT_HOME=/usr/local/bin # zChaff #ZCHAFF_HOME=/usr/local/bin # BerkMin561 #BERKMIN_HOME=/usr/local/bin #BERKMIN_EXE=BerkMin561-linux #BERKMIN_EXE=BerkMin561-solaris # Jerusat 1.3 #JERUSAT_HOME=/usr/local/bin *) signature SAT_SOLVER = sig exception NOT_CONFIGURED type assignment = int -> bool option type proof = int list Inttab.table * int datatype result = SATISFIABLE of assignment | UNSATISFIABLE of proof option | UNKNOWN type solver = Prop_Logic.prop_formula -> result (* auxiliary functions to create external SAT solvers *) val write_dimacs_cnf_file : Path.T -> Prop_Logic.prop_formula -> unit val write_dimacs_sat_file : Path.T -> Prop_Logic.prop_formula -> unit val read_std_result_file : Path.T -> string * string * string -> result val make_external_solver : string -> (Prop_Logic.prop_formula -> unit) -> (unit -> result) -> solver val read_dimacs_cnf_file : Path.T -> Prop_Logic.prop_formula (* generic solver interface *) val get_solvers : unit -> (string * solver) list val add_solver : string * solver -> unit val invoke_solver : string -> solver (* exception Option *) end; structure SAT_Solver : SAT_SOLVER = struct open Prop_Logic; (* ------------------------------------------------------------------------- *) (* should be raised by an external SAT solver to indicate that the solver is *) (* not configured properly *) (* ------------------------------------------------------------------------- *) exception NOT_CONFIGURED; (* ------------------------------------------------------------------------- *) (* type of partial (satisfying) assignments: 'a i = NONE' means that 'a' is *) (* a satisfying assignment regardless of the value of variable 'i' *) (* ------------------------------------------------------------------------- *) type assignment = int -> bool option; (* ------------------------------------------------------------------------- *) (* a proof of unsatisfiability, to be interpreted as follows: each integer *) (* is a clause ID, each list 'xs' stored under the key 'x' in the table *) (* contains the IDs of clauses that must be resolved (in the given *) (* order) to obtain the new clause 'x'. Each list 'xs' must be *) (* non-empty, and the literal to be resolved upon must always be unique *) (* (e.g. "A | ~B" must not be resolved with "~A | B"). Circular *) (* dependencies of clauses are not allowed. (At least) one of the *) (* clauses in the table must be the empty clause (i.e. contain no *) (* literals); its ID is given by the second component of the proof. *) (* The clauses of the original problem passed to the SAT solver have *) (* consecutive IDs starting with 0. Clause IDs must be non-negative, *) (* but do not need to be consecutive. *) (* ------------------------------------------------------------------------- *) type proof = int list Inttab.table * int; (* ------------------------------------------------------------------------- *) (* return type of SAT solvers: if the result is 'SATISFIABLE', a satisfying *) (* assignment must be returned as well; if the result is *) (* 'UNSATISFIABLE', a proof of unsatisfiability may be returned *) (* ------------------------------------------------------------------------- *) datatype result = SATISFIABLE of assignment | UNSATISFIABLE of proof option | UNKNOWN; (* ------------------------------------------------------------------------- *) (* type of SAT solvers: given a propositional formula, a satisfying *) (* assignment may be returned *) (* ------------------------------------------------------------------------- *) type solver = prop_formula -> result; (* ------------------------------------------------------------------------- *) (* write_dimacs_cnf_file: serializes a formula 'fm' of propositional logic *) (* to a file in DIMACS CNF format (see "Satisfiability Suggested *) (* Format", May 8 1993, Section 2.1) *) (* Note: 'fm' must not contain a variable index less than 1. *) (* Note: 'fm' must be given in CNF. *) (* ------------------------------------------------------------------------- *) fun write_dimacs_cnf_file path fm = let fun cnf_True_False_elim True = Or (BoolVar 1, Not (BoolVar 1)) | cnf_True_False_elim False = And (BoolVar 1, Not (BoolVar 1)) | cnf_True_False_elim fm = fm (* since 'fm' is in CNF, either 'fm'='True'/'False', or 'fm' does not contain 'True'/'False' at all *) fun cnf_number_of_clauses (And (fm1, fm2)) = (cnf_number_of_clauses fm1) + (cnf_number_of_clauses fm2) | cnf_number_of_clauses _ = 1 fun write_cnf_file out = let fun write_formula True = error "formula is not in CNF" | write_formula False = error "formula is not in CNF" | write_formula (BoolVar i) = (i>=1 orelse error "formula contains a variable index less than 1"; File.output out (string_of_int i)) | write_formula (Not (BoolVar i)) = (File.output out "-"; write_formula (BoolVar i)) | write_formula (Not _) = error "formula is not in CNF" | write_formula (Or (fm1, fm2)) = (write_formula fm1; File.output out " "; write_formula fm2) | write_formula (And (fm1, fm2)) = (write_formula fm1; File.output out " 0\n"; write_formula fm2) val fm' = cnf_True_False_elim fm val number_of_vars = maxidx fm' val number_of_clauses = cnf_number_of_clauses fm' in File.output out "c This file was generated by SAT_Solver.write_dimacs_cnf_file\n"; File.output out ("p cnf " ^ string_of_int number_of_vars ^ " " ^ string_of_int number_of_clauses ^ "\n"); write_formula fm'; File.output out " 0\n" end in File.open_output write_cnf_file path end; (* ------------------------------------------------------------------------- *) (* write_dimacs_sat_file: serializes a formula 'fm' of propositional logic *) (* to a file in DIMACS SAT format (see "Satisfiability Suggested *) (* Format", May 8 1993, Section 2.2) *) (* Note: 'fm' must not contain a variable index less than 1. *) (* ------------------------------------------------------------------------- *) fun write_dimacs_sat_file path fm = let fun write_sat_file out = let fun write_formula True = File.output out "*()" | write_formula False = File.output out "+()" | write_formula (BoolVar i) = (i>=1 orelse error "formula contains a variable index less than 1"; File.output out (string_of_int i)) | write_formula (Not (BoolVar i)) = (File.output out "-"; write_formula (BoolVar i)) | write_formula (Not fm) = (File.output out "-("; write_formula fm; File.output out ")") | write_formula (Or (fm1, fm2)) = (File.output out "+("; write_formula_or fm1; File.output out " "; write_formula_or fm2; File.output out ")") | write_formula (And (fm1, fm2)) = (File.output out "*("; write_formula_and fm1; File.output out " "; write_formula_and fm2; File.output out ")") (* optimization to make use of n-ary disjunction/conjunction *) and write_formula_or (Or (fm1, fm2)) = (write_formula_or fm1; File.output out " "; write_formula_or fm2) | write_formula_or fm = write_formula fm and write_formula_and (And (fm1, fm2)) = (write_formula_and fm1; File.output out " "; write_formula_and fm2) | write_formula_and fm = write_formula fm val number_of_vars = Int.max (maxidx fm, 1) in File.output out "c This file was generated by SAT_Solver.write_dimacs_sat_file\n"; File.output out ("p sat " ^ string_of_int number_of_vars ^ "\n"); File.output out "("; write_formula fm; File.output out ")\n" end in File.open_output write_sat_file path end; (* ------------------------------------------------------------------------- *) (* read_std_result_file: scans a SAT solver's output file for a satisfying *) (* variable assignment. Returns the assignment, or 'UNSATISFIABLE' if *) (* the file contains 'unsatisfiable', or 'UNKNOWN' if the file contains *) (* neither 'satisfiable' nor 'unsatisfiable'. Empty lines are ignored. *) (* The assignment must be given in one or more lines immediately after *) (* the line that contains 'satisfiable'. These lines must begin with *) (* 'assignment_prefix'. Variables must be separated by " ". Non- *) (* integer strings are ignored. If variable i is contained in the *) (* assignment, then i is interpreted as 'true'. If ~i is contained in *) (* the assignment, then i is interpreted as 'false'. Otherwise the *) (* value of i is taken to be unspecified. *) (* ------------------------------------------------------------------------- *) fun read_std_result_file path (satisfiable, assignment_prefix, unsatisfiable) = let fun int_list_from_string s = map_filter Int.fromString (space_explode " " s) fun assignment_from_list [] i = NONE (* the SAT solver didn't provide a value for this variable *) | assignment_from_list (x::xs) i = if x=i then (SOME true) else if x=(~i) then (SOME false) else assignment_from_list xs i fun parse_assignment xs [] = assignment_from_list xs | parse_assignment xs (line::lines) = if String.isPrefix assignment_prefix line then parse_assignment (xs @ int_list_from_string line) lines else assignment_from_list xs fun is_substring needle haystack = let val length1 = String.size needle val length2 = String.size haystack in if length2 < length1 then false else if needle = String.substring (haystack, 0, length1) then true else is_substring needle (String.substring (haystack, 1, length2-1)) end fun parse_lines [] = UNKNOWN | parse_lines (line::lines) = if is_substring unsatisfiable line then UNSATISFIABLE NONE else if is_substring satisfiable line then SATISFIABLE (parse_assignment [] lines) else parse_lines lines in (parse_lines o filter (fn l => l <> "") o split_lines o File.read) path end; (* ------------------------------------------------------------------------- *) (* make_external_solver: call 'writefn', execute 'cmd', call 'readfn' *) (* ------------------------------------------------------------------------- *) fun make_external_solver cmd writefn readfn fm = (writefn fm; Isabelle_System.bash cmd; readfn ()); (* ------------------------------------------------------------------------- *) (* read_dimacs_cnf_file: returns a propositional formula that corresponds to *) (* a SAT problem given in DIMACS CNF format *) (* ------------------------------------------------------------------------- *) fun read_dimacs_cnf_file path = let fun filter_preamble [] = error "problem line not found in DIMACS CNF file" | filter_preamble (line::lines) = if String.isPrefix "c " line orelse line = "c" then (* ignore comments *) filter_preamble lines else if String.isPrefix "p " line then (* ignore the problem line (which must be the last line of the preamble) *) (* Ignoring the problem line implies that if the file contains more clauses *) (* or variables than specified in its preamble, we will accept it anyway. *) lines else error "preamble in DIMACS CNF file contains a line that does not begin with \"c \" or \"p \"" fun int_from_string s = case Int.fromString s of SOME i => i | NONE => error ("token " ^ quote s ^ " in DIMACS CNF file is not a number") fun clauses xs = let val (xs1, xs2) = chop_prefix (fn i => i <> 0) xs in case xs2 of [] => [xs1] | (0::[]) => [xs1] | (0::tl) => xs1 :: clauses tl | _ => raise Fail "SAT_Solver.clauses" end fun literal_from_int i = (i<>0 orelse error "variable index in DIMACS CNF file is 0"; if i>0 then Prop_Logic.BoolVar i else Prop_Logic.Not (Prop_Logic.BoolVar (~i))) fun disjunction [] = error "empty clause in DIMACS CNF file" | disjunction (x::xs) = (case xs of [] => x | _ => Prop_Logic.Or (x, disjunction xs)) fun conjunction [] = error "no clause in DIMACS CNF file" | conjunction (x::xs) = (case xs of [] => x | _ => Prop_Logic.And (x, conjunction xs)) in (conjunction o (map disjunction) o (map (map literal_from_int)) o clauses o (map int_from_string) o (maps (String.tokens (member (op =) [#" ", #"\t", #"\n"]))) o filter_preamble o filter (fn l => l <> "") o split_lines o File.read) path end; (* ------------------------------------------------------------------------- *) (* solvers: a table of all registered SAT solvers *) (* ------------------------------------------------------------------------- *) val solvers = Synchronized.var "solvers" ([] : (string * solver) list); fun get_solvers () = Synchronized.value solvers; (* ------------------------------------------------------------------------- *) (* add_solver: updates 'solvers' by adding a new solver *) (* ------------------------------------------------------------------------- *) fun add_solver (name, new_solver) = Synchronized.change solvers (fn the_solvers => let val _ = if AList.defined (op =) the_solvers name then warning ("SAT solver " ^ quote name ^ " was defined before") else (); in AList.update (op =) (name, new_solver) the_solvers end); (* ------------------------------------------------------------------------- *) (* invoke_solver: returns the solver associated with the given 'name' *) (* Note: If no solver is associated with 'name', exception 'Option' will be *) (* raised. *) (* ------------------------------------------------------------------------- *) fun invoke_solver name = the (AList.lookup (op =) (get_solvers ()) name); end; (* SAT_Solver *) (* ------------------------------------------------------------------------- *) (* Predefined SAT solvers *) (* ------------------------------------------------------------------------- *) (* ------------------------------------------------------------------------- *) (* Internal SAT solver, available as 'SAT_Solver.invoke_solver "cdclite"' -- *) (* a simplified implementation of the conflict-driven clause-learning *) (* algorithm (cf. L. Zhang, S. Malik: "The Quest for Efficient Boolean *) (* Satisfiability Solvers", July 2002, Fig. 2). This solver produces models *) (* and proof traces. *) (* ------------------------------------------------------------------------- *) let type clause = int list * int type value = bool option datatype reason = Decided | Implied of clause | Level0 of int type variable = bool option * reason * int * int type proofs = int * int list Inttab.table type state = int * int list * variable Inttab.table * clause list Inttab.table * proofs exception CONFLICT of clause * state exception UNSAT of clause * state fun neg i = ~i fun lit_value lit value = if lit > 0 then value else Option.map not value fun var_of vars lit: variable = the (Inttab.lookup vars (abs lit)) fun value_of vars lit = lit_value lit (#1 (var_of vars lit)) fun reason_of vars lit = #2 (var_of vars lit) fun level_of vars lit = #3 (var_of vars lit) fun is_true vars lit = (value_of vars lit = SOME true) fun is_false vars lit = (value_of vars lit = SOME false) fun is_unassigned vars lit = (value_of vars lit = NONE) fun assignment_of vars lit = the_default NONE (try (value_of vars) lit) fun put_var value reason level (_, _, _, rank) = (value, reason, level, rank) fun incr_rank (value, reason, level, rank) = (value, reason, level, rank + 1) fun update_var lit f = Inttab.map_entry (abs lit) f fun add_var lit = Inttab.update (abs lit, (NONE, Decided, ~1, 0)) fun assign lit r l = update_var lit (put_var (SOME (lit > 0)) r l) fun unassign lit = update_var lit (put_var NONE Decided ~1) fun add_proof [] (idx, ptab) = (idx, (idx + 1, ptab)) | add_proof ps (idx, ptab) = (idx, (idx + 1, Inttab.update (idx, ps) ptab)) fun level0_proof_of (Level0 idx) = SOME idx | level0_proof_of _ = NONE fun level0_proofs_of vars = map_filter (level0_proof_of o reason_of vars) fun prems_of vars (lits, p) = p :: level0_proofs_of vars lits fun mk_proof vars cls proofs = add_proof (prems_of vars cls) proofs fun push lit cls (level, trail, vars, clss, proofs) = let val (reason, proofs) = if level = 0 then apfst Level0 (mk_proof vars cls proofs) else (Implied cls, proofs) in (level, lit :: trail, assign lit reason level vars, clss, proofs) end fun push_decided lit (level, trail, vars, clss, proofs) = let val vars' = assign lit Decided (level + 1) vars in (level + 1, lit :: 0 :: trail, vars', clss, proofs) end fun prop (cls as (lits, _)) (cx as (units, state as (level, _, vars, _, _))) = if exists (is_true vars) lits then cx else if forall (is_false vars) lits then if level = 0 then raise UNSAT (cls, state) else raise CONFLICT (cls, state) else (case filter (is_unassigned vars) lits of [lit] => (lit :: units, push lit cls state) | _ => cx) fun propagate units (state as (_, _, _, clss, _)) = (case fold (fold prop o Inttab.lookup_list clss) units ([], state) of ([], state') => (NONE, state') | (units', state') => propagate units' state') handle CONFLICT (cls, state') => (SOME cls, state') fun max_unassigned (v, (NONE, _, _, rank)) (x as (_, r)) = if rank > r then (SOME v, rank) else x | max_unassigned _ x = x fun decide (state as (_, _, vars, _, _)) = (case Inttab.fold max_unassigned vars (NONE, 0) of (SOME lit, _) => SOME (lit, push_decided lit state) | (NONE, _) => NONE) fun mark lit = Inttab.update (abs lit, true) fun marked ms lit = the_default false (Inttab.lookup ms (abs lit)) fun ignore l ms lit = ((lit = l) orelse marked ms lit) fun first_lit _ [] = raise Empty | first_lit _ (0 :: _) = raise Empty | first_lit pred (lit :: lits) = if pred lit then (lit, lits) else first_lit pred lits fun reason_cls_of vars lit = (case reason_of vars lit of Implied cls => cls | _ => raise Option) fun analyze conflicting_cls (level, trail, vars, _, _) = let fun back i lit (lits, p) trail ms ls ps = let val (lits0, lits') = List.partition (equal 0 o level_of vars) lits val lits1 = filter_out (ignore lit ms) lits' val lits2 = filter_out (equal level o level_of vars) lits1 val i' = length lits1 - length lits2 + i val ms' = fold mark lits1 ms val ls' = lits2 @ ls val ps' = level0_proofs_of vars lits0 @ (p :: ps) val (lit', trail') = first_lit (marked ms') trail in if i' = 1 then (neg lit', ls', rev ps') else back (i' - 1) lit' (reason_cls_of vars lit') trail' ms' ls' ps' end in back 0 0 conflicting_cls trail Inttab.empty [] [] end fun keep_clause (cls as (lits, _)) (level, trail, vars, clss, proofs) = let val vars' = fold (fn lit => update_var lit incr_rank) lits vars val clss' = fold (fn lit => Inttab.cons_list (neg lit, cls)) lits clss in (level, trail, vars', clss', proofs) end fun learn (cls as (lits, _)) = (length lits <= 2) ? keep_clause cls fun backjump _ (state as (_, [], _, _, _)) = state | backjump i (level, 0 :: trail, vars, clss, proofs) = (level - 1, trail, vars, clss, proofs) |> (i > 1) ? backjump (i - 1) | backjump i (level, lit :: trail, vars, clss, proofs) = backjump i (level, trail, unassign lit vars, clss, proofs) fun search units state = (case propagate units state of (NONE, state' as (_, _, vars, _, _)) => (case decide state' of NONE => SAT_Solver.SATISFIABLE (assignment_of vars) | SOME (lit, state'') => search [lit] state'') | (SOME conflicting_cls, state' as (level, trail, vars, clss, proofs)) => let val (lit, lits, ps) = analyze conflicting_cls state' val (idx, proofs') = add_proof ps proofs val cls = (lit :: lits, idx) in (level, trail, vars, clss, proofs') |> backjump (level - fold (Integer.max o level_of vars) lits 0) |> learn cls |> push lit cls |> search [lit] end) fun has_opposing_lits [] = false | has_opposing_lits (lit :: lits) = member (op =) lits (neg lit) orelse has_opposing_lits lits fun add_clause (cls as ([_], _)) (units, state) = let val (units', state') = prop cls (units, state) in (units', state') end | add_clause (cls as (lits, _)) (cx as (units, state)) = if has_opposing_lits lits then cx else (units, keep_clause cls state) fun mk_clause lits proofs = apfst (pair (distinct (op =) lits)) (add_proof [] proofs) fun solve litss = let val (clss, proofs) = fold_map mk_clause litss (0, Inttab.empty) val vars = fold (fold add_var) litss Inttab.empty val state = (0, [], vars, Inttab.empty, proofs) in uncurry search (fold add_clause clss ([], state)) end handle UNSAT (conflicting_cls, (_, _, vars, _, proofs)) => let val (idx, (_, ptab)) = mk_proof vars conflicting_cls proofs in SAT_Solver.UNSATISFIABLE (SOME (ptab, idx)) end fun variable_of (Prop_Logic.BoolVar 0) = error "bad propositional variable" | variable_of (Prop_Logic.BoolVar i) = i | variable_of _ = error "expected formula in CNF" fun literal_of (Prop_Logic.Not fm) = neg (variable_of fm) | literal_of fm = variable_of fm fun clause_of (Prop_Logic.Or (fm1, fm2)) = clause_of fm1 @ clause_of fm2 | clause_of fm = [literal_of fm] fun clauses_of (Prop_Logic.And (fm1, fm2)) = clauses_of fm1 @ clauses_of fm2 | clauses_of Prop_Logic.True = [[1, ~1]] | clauses_of Prop_Logic.False = [[1], [~1]] | clauses_of fm = [clause_of fm] fun dpll_solver fm = let val fm' = if Prop_Logic.is_cnf fm then fm else Prop_Logic.defcnf fm in solve (clauses_of fm') end in SAT_Solver.add_solver ("cdclite", dpll_solver) end; (* ------------------------------------------------------------------------- *) (* Internal SAT solver, available as 'SAT_Solver.invoke_solver "auto"': uses *) (* the last installed solver (other than "auto" itself) that does not raise *) (* 'NOT_CONFIGURED'. (However, the solver may return 'UNKNOWN'.) *) (* ------------------------------------------------------------------------- *) let fun auto_solver fm = let fun loop [] = SAT_Solver.UNKNOWN | loop ((name, solver)::solvers) = if name="auto" then (* do not call solver "auto" from within "auto" *) loop solvers else ( (* apply 'solver' to 'fm' *) solver fm handle SAT_Solver.NOT_CONFIGURED => loop solvers ) in loop (SAT_Solver.get_solvers ()) end in SAT_Solver.add_solver ("auto", auto_solver) end; (* ------------------------------------------------------------------------- *) (* MiniSat 1.14 *) (* (http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/) *) (* ------------------------------------------------------------------------- *) (* ------------------------------------------------------------------------- *) (* "minisat_with_proofs" requires a modified version of MiniSat 1.14 by John *) (* Matthews, which can output ASCII proof traces. Replaying binary proof *) (* traces generated by MiniSat-p_v1.14 has _not_ been implemented. *) (* ------------------------------------------------------------------------- *) (* add "minisat_with_proofs" _before_ "minisat" to the available solvers, so *) (* that the latter is preferred by the "auto" solver *) (* There is a complication that is dealt with in the code below: MiniSat *) (* introduces IDs for original clauses in the proof trace. It does not (in *) (* general) follow the convention that the original clauses are numbered *) (* from 0 to n-1 (where n is the number of clauses in the formula). *) let exception INVALID_PROOF of string fun minisat_with_proofs fm = let val _ = if (getenv "MINISAT_HOME") = "" then raise SAT_Solver.NOT_CONFIGURED else () val serial_str = serial_string () val inpath = File.tmp_path (Path.explode ("isabelle" ^ serial_str ^ ".cnf")) val outpath = File.tmp_path (Path.explode ("result" ^ serial_str)) val proofpath = File.tmp_path (Path.explode ("result" ^ serial_str ^ ".prf")) val cmd = "\"$MINISAT_HOME/minisat\" " ^ File.bash_path inpath ^ " -r " ^ File.bash_path outpath ^ " -t " ^ File.bash_path proofpath ^ "> /dev/null" fun writefn fm = SAT_Solver.write_dimacs_cnf_file inpath fm fun readfn () = SAT_Solver.read_std_result_file outpath ("SAT", "", "UNSAT") val _ = if File.exists inpath then warning ("overwriting existing file " ^ Path.print inpath) else () val _ = if File.exists outpath then warning ("overwriting existing file " ^ Path.print outpath) else () val cnf = Prop_Logic.defcnf fm val result = SAT_Solver.make_external_solver cmd writefn readfn cnf val _ = try File.rm inpath val _ = try File.rm outpath in case result of SAT_Solver.UNSATISFIABLE NONE => (let val proof_lines = (split_lines o File.read) proofpath handle IO.Io _ => raise INVALID_PROOF "Could not read file \"result.prf\"" (* representation of clauses as ordered lists of literals (with duplicates removed) *) fun clause_to_lit_list (Prop_Logic.Or (fm1, fm2)) = Ord_List.union int_ord (clause_to_lit_list fm1) (clause_to_lit_list fm2) | clause_to_lit_list (Prop_Logic.BoolVar i) = [i] | clause_to_lit_list (Prop_Logic.Not (Prop_Logic.BoolVar i)) = [~i] | clause_to_lit_list _ = raise INVALID_PROOF "Error: invalid clause in CNF formula." fun cnf_number_of_clauses (Prop_Logic.And (fm1, fm2)) = cnf_number_of_clauses fm1 + cnf_number_of_clauses fm2 | cnf_number_of_clauses _ = 1 val number_of_clauses = cnf_number_of_clauses cnf (* int list array *) val clauses = Array.array (number_of_clauses, []) (* initialize the 'clauses' array *) fun init_array (Prop_Logic.And (fm1, fm2), n) = init_array (fm2, init_array (fm1, n)) | init_array (fm, n) = (Array.update (clauses, n, clause_to_lit_list fm); n+1) val _ = init_array (cnf, 0) (* optimization for the common case where MiniSat "R"s clauses in their *) (* original order: *) val last_ref_clause = Unsynchronized.ref (number_of_clauses - 1) (* search the 'clauses' array for the given list of literals 'lits', *) (* starting at index '!last_ref_clause + 1' *) fun original_clause_id lits = let fun original_clause_id_from index = if index = number_of_clauses then (* search from beginning again *) original_clause_id_from 0 (* both 'lits' and the list of literals used in 'clauses' are sorted, so *) (* testing for equality should suffice -- barring duplicate literals *) else if Array.sub (clauses, index) = lits then ( (* success *) last_ref_clause := index; SOME index ) else if index = !last_ref_clause then (* failure *) NONE else (* continue search *) original_clause_id_from (index + 1) in original_clause_id_from (!last_ref_clause + 1) end fun int_from_string s = (case Int.fromString s of SOME i => i | NONE => raise INVALID_PROOF ("File format error: number expected (" ^ quote s ^ " encountered).")) (* parse the proof file *) val clause_table = Unsynchronized.ref (Inttab.empty : int list Inttab.table) val empty_id = Unsynchronized.ref ~1 (* contains a mapping from clause IDs as used by MiniSat to clause IDs in *) (* our proof format, where original clauses are numbered starting from 0 *) val clause_id_map = Unsynchronized.ref (Inttab.empty : int Inttab.table) fun sat_to_proof id = ( case Inttab.lookup (!clause_id_map) id of SOME id' => id' | NONE => raise INVALID_PROOF ("Clause ID " ^ string_of_int id ^ " used, but not defined.") ) val next_id = Unsynchronized.ref (number_of_clauses - 1) fun process_tokens [] = () | process_tokens (tok::toks) = if tok="R" then ( case toks of id::sep::lits => let val _ = if !empty_id = ~1 then () else raise INVALID_PROOF "File format error: \"R\" disallowed after \"X\"." val cid = int_from_string id val _ = if sep = "<=" then () else raise INVALID_PROOF ("File format error: \"<=\" expected (" ^ quote sep ^ " encountered).") val ls = sort int_ord (map int_from_string lits) val proof_id = case original_clause_id ls of SOME orig_id => orig_id | NONE => raise INVALID_PROOF ("Original clause (new ID is " ^ id ^ ") not found.") in (* extend the mapping of clause IDs with this newly defined ID *) clause_id_map := Inttab.update_new (cid, proof_id) (!clause_id_map) handle Inttab.DUP _ => raise INVALID_PROOF ("File format error: clause " ^ id ^ " defined more than once (in \"R\").") (* the proof itself doesn't change *) end | _ => raise INVALID_PROOF "File format error: \"R\" followed by an insufficient number of tokens." ) else if tok="C" then ( case toks of id::sep::ids => let val _ = if !empty_id = ~1 then () else raise INVALID_PROOF "File format error: \"C\" disallowed after \"X\"." val cid = int_from_string id val _ = if sep = "<=" then () else raise INVALID_PROOF ("File format error: \"<=\" expected (" ^ quote sep ^ " encountered).") (* ignore the pivot literals in MiniSat's trace *) fun unevens [] = raise INVALID_PROOF "File format error: \"C\" followed by an even number of IDs." | unevens (x :: []) = x :: [] | unevens (x :: _ :: xs) = x :: unevens xs val rs = (map sat_to_proof o unevens o map int_from_string) ids (* extend the mapping of clause IDs with this newly defined ID *) val proof_id = Unsynchronized.inc next_id val _ = clause_id_map := Inttab.update_new (cid, proof_id) (!clause_id_map) handle Inttab.DUP _ => raise INVALID_PROOF ("File format error: clause " ^ id ^ " defined more than once (in \"C\").") in (* update clause table *) clause_table := Inttab.update_new (proof_id, rs) (!clause_table) handle Inttab.DUP _ => raise INVALID_PROOF ("Error: internal ID for clause " ^ id ^ " already used.") end | _ => raise INVALID_PROOF "File format error: \"C\" followed by an insufficient number of tokens." ) else if tok="D" then ( case toks of [id] => let val _ = if !empty_id = ~1 then () else raise INVALID_PROOF "File format error: \"D\" disallowed after \"X\"." val _ = sat_to_proof (int_from_string id) in (* simply ignore "D" *) () end | _ => raise INVALID_PROOF "File format error: \"D\" followed by an illegal number of tokens." ) else if tok="X" then ( case toks of [id1, id2] => let val _ = if !empty_id = ~1 then () else raise INVALID_PROOF "File format error: more than one end-of-proof statement." val _ = sat_to_proof (int_from_string id1) val new_empty_id = sat_to_proof (int_from_string id2) in (* update conflict id *) empty_id := new_empty_id end | _ => raise INVALID_PROOF "File format error: \"X\" followed by an illegal number of tokens." ) else raise INVALID_PROOF ("File format error: unknown token " ^ quote tok ^ " encountered.") fun process_lines [] = () | process_lines (l::ls) = ( process_tokens (String.tokens (fn c => c = #" " orelse c = #"\t") l); process_lines ls ) (* proof *) val _ = process_lines proof_lines val _ = if !empty_id <> ~1 then () else raise INVALID_PROOF "File format error: no conflicting clause specified." in SAT_Solver.UNSATISFIABLE (SOME (!clause_table, !empty_id)) end handle INVALID_PROOF reason => (warning reason; SAT_Solver.UNSATISFIABLE NONE)) | result => result end in SAT_Solver.add_solver ("minisat_with_proofs", minisat_with_proofs) end; let fun minisat fm = let val _ = if getenv "MINISAT_HOME" = "" then raise SAT_Solver.NOT_CONFIGURED else () val serial_str = serial_string () val inpath = File.tmp_path (Path.explode ("isabelle" ^ serial_str ^ ".cnf")) val outpath = File.tmp_path (Path.explode ("result" ^ serial_str)) val cmd = "\"$MINISAT_HOME/minisat\" " ^ File.bash_path inpath ^ " -r " ^ File.bash_path outpath ^ " > /dev/null" fun writefn fm = SAT_Solver.write_dimacs_cnf_file inpath (Prop_Logic.defcnf fm) fun readfn () = SAT_Solver.read_std_result_file outpath ("SAT", "", "UNSAT") val _ = if File.exists inpath then warning ("overwriting existing file " ^ Path.print inpath) else () val _ = if File.exists outpath then warning ("overwriting existing file " ^ Path.print outpath) else () val result = SAT_Solver.make_external_solver cmd writefn readfn fm val _ = try File.rm inpath val _ = try File.rm outpath in result end in SAT_Solver.add_solver ("minisat", minisat) end; (* ------------------------------------------------------------------------- *) (* zChaff (https://www.princeton.edu/~chaff/zchaff.html) *) (* ------------------------------------------------------------------------- *) (* ------------------------------------------------------------------------- *) (* 'zchaff_with_proofs' applies the "zchaff" prover to a formula, and if *) (* zChaff finds that the formula is unsatisfiable, a proof of this is read *) (* from a file "resolve_trace" that was generated by zChaff. See the code *) (* below for the expected format of the "resolve_trace" file. Aside from *) (* some basic syntactic checks, no verification of the proof is performed. *) (* ------------------------------------------------------------------------- *) (* add "zchaff_with_proofs" _before_ "zchaff" to the available solvers, so *) (* that the latter is preferred by the "auto" solver *) let exception INVALID_PROOF of string fun zchaff_with_proofs fm = case SAT_Solver.invoke_solver "zchaff" fm of SAT_Solver.UNSATISFIABLE NONE => (let (* FIXME File.tmp_path (!?) *) val proof_lines = ((split_lines o File.read) (Path.explode "resolve_trace")) handle IO.Io _ => raise INVALID_PROOF "Could not read file \"resolve_trace\"" fun cnf_number_of_clauses (Prop_Logic.And (fm1, fm2)) = cnf_number_of_clauses fm1 + cnf_number_of_clauses fm2 | cnf_number_of_clauses _ = 1 fun int_from_string s = ( case Int.fromString s of SOME i => i | NONE => raise INVALID_PROOF ("File format error: number expected (" ^ quote s ^ " encountered).") ) (* parse the "resolve_trace" file *) val clause_offset = Unsynchronized.ref ~1 val clause_table = Unsynchronized.ref (Inttab.empty : int list Inttab.table) val empty_id = Unsynchronized.ref ~1 fun process_tokens [] = () | process_tokens (tok::toks) = if tok="CL:" then ( case toks of id::sep::ids => let val _ = if !clause_offset = ~1 then () else raise INVALID_PROOF ("File format error: \"CL:\" disallowed after \"VAR:\".") val _ = if !empty_id = ~1 then () else raise INVALID_PROOF ("File format error: \"CL:\" disallowed after \"CONF:\".") val cid = int_from_string id val _ = if sep = "<=" then () else raise INVALID_PROOF ("File format error: \"<=\" expected (" ^ quote sep ^ " encountered).") val rs = map int_from_string ids in (* update clause table *) clause_table := Inttab.update_new (cid, rs) (!clause_table) handle Inttab.DUP _ => raise INVALID_PROOF ("File format error: clause " ^ id ^ " defined more than once.") end | _ => raise INVALID_PROOF "File format error: \"CL:\" followed by an insufficient number of tokens." ) else if tok="VAR:" then ( case toks of id::levsep::levid::valsep::valid::antesep::anteid::litsep::lits => let val _ = if !empty_id = ~1 then () else raise INVALID_PROOF ("File format error: \"VAR:\" disallowed after \"CONF:\".") (* set 'clause_offset' to the largest used clause ID *) val _ = if !clause_offset = ~1 then clause_offset := (case Inttab.max (!clause_table) of SOME (id, _) => id | NONE => cnf_number_of_clauses (Prop_Logic.defcnf fm) - 1 (* the first clause ID is 0, not 1 *)) else () val vid = int_from_string id val _ = if levsep = "L:" then () else raise INVALID_PROOF ("File format error: \"L:\" expected (" ^ quote levsep ^ " encountered).") val _ = int_from_string levid val _ = if valsep = "V:" then () else raise INVALID_PROOF ("File format error: \"V:\" expected (" ^ quote valsep ^ " encountered).") val _ = int_from_string valid val _ = if antesep = "A:" then () else raise INVALID_PROOF ("File format error: \"A:\" expected (" ^ quote antesep ^ " encountered).") val aid = int_from_string anteid val _ = if litsep = "Lits:" then () else raise INVALID_PROOF ("File format error: \"Lits:\" expected (" ^ quote litsep ^ " encountered).") val ls = map int_from_string lits (* convert the data provided by zChaff to our resolution-style proof format *) (* each "VAR:" line defines a unit clause, the resolvents are implicitly *) (* given by the literals in the antecedent clause *) (* we use the sum of '!clause_offset' and the variable ID as clause ID for the unit clause *) val cid = !clause_offset + vid (* the low bit of each literal gives its sign (positive/negative), therefore *) (* we have to divide each literal by 2 to obtain the proper variable ID; then *) (* we add '!clause_offset' to obtain the ID of the corresponding unit clause *) val vids = filter (not_equal vid) (map (fn l => l div 2) ls) val rs = aid :: map (fn v => !clause_offset + v) vids in (* update clause table *) clause_table := Inttab.update_new (cid, rs) (!clause_table) handle Inttab.DUP _ => raise INVALID_PROOF ("File format error: clause " ^ string_of_int cid ^ " (derived from antecedent for variable " ^ id ^ ") already defined.") end | _ => raise INVALID_PROOF "File format error: \"VAR:\" followed by an insufficient number of tokens." ) else if tok="CONF:" then ( case toks of id::sep::ids => let val _ = if !empty_id = ~1 then () else raise INVALID_PROOF "File format error: more than one conflicting clause specified." val cid = int_from_string id val _ = if sep = "==" then () else raise INVALID_PROOF ("File format error: \"==\" expected (" ^ quote sep ^ " encountered).") val ls = map int_from_string ids (* the conflict clause must be resolved with the unit clauses *) (* for its literals to obtain the empty clause *) val vids = map (fn l => l div 2) ls val rs = cid :: map (fn v => !clause_offset + v) vids val new_empty_id = the_default (!clause_offset) (Option.map fst (Inttab.max (!clause_table))) + 1 in (* update clause table and conflict id *) clause_table := Inttab.update_new (new_empty_id, rs) (!clause_table) handle Inttab.DUP _ => raise INVALID_PROOF ("File format error: clause " ^ string_of_int new_empty_id ^ " (empty clause derived from clause " ^ id ^ ") already defined."); empty_id := new_empty_id end | _ => raise INVALID_PROOF "File format error: \"CONF:\" followed by an insufficient number of tokens." ) else raise INVALID_PROOF ("File format error: unknown token " ^ quote tok ^ " encountered.") fun process_lines [] = () | process_lines (l::ls) = ( process_tokens (String.tokens (fn c => c = #" " orelse c = #"\t") l); process_lines ls ) (* proof *) val _ = process_lines proof_lines val _ = if !empty_id <> ~1 then () else raise INVALID_PROOF "File format error: no conflicting clause specified." in SAT_Solver.UNSATISFIABLE (SOME (!clause_table, !empty_id)) end handle INVALID_PROOF reason => (warning reason; SAT_Solver.UNSATISFIABLE NONE)) | result => result in SAT_Solver.add_solver ("zchaff_with_proofs", zchaff_with_proofs) end; let fun zchaff fm = let val _ = if getenv "ZCHAFF_HOME" = "" then raise SAT_Solver.NOT_CONFIGURED else () val serial_str = serial_string () val inpath = File.tmp_path (Path.explode ("isabelle" ^ serial_str ^ ".cnf")) val outpath = File.tmp_path (Path.explode ("result" ^ serial_str)) val cmd = "\"$ZCHAFF_HOME/zchaff\" " ^ File.bash_path inpath ^ " > " ^ File.bash_path outpath fun writefn fm = SAT_Solver.write_dimacs_cnf_file inpath (Prop_Logic.defcnf fm) fun readfn () = SAT_Solver.read_std_result_file outpath ("Instance Satisfiable", "", "Instance Unsatisfiable") val _ = if File.exists inpath then warning ("overwriting existing file " ^ Path.print inpath) else () val _ = if File.exists outpath then warning ("overwriting existing file " ^ Path.print outpath) else () val result = SAT_Solver.make_external_solver cmd writefn readfn fm val _ = try File.rm inpath val _ = try File.rm outpath in result end in SAT_Solver.add_solver ("zchaff", zchaff) end; (* ------------------------------------------------------------------------- *) (* BerkMin 561 (http://eigold.tripod.com/BerkMin.html) *) (* ------------------------------------------------------------------------- *) let fun berkmin fm = let val _ = if (getenv "BERKMIN_HOME") = "" then raise SAT_Solver.NOT_CONFIGURED else () val serial_str = serial_string () val inpath = File.tmp_path (Path.explode ("isabelle" ^ serial_str ^ ".cnf")) val outpath = File.tmp_path (Path.explode ("result" ^ serial_str)) val cmd = "\"$BERKMIN_HOME/${BERKMIN_EXE:-BerkMin561}\" " ^ File.bash_path inpath ^ " > " ^ File.bash_path outpath fun writefn fm = SAT_Solver.write_dimacs_cnf_file inpath (Prop_Logic.defcnf fm) fun readfn () = SAT_Solver.read_std_result_file outpath ("Satisfiable !!", "solution =", "UNSATISFIABLE !!") val _ = if File.exists inpath then warning ("overwriting existing file " ^ Path.print inpath) else () val _ = if File.exists outpath then warning ("overwriting existing file " ^ Path.print outpath) else () val result = SAT_Solver.make_external_solver cmd writefn readfn fm val _ = try File.rm inpath val _ = try File.rm outpath in result end in SAT_Solver.add_solver ("berkmin", berkmin) end; (* ------------------------------------------------------------------------- *) (* Jerusat 1.3 (http://www.cs.tau.ac.il/~ale1/) *) (* ------------------------------------------------------------------------- *) let fun jerusat fm = let val _ = if (getenv "JERUSAT_HOME") = "" then raise SAT_Solver.NOT_CONFIGURED else () val serial_str = serial_string () val inpath = File.tmp_path (Path.explode ("isabelle" ^ serial_str ^ ".cnf")) val outpath = File.tmp_path (Path.explode ("result" ^ serial_str)) val cmd = "\"$JERUSAT_HOME/Jerusat1.3\" " ^ File.bash_path inpath ^ " > " ^ File.bash_path outpath fun writefn fm = SAT_Solver.write_dimacs_cnf_file inpath (Prop_Logic.defcnf fm) fun readfn () = SAT_Solver.read_std_result_file outpath ("s SATISFIABLE", "v ", "s UNSATISFIABLE") val _ = if File.exists inpath then warning ("overwriting existing file " ^ Path.print inpath) else () val _ = if File.exists outpath then warning ("overwriting existing file " ^ Path.print outpath) else () val result = SAT_Solver.make_external_solver cmd writefn readfn fm val _ = try File.rm inpath val _ = try File.rm outpath in result end in SAT_Solver.add_solver ("jerusat", jerusat) end;